Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2015

01-06-2015

New strategies to develop new medications for lung cancer and metastasis

Authors: Yujie Zhao, Alex A. Adjei

Published in: Cancer and Metastasis Reviews | Issue 2/2015

Login to get access

Abstract

With the advances in cancer and molecular biology and the rapid progress in genomics, significant progress has been made in the treatment of lung cancer in the past decade. Targeted therapies have been developed for nonsmall cell lung cancer (NSCLC), and significant improvement in survival has been achieved. There is still, however, no cure for advanced NSCLC. Resistance to initial therapy is universal, and the lethal outcome of metastatic disease still remains. Approaches to preventing metastases and overcoming resistance to therapy are necessary to ensure long-term survival of patients with advanced lung cancer.
Literature
2.
3.
go back to reference Marchetti, A., Martella, C., Felicioni, L., Barassi, F., Salvatore, S., Chella, A., et al. (2005). EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. Journal of Clinical Oncology, 23(4), 857–865. doi:10.1200/JCO.2005.08.043.PubMedCrossRef Marchetti, A., Martella, C., Felicioni, L., Barassi, F., Salvatore, S., Chella, A., et al. (2005). EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. Journal of Clinical Oncology, 23(4), 857–865. doi:10.​1200/​JCO.​2005.​08.​043.PubMedCrossRef
4.
go back to reference Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97(5), 339–346. doi:10.1093/jnci/dji055.PubMedCrossRef Shigematsu, H., Lin, L., Takahashi, T., Nomura, M., Suzuki, M., Wistuba, I. I., et al. (2005). Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. Journal of the National Cancer Institute, 97(5), 339–346. doi:10.​1093/​jnci/​dji055.PubMedCrossRef
5.
go back to reference Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Research, 64(24), 8919–8923. doi:10.1158/0008-5472.CAN-04-2818.PubMedCrossRef Kosaka, T., Yatabe, Y., Endoh, H., Kuwano, H., Takahashi, T., & Mitsudomi, T. (2004). Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications. Cancer Research, 64(24), 8919–8923. doi:10.​1158/​0008-5472.​CAN-04-2818.PubMedCrossRef
6.
go back to reference Janne, P. A., Engelman, J. A., & Johnson, B. E. (2005). Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. Journal of Clinical Oncology, 23(14), 3227–3234. doi:10.1200/JCO.2005.09.985.PubMedCrossRef Janne, P. A., Engelman, J. A., & Johnson, B. E. (2005). Epidermal growth factor receptor mutations in non-small-cell lung cancer: implications for treatment and tumor biology. Journal of Clinical Oncology, 23(14), 3227–3234. doi:10.​1200/​JCO.​2005.​09.​985.PubMedCrossRef
10.
12.
go back to reference Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566. doi:10.1038/nature05945.PubMedCrossRef Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566. doi:10.​1038/​nature05945.PubMedCrossRef
16.
17.
go back to reference Shaw, A. T., Camidge, D. R., Engelman, J. A., Solomon, B. J., Kwak, E. L., Clark, J. W., et al. (2012). Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. Journal of Clinical Oncology, 30(15_suppl), 7508. Shaw, A. T., Camidge, D. R., Engelman, J. A., Solomon, B. J., Kwak, E. L., Clark, J. W., et al. (2012). Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. Journal of Clinical Oncology, 30(15_suppl), 7508.
18.
go back to reference Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New England Journal of Medicine, 355(24), 2542–2550. doi:10.1056/NEJMoa061884.PubMedCrossRef Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., et al. (2006). Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. New England Journal of Medicine, 355(24), 2542–2550. doi:10.​1056/​NEJMoa061884.PubMedCrossRef
