Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2015

01-06-2015

Global analysis of chromosome 1 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer

Authors: Yong Zhang, Haiyun Wang, Jian Wang, Lianming Bao, Lingyan Wang, Jiayuan Huo, Xiangdong Wang

Published in: Cancer and Metastasis Reviews | Issue 2/2015

Login to get access

Abstract

The present study aimed at investigating genetic variations, specific signal pathways, or biological processes of chromosome 1 genes between subtypes and stages of lung cancer and prediction of selected targeting genes for patient survival rate. About 537 patients with lung adenocarcinoma (ADC), 140 with lung squamous carcinoma (SCC), 9 with lung large-cell carcinoma (LCC), 56 with small-cell lung cancer (SCLC), and 590 without caner were integrated from 16 databases and analyzed in the present study. Three (ASPM, CDC20, KIAA1799) or 28 genes significantly up- or down-expressed in four subtypes of lung cancer. The activated cell division and down-regulated immune responses were identified in patients with lung cancer. Keratinocyte development associated genes S100 and SPRR families dominantly up-expressed in SCC and AKT3 and NRAS in SCLC. Subtype-specific genes of ADC, SCC, LCC, or SCLC were also identified. C1orf106, CAPN8, CDC20, COL11A1, CRABP2, and NBPF9 up-expressed at four stages of ADC. Fifty six related with keratinocytes or potassium channels up-expressed in three stages of SCC. CDC20, IL10, ECM1, GABPB2, CRABP2, and COL11A1 significantly predicted the poor overall survival of ADC patients and S100A2 and TIMM17A in SCC patients. Our data indicate that a number of altered chromosome 1 genes have the subtype and stage specificities of lung cancer and can be considered as diagnostic and prognosis biomarkers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61, 69–90.
2.
go back to reference Hensing, T., Chawla, A., Batra, R., & Salgia, R. (2014). A personalized treatment for lung cancer: molecular pathways, targeted therapies, and genomic characterization. Advances in Experimental Medicine and Biology, 799, 85–117.PubMedCrossRef Hensing, T., Chawla, A., Batra, R., & Salgia, R. (2014). A personalized treatment for lung cancer: molecular pathways, targeted therapies, and genomic characterization. Advances in Experimental Medicine and Biology, 799, 85–117.PubMedCrossRef
3.
go back to reference Oxnard, G. R., Binder, A., & Janne, P. A. (2013). New targetable oncogenes in non-small-cell lung cancer. Journal of Clinical Oncology, 31, 1097–1104.PubMedCentralPubMedCrossRef Oxnard, G. R., Binder, A., & Janne, P. A. (2013). New targetable oncogenes in non-small-cell lung cancer. Journal of Clinical Oncology, 31, 1097–1104.PubMedCentralPubMedCrossRef
4.
go back to reference Baty, F., Facompre, M., Kaiser, S., et al. (2010). Gene profiling of clinical routine biopsies and prediction of survival in non-small cell lung cancer. American Journal of Respiratory and Critical Care Medicine, 181, 181–188.PubMedCrossRef Baty, F., Facompre, M., Kaiser, S., et al. (2010). Gene profiling of clinical routine biopsies and prediction of survival in non-small cell lung cancer. American Journal of Respiratory and Critical Care Medicine, 181, 181–188.PubMedCrossRef
5.
go back to reference Sanchez-Palencia, A., Gomez-Morales, M., Gomez-Capilla, J. A., et al. (2011). Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. International Journal of Cancer, 129, 355–364.CrossRef Sanchez-Palencia, A., Gomez-Morales, M., Gomez-Capilla, J. A., et al. (2011). Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. International Journal of Cancer, 129, 355–364.CrossRef
6.
go back to reference Kuner, R., Muley, T., Meister, M., et al. (2009). Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer, 63, 32–38.PubMedCrossRef Kuner, R., Muley, T., Meister, M., et al. (2009). Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer, 63, 32–38.PubMedCrossRef
7.
go back to reference Takeuchi, T., Tomida, S., Yatabe, Y., et al. (2006). Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. Journal of Clinical Oncology, 24, 1679–1688.PubMedCrossRef Takeuchi, T., Tomida, S., Yatabe, Y., et al. (2006). Expression profile-defined classification of lung adenocarcinoma shows close relationship with underlying major genetic changes and clinicopathologic behaviors. Journal of Clinical Oncology, 24, 1679–1688.PubMedCrossRef
8.
go back to reference Lockwood, W. W., Chari, R., Coe, B. P., et al. (2008). DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene, 27, 4615–4624.PubMedCentralPubMedCrossRef Lockwood, W. W., Chari, R., Coe, B. P., et al. (2008). DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene, 27, 4615–4624.PubMedCentralPubMedCrossRef
9.
go back to reference Stella, G. M., Luisetti, M., Pozzi, E., & Comoglio, P. M. (2013). Oncogenes in non-small-cell lung cancer: emerging connections and novel therapeutic dynamics. Lancet Respiratory Medecine, 1, 251–261.CrossRef Stella, G. M., Luisetti, M., Pozzi, E., & Comoglio, P. M. (2013). Oncogenes in non-small-cell lung cancer: emerging connections and novel therapeutic dynamics. Lancet Respiratory Medecine, 1, 251–261.CrossRef
10.
go back to reference Barrett, T., Troup, D. B., Wilhite, S. E., et al. (2007). NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Research, 35, D760–D765.PubMedCentralPubMedCrossRef Barrett, T., Troup, D. B., Wilhite, S. E., et al. (2007). NCBI GEO: mining tens of millions of expression profiles—database and tools update. Nucleic Acids Research, 35, D760–D765.PubMedCentralPubMedCrossRef
11.
go back to reference Huang, Z. X., Tian, H. Y., Hu, Z. F., Zhou, Y. B., Zhao, J., & Yao, K. T. (2008). GenCLiP: a software program for clustering gene lists by literature profiling and constructing gene co-occurrence networks related to custom keywords. BMC Bioinformatics, 9, 308.PubMedCentralPubMedCrossRef Huang, Z. X., Tian, H. Y., Hu, Z. F., Zhou, Y. B., Zhao, J., & Yao, K. T. (2008). GenCLiP: a software program for clustering gene lists by literature profiling and constructing gene co-occurrence networks related to custom keywords. BMC Bioinformatics, 9, 308.PubMedCentralPubMedCrossRef
12.
go back to reference Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32, D277–D280.PubMedCentralPubMedCrossRef Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resource for deciphering the genome. Nucleic Acids Research, 32, D277–D280.PubMedCentralPubMedCrossRef
14.
go back to reference Gyorffy, B., Surowiak, P., Budczies, J., & Lanczky, A. (2013). Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One, 8, e82241.PubMedCentralPubMedCrossRef Gyorffy, B., Surowiak, P., Budczies, J., & Lanczky, A. (2013). Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS One, 8, e82241.PubMedCentralPubMedCrossRef
15.
go back to reference Gregory, S. G., Barlow, K. F., McLay, K. E., et al. (2006). The DNA sequence and biological annotation of human chromosome 1. Nature, 441, 315–321.PubMedCrossRef Gregory, S. G., Barlow, K. F., McLay, K. E., et al. (2006). The DNA sequence and biological annotation of human chromosome 1. Nature, 441, 315–321.PubMedCrossRef