21.
go back to reference Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500. doi:10.1126/science.1099314.PubMedCrossRef Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 304(5676), 1497–1500. doi:10.​1126/​science.​1099314.PubMedCrossRef
22.
go back to reference Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., et al. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909. doi:10.1200/JCO.2005.02.857.PubMedCrossRef Eberhard, D. A., Johnson, B. E., Amler, L. C., Goddard, A. D., Heldens, S. L., Herbst, R. S., et al. (2005). Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. Journal of Clinical Oncology, 23(25), 5900–5909. doi:10.​1200/​JCO.​2005.​02.​857.PubMedCrossRef
23.
go back to reference Sakurada, A., Shepherd, F. A., & Tsao, M. S. (2006). Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clinical Lung Cancer, 7(Suppl 4), S138–144.PubMedCrossRef Sakurada, A., Shepherd, F. A., & Tsao, M. S. (2006). Epidermal growth factor receptor tyrosine kinase inhibitors in lung cancer: impact of primary or secondary mutations. Clinical Lung Cancer, 7(Suppl 4), S138–144.PubMedCrossRef
24.
go back to reference Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., et al. (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncology, 13(3), 239–246. doi:10.1016/S1470-2045(11)70393-X.PubMedCrossRef Rosell, R., Carcereny, E., Gervais, R., Vergnenegre, A., Massuti, B., Felip, E., et al. (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncology, 13(3), 239–246. doi:10.​1016/​S1470-2045(11)70393-X.PubMedCrossRef
25.
go back to reference Fukuoka, M., Wu, Y. L., Thongprasert, S., Sunpaweravong, P., Leong, S. S., Sriuranpong, V., et al. (2011). Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). Journal of Clinical Oncology, 29(21), 2866–2874. doi:10.1200/JCO.2010.33.4235.PubMedCrossRef Fukuoka, M., Wu, Y. L., Thongprasert, S., Sunpaweravong, P., Leong, S. S., Sriuranpong, V., et al. (2011). Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). Journal of Clinical Oncology, 29(21), 2866–2874. doi:10.​1200/​JCO.​2010.​33.​4235.PubMedCrossRef
26.
go back to reference Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. New England Journal of Medicine, 361(10), 947–957. doi:10.1056/NEJMoa0810699.PubMedCrossRef Mok, T. S., Wu, Y. L., Thongprasert, S., Yang, C. H., Chu, D. T., Saijo, N., et al. (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. New England Journal of Medicine, 361(10), 947–957. doi:10.​1056/​NEJMoa0810699.PubMedCrossRef
27.
go back to reference Balak, M. N., Gong, Y., Riely, G. J., Somwar, R., Li, A. R., Zakowski, M. F., et al. (2006). Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clinical Cancer Research, 12(21), 6494–6501. doi:10.1158/1078-0432.CCR-06-1570.PubMedCrossRef Balak, M. N., Gong, Y., Riely, G. J., Somwar, R., Li, A. R., Zakowski, M. F., et al. (2006). Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clinical Cancer Research, 12(21), 6494–6501. doi:10.​1158/​1078-0432.​CCR-06-1570.PubMedCrossRef
28.
go back to reference Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 352(8), 786–792. doi:10.1056/NEJMoa044238.PubMedCrossRef Kobayashi, S., Boggon, T. J., Dayaram, T., Janne, P. A., Kocher, O., Meyerson, M., et al. (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 352(8), 786–792. doi:10.​1056/​NEJMoa044238.PubMedCrossRef
29.