16.
go back to reference Nilsson, J., Yekezare, M., Minshull, J., & Pines, J. (2008). The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nature Cell Biology, 10, 1411–1420.PubMedCentralPubMedCrossRef Nilsson, J., Yekezare, M., Minshull, J., & Pines, J. (2008). The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nature Cell Biology, 10, 1411–1420.PubMedCentralPubMedCrossRef
17.
go back to reference Kato, T., Daigo, Y., Aragaki, M., Ishikawa, K., Sato, M., & Kaji, M. (2012). Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. Journal of Surgical Oncology, 106, 423–430.PubMedCrossRef Kato, T., Daigo, Y., Aragaki, M., Ishikawa, K., Sato, M., & Kaji, M. (2012). Overexpression of CDC20 predicts poor prognosis in primary non-small cell lung cancer patients. Journal of Surgical Oncology, 106, 423–430.PubMedCrossRef
18.
go back to reference Bond, J., Roberts, E., Mochida, G. H., et al. (2002). ASPM is a major determinant of cerebral cortical size. Nature Genetics, 32, 316–320.PubMedCrossRef Bond, J., Roberts, E., Mochida, G. H., et al. (2002). ASPM is a major determinant of cerebral cortical size. Nature Genetics, 32, 316–320.PubMedCrossRef
19.
go back to reference Higgins, J., Midgley, C., Bergh, A. M., et al. (2010). Human ASPM participates in spindle organisation, spindle orientation and cytokinesis. BMC Cell Biology, 11, 85.PubMedCentralPubMedCrossRef Higgins, J., Midgley, C., Bergh, A. M., et al. (2010). Human ASPM participates in spindle organisation, spindle orientation and cytokinesis. BMC Cell Biology, 11, 85.PubMedCentralPubMedCrossRef
20.
go back to reference Finger, E. C., Turley, R. S., Dong, M., How, T., Fields, T. A., & Blobe, G. C. (2008). TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis, 29, 528–535.PubMedCrossRef Finger, E. C., Turley, R. S., Dong, M., How, T., Fields, T. A., & Blobe, G. C. (2008). TbetaRIII suppresses non-small cell lung cancer invasiveness and tumorigenicity. Carcinogenesis, 29, 528–535.PubMedCrossRef
21.
go back to reference Wei, S., Wang, H., Lu, C., et al. (2014). The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins. Journal of Biological Chemistry, 289, 8947–8959.PubMedCentralPubMedCrossRef Wei, S., Wang, H., Lu, C., et al. (2014). The activating transcription factor 3 protein suppresses the oncogenic function of mutant p53 proteins. Journal of Biological Chemistry, 289, 8947–8959.PubMedCentralPubMedCrossRef
22.
go back to reference Samten, B. (2013). CD52 as both a marker and an effector molecule of T cells with regulatory action: identification of novel regulatory T cells. Cellular and molecular immunology, 10, 456–458.PubMedCentralPubMedCrossRef Samten, B. (2013). CD52 as both a marker and an effector molecule of T cells with regulatory action: identification of novel regulatory T cells. Cellular and molecular immunology, 10, 456–458.PubMedCentralPubMedCrossRef
23.
go back to reference Shen, B., Yu, H., Hao, X., Qu, L., Cai, X., & Li, N. (2013). Impact of antimouse CD52 monoclonal antibody on graft’s gammadelta intraepithelial lymphocytes after orthotopic small bowel transplantation in mice. Transplantation, 95, 663–670.PubMedCrossRef Shen, B., Yu, H., Hao, X., Qu, L., Cai, X., & Li, N. (2013). Impact of antimouse CD52 monoclonal antibody on graft’s gammadelta intraepithelial lymphocytes after orthotopic small bowel transplantation in mice. Transplantation, 95, 663–670.PubMedCrossRef
24.