go back to reference Kosaka, T., Yatabe, Y., Endoh, H., Yoshida, K., Hida, T., Tsuboi, M., et al. (2006). Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clinical Cancer Research, 12(19), 5764–5769. doi:10.1158/1078-0432.CCR-06-0714.PubMedCrossRef Kosaka, T., Yatabe, Y., Endoh, H., Yoshida, K., Hida, T., Tsuboi, M., et al. (2006). Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clinical Cancer Research, 12(19), 5764–5769. doi:10.​1158/​1078-0432.​CCR-06-0714.PubMedCrossRef
30.
go back to reference Godin-Heymann, N., Ulkus, L., Brannigan, B. W., McDermott, U., Lamb, J., Maheswaran, S., et al. (2008). The T790M "gatekeeper" mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Molecular Cancer Therapeutics, 7(4), 874–879. doi:10.1158/1535-7163.MCT-07-2387.PubMedCrossRef Godin-Heymann, N., Ulkus, L., Brannigan, B. W., McDermott, U., Lamb, J., Maheswaran, S., et al. (2008). The T790M "gatekeeper" mutation in EGFR mediates resistance to low concentrations of an irreversible EGFR inhibitor. Molecular Cancer Therapeutics, 7(4), 874–879. doi:10.​1158/​1535-7163.​MCT-07-2387.PubMedCrossRef
31.
go back to reference Ware, K. E., Hinz, T. K., Kleczko, E., Singleton, K. R., Marek, L. A., Helfrich, B. A., et al. (2013). A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis, 2, e39. doi:10.1038/oncsis.2013.4.PubMedCentralPubMedCrossRef Ware, K. E., Hinz, T. K., Kleczko, E., Singleton, K. R., Marek, L. A., Helfrich, B. A., et al. (2013). A mechanism of resistance to gefitinib mediated by cellular reprogramming and the acquisition of an FGF2-FGFR1 autocrine growth loop. Oncogenesis, 2, e39. doi:10.​1038/​oncsis.​2013.​4.PubMedCentralPubMedCrossRef
32.
go back to reference Yun, C. H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K. K., et al. (2008). The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2070–2075. doi:10.1073/pnas.0709662105.PubMedCentralPubMedCrossRef Yun, C. H., Mengwasser, K. E., Toms, A. V., Woo, M. S., Greulich, H., Wong, K. K., et al. (2008). The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2070–2075. doi:10.​1073/​pnas.​0709662105.PubMedCentralPubMedCrossRef
33.
go back to reference Kwak, E. L., Sordella, R., Bell, D. W., Godin-Heymann, N., Okimoto, R. A., Brannigan, B. W., et al. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7665–7670. doi:10.1073/pnas.0502860102.PubMedCentralPubMedCrossRef Kwak, E. L., Sordella, R., Bell, D. W., Godin-Heymann, N., Okimoto, R. A., Brannigan, B. W., et al. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7665–7670. doi:10.​1073/​pnas.​0502860102.PubMedCentralPubMedCrossRef
34.
go back to reference Miller, V. A., Hirsh, V., Cadranel, J., Chen, Y. M., Park, K., Kim, S. W., et al. (2012). Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncology, 13(5), 528–538. doi:10.1016/S1470-2045(12)70087-6.PubMedCrossRef Miller, V. A., Hirsh, V., Cadranel, J., Chen, Y. M., Park, K., Kim, S. W., et al. (2012). Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): a phase 2b/3 randomised trial. Lancet Oncology, 13(5), 528–538. doi:10.​1016/​S1470-2045(12)70087-6.PubMedCrossRef
35.
go back to reference Reckamp, K. L., Giaccone, G., Camidge, D. R., Gadgeel, S. M., Khuri, F. R., Engelman, J. A., et al. (2014). A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer, 120(8), 1145–1154. doi:10.1002/cncr.28561.PubMedCentralPubMedCrossRef Reckamp, K. L., Giaccone, G., Camidge, D. R., Gadgeel, S. M., Khuri, F. R., Engelman, J. A., et al. (2014). A phase 2 trial of dacomitinib (PF-00299804), an oral, irreversible pan-HER (human epidermal growth factor receptor) inhibitor, in patients with advanced non-small cell lung cancer after failure of prior chemotherapy and erlotinib. Cancer, 120(8), 1145–1154. doi:10.​1002/​cncr.​28561.PubMedCentralPubMedCrossRef