go back to reference Shipman, M., Lubick, K., Fouchard, D., et al. (2012). Proteomic and systems biology analysis of monocytes exposed to securinine, a GABA(A) receptor antagonist and immune adjuvant. PLoS One, 7, e41278.PubMedCentralPubMedCrossRef Shipman, M., Lubick, K., Fouchard, D., et al. (2012). Proteomic and systems biology analysis of monocytes exposed to securinine, a GABA(A) receptor antagonist and immune adjuvant. PLoS One, 7, e41278.PubMedCentralPubMedCrossRef
25.
go back to reference Cha, I. S., Castillo, C. S., Nho, S. W., Hikima, J., Aoki, T., & Jung, T. S. (2011). Innate immune response in the hemolymph of an ascidian, Halocynthia roretzi, showing soft tunic syndrome, using label-free quantitative proteomics. Developmental and Comparative Immunology, 35, 809–816.PubMedCrossRef Cha, I. S., Castillo, C. S., Nho, S. W., Hikima, J., Aoki, T., & Jung, T. S. (2011). Innate immune response in the hemolymph of an ascidian, Halocynthia roretzi, showing soft tunic syndrome, using label-free quantitative proteomics. Developmental and Comparative Immunology, 35, 809–816.PubMedCrossRef
26.
go back to reference Park, I. H., Park, S. J., Cho, J. S., et al. (2012). Increased expression of intelectin-1 in nasal polyps. American Journal of Rhinology & Allergy, 26, 274–277.CrossRef Park, I. H., Park, S. J., Cho, J. S., et al. (2012). Increased expression of intelectin-1 in nasal polyps. American Journal of Rhinology & Allergy, 26, 274–277.CrossRef
27.
go back to reference Park, J. C., Chae, Y. K., Son, C. H., et al. (2008). Epigenetic silencing of human T (brachyury homologue) gene in non-small-cell lung cancer. Biochemical and Biophysical Research Communications, 365, 221–226.PubMedCrossRef Park, J. C., Chae, Y. K., Son, C. H., et al. (2008). Epigenetic silencing of human T (brachyury homologue) gene in non-small-cell lung cancer. Biochemical and Biophysical Research Communications, 365, 221–226.PubMedCrossRef
28.
go back to reference Chong, I. W., Chang, M. Y., Chang, H. C., et al. (2006). Great potential of a panel of multiple hMTH1, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncology Reports, 16, 981–988.PubMed Chong, I. W., Chang, M. Y., Chang, H. C., et al. (2006). Great potential of a panel of multiple hMTH1, SPD, ITGA11 and COL11A1 markers for diagnosis of patients with non-small cell lung cancer. Oncology Reports, 16, 981–988.PubMed
29.
go back to reference Roche, J., Nasarre, P., Gemmill, R., et al. (2013). Global decrease of histone H3K27 acetylation in ZEB1-induced epithelial to mesenchymal transition in lung cancer cells. Cancers (Basel), 5, 334–356.CrossRef Roche, J., Nasarre, P., Gemmill, R., et al. (2013). Global decrease of histone H3K27 acetylation in ZEB1-induced epithelial to mesenchymal transition in lung cancer cells. Cancers (Basel), 5, 334–356.CrossRef
30.
go back to reference Jo, U., Park, K. H., Whang, Y. M., et al. (2014). EGFR endocytosis is a novel therapeutic target in lung cancer with wild-type EGFR. Oncotarget, 5, 1265–1278.PubMedCentralPubMed Jo, U., Park, K. H., Whang, Y. M., et al. (2014). EGFR endocytosis is a novel therapeutic target in lung cancer with wild-type EGFR. Oncotarget, 5, 1265–1278.PubMedCentralPubMed
31.
go back to reference Sundarraj, S., Kannan, S., Thangam, R., & Gunasekaran, P. (2012). Effects of the inhibition of cytosolic phospholipase A(2)alpha in non-small cell lung cancer cells. Journal of Cancer Research and Clinical Oncology, 138, 827–835.PubMedCrossRef Sundarraj, S., Kannan, S., Thangam, R., & Gunasekaran, P. (2012). Effects of the inhibition of cytosolic phospholipase A(2)alpha in non-small cell lung cancer cells. Journal of Cancer Research and Clinical Oncology, 138, 827–835.PubMedCrossRef
32.