36.
go back to reference Tjin Tham Sjin, R., Lee, K., Walter, A. O., Dubrovskiy, A., Sheets, M., Martin, T. S., et al. (2014). In vitro and in vivo characterization of irreversible mutant-selective EGFR inhibitors that are wild-type sparing. Molecular Cancer Therapeutics, 13(6), 1468–1479. doi:10.1158/1535-7163.MCT-13-0966.PubMedCrossRef Tjin Tham Sjin, R., Lee, K., Walter, A. O., Dubrovskiy, A., Sheets, M., Martin, T. S., et al. (2014). In vitro and in vivo characterization of irreversible mutant-selective EGFR inhibitors that are wild-type sparing. Molecular Cancer Therapeutics, 13(6), 1468–1479. doi:10.​1158/​1535-7163.​MCT-13-0966.PubMedCrossRef
38.
go back to reference Sequist, L. V., Soria J. C., Wakelee H. A., Camidge D. R.,Varga A, Solomon B. J. et al. (2014). First-inhuman evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). J Clin Oncol, 32(5 s), abstr 8010. Sequist, L. V., Soria J. C., Wakelee H. A., Camidge D. R.,Varga A, Solomon B. J. et al. (2014). First-inhuman evaluation of CO-1686, an irreversible, highly selective tyrosine kinase inhibitor of mutations of EGFR (activating and T790M). J Clin Oncol, 32(5 s), abstr 8010.
41.
go back to reference Yang J., Kim. D., Planchard D., Ohe Y., Ramalingam S. S., Ahn M. et al. (2014). Updated safety and efficacy from a phase i study of azd9291 in patients (pts) with EGFR-TKI-resistant non-small cell lung cancer (NSCLC). Annals of Oncology, 25(4 s); 449PD Yang J., Kim. D., Planchard D., Ohe Y., Ramalingam S. S., Ahn M. et al. (2014). Updated safety and efficacy from a phase i study of azd9291 in patients (pts) with EGFR-TKI-resistant non-small cell lung cancer (NSCLC). Annals of Oncology, 25(4 s); 449PD
42.
go back to reference Janne, P. A., Ramalingam S. S., Yang J., Ahn M.J., Kim D., Kim S. et al. (2014). Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitor–resistant non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 32(5 s), suppl; abstr 8009. Janne, P. A., Ramalingam S. S., Yang J., Ahn M.J., Kim D., Kim S. et al. (2014). Clinical activity of the mutant-selective EGFR inhibitor AZD9291 in patients (pts) with EGFR inhibitor–resistant non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 32(5 s), suppl; abstr 8009.
47.
go back to reference Sakagami, H., Konagai, S., Yamamoto, H., Tanaka, H., Matsuya, T., Mori, M., et al. (2014). ASP8273, a novel mutant-selective irreversible EGFR inhibitor, inhibits growth of non-small cell lung cancer (NSCLC) cells with EGFR activating and T790M resistance mutations. Cancer Research, 74(19 s), 1728. doi:10.1158/1538-7445.AM2014-1728. Sakagami, H., Konagai, S., Yamamoto, H., Tanaka, H., Matsuya, T., Mori, M., et al. (2014). ASP8273, a novel mutant-selective irreversible EGFR inhibitor, inhibits growth of non-small cell lung cancer (NSCLC) cells with EGFR activating and T790M resistance mutations. Cancer Research, 74(19 s), 1728. doi:10.​1158/​1538-7445.​AM2014-1728.
48.
go back to reference Murakami, H., Nokihara, H., Shimizu, T., Seto, T., Keating, A., Krivoshik, A. et al. (2014). Antitumor activity ofASP8273, an irreversible mutant selective EGFR-TKI, in NSCLC patients with tumors harboring EGFR activating mutations and T790M resistance mutation. 26th, European Journal of Cancer, 50(s 6), 168. doi:10.1016/S0959-8049(14)70730-0. Murakami, H., Nokihara, H., Shimizu, T., Seto, T., Keating, A., Krivoshik, A. et al. (2014). Antitumor