go back to reference Salama, I., Malone, P. S., Mihaimeed, F., & Jones, J. L. (2008). A review of the S100 proteins in cancer. European Journal of Surgical Oncology, 34, 357–364.PubMedCrossRef Salama, I., Malone, P. S., Mihaimeed, F., & Jones, J. L. (2008). A review of the S100 proteins in cancer. European Journal of Surgical Oncology, 34, 357–364.PubMedCrossRef
33.
go back to reference Naz, S., Bashir, M., Ranganathan, P., Bodapati, P., Santosh, V., & Kondaiah, P. (2014). Protumorigenic actions of S100A2 involve regulation of PI3/Akt signaling and functional interaction with Smad3. Carcinogenesis, 35, 14–23.PubMedCrossRef Naz, S., Bashir, M., Ranganathan, P., Bodapati, P., Santosh, V., & Kondaiah, P. (2014). Protumorigenic actions of S100A2 involve regulation of PI3/Akt signaling and functional interaction with Smad3. Carcinogenesis, 35, 14–23.PubMedCrossRef
34.
go back to reference Tsuta, K., Tanabe, Y., Yoshida, A., et al. (2011). Utility of 10 immunohistochemical markers including novel markers (desmocollin-3, glypican 3, S100A2, S100A7, and Sox-2) for differential diagnosis of squamous cell carcinoma from adenocarcinoma of the Lung. Journal of Thoracic Oncology, 6, 1190–1199.PubMedCrossRef Tsuta, K., Tanabe, Y., Yoshida, A., et al. (2011). Utility of 10 immunohistochemical markers including novel markers (desmocollin-3, glypican 3, S100A2, S100A7, and Sox-2) for differential diagnosis of squamous cell carcinoma from adenocarcinoma of the Lung. Journal of Thoracic Oncology, 6, 1190–1199.PubMedCrossRef
35.
go back to reference Vermeij, W. P., & Backendorf, C. (2010). Skin cornification proteins provide global link between ROS detoxification and cell migration during wound healing. PLoS One, 5, e11957.PubMedCentralPubMedCrossRef Vermeij, W. P., & Backendorf, C. (2010). Skin cornification proteins provide global link between ROS detoxification and cell migration during wound healing. PLoS One, 5, e11957.PubMedCentralPubMedCrossRef
36.
go back to reference Woenckhaus, M., Klein-Hitpass, L., Grepmeier, U., et al. (2006). Smoking and cancer-related gene expression in bronchial epithelium and non-small-cell lung cancers. Journal of Pathology, 210, 192–204.PubMedCrossRef Woenckhaus, M., Klein-Hitpass, L., Grepmeier, U., et al. (2006). Smoking and cancer-related gene expression in bronchial epithelium and non-small-cell lung cancers. Journal of Pathology, 210, 192–204.PubMedCrossRef
37.
38.
go back to reference Declerck, S., & Vansteenkiste, J. (2014). Immunotherapy for lung cancer: ongoing clinical trials. Future Oncology, 10, 91–105.PubMedCrossRef Declerck, S., & Vansteenkiste, J. (2014). Immunotherapy for lung cancer: ongoing clinical trials. Future Oncology, 10, 91–105.PubMedCrossRef
39.
go back to reference Mollbrink, A., Jawad, R., Vlamis-Gardikas, A., et al. (2014). Expression of thioredoxins and glutaredoxins in human hepatocellular carcinoma: correlation to cell proliferation, tumor size and metabolic syndrome. International Journal of Immunopathology and Pharmacology, 27, 169–183.PubMed Mollbrink, A., Jawad, R., Vlamis-Gardikas, A., et al. (2014). Expression of thioredoxins and glutaredoxins in human hepatocellular carcinoma: correlation to cell proliferation, tumor size and metabolic syndrome. International Journal of Immunopathology and Pharmacology, 27, 169–183.PubMed
40.
go back to reference Su, D. M., Zhang, Q., Wang, X., et al. (2009). Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Molecular Cancer Therapeutics, 8, 1292–1304.PubMedCentralPubMedCrossRef Su, D. M., Zhang, Q., Wang, X., et al. (2009). Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Molecular Cancer Therapeutics, 8, 1292–1304.PubMedCentralPubMedCrossRef
41.
go back to reference Salio, M., Silk, J. D., Jones, E. Y., & Cerundolo, V. (2014). Biology of CD1- and MR1-restricted T cells. Annual Review of Immunology, 32, 323–366.PubMedCrossRef Salio, M., Silk, J. D., Jones, E. Y., & Cerundolo, V. (2014). Biology of CD1- and MR1-restricted T cells. Annual Review of Immunology, 32, 323–366.PubMedCrossRef
42.
go back to reference Umemura, S., Mimaki, S., Makinoshima, H., et al. (2014). Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. Journal of Thoracic Oncology, 9, 1324–1331.PubMedCentralPubMedCrossRef Umemura, S., Mimaki, S., Makinoshima, H., et al. (2014). Therapeutic priority of the PI3K/AKT/mTOR pathway in small cell lung cancers as revealed by a comprehensive genomic analysis. Journal of Thoracic Oncology, 9, 1324–1331.PubMedCentralPubMedCrossRef
43.
go back to reference Zitzmann, K., Vlotides, G., Brand, S., et al. (2012). Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocrine-Related Cancer, 19, 423–434.PubMedCrossRef Zitzmann, K., Vlotides, G., Brand, S., et al. (2012). Perifosine-mediated Akt inhibition in neuroendocrine tumor cells: role of specific Akt isoforms. Endocrine-Related Cancer, 19, 423–434.PubMedCrossRef
44.
go back to reference Ohashi, K., Sequist, L. V., Arcila, M. E., et al. (2013). Characteristics of lung cancers harboring NRAS mutations. Clinical Cancer Research, 19, 2584–2591.PubMedCentralPubMedCrossRef Ohashi, K., Sequist, L. V., Arcila, M. E., et al. (2013). Characteristics of lung cancers harboring NRAS mutations. Clinical Cancer Research, 19, 2584–2591.PubMedCentralPubMedCrossRef
45.
go back to reference Kim, B. H., Shenoy, A. R., Kumar, P., Das, R., Tiwari, S., & MacMicking, J. D. (2011). A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science, 332, 717–721.PubMedCrossRef Kim, B. H., Shenoy, A. R., Kumar, P., Das, R., Tiwari, S., & MacMicking, J. D. (2011). A family of IFN-gamma-inducible 65-kD GTPases protects against bacterial infection. Science, 332, 717–721.PubMedCrossRef
46.
go back to reference Aoyama, D., Hashimoto, N., Sakamoto, K., et al. (2013). Involvement of TGFbeta-induced phosphorylation of the PTEN C-terminus on TGFbeta-induced acquisition of malignant phenotypes in lung cancer cells. PLoS One, 8, e81133.PubMedCentralPubMedCrossRef Aoyama, D., Hashimoto, N., Sakamoto, K., et al. (2013). Involvement of TGFbeta-induced phosphorylation of the PTEN C-terminus on TGFbeta-induced acquisition of malignant phenotypes in lung cancer cells. PLoS One, 8, e81133.PubMedCentralPubMedCrossRef
47.
go back to reference Hill, K. S., Erdogan, E., Khoor, A., et al. (2013). Protein kinase Calpha suppresses Kras-mediated lung tumor formation through activation of a p38 MAPK-TGFbeta signaling axis. Oncogene. doi:10.1038/onc.2013.147. Hill, K. S., Erdogan, E., Khoor, A., et al. (2013). Protein kinase Calpha suppresses Kras-mediated lung tumor formation through activation of a p38 MAPK-TGFbeta signaling axis. Oncogene. doi:10.​1038/​onc.​2013.​147.
Metadata
Title
Global analysis of chromosome 1 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer
Authors
Yong Zhang
Haiyun Wang
Jian Wang
Lianming Bao
Lingyan Wang
Jiayuan Huo
Xiangdong Wang
Publication date
01-06-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9558-0

Other articles of this Issue 2/2015

Cancer and Metastasis Reviews 2/2015 Go to the issue

Announcement

Biographies

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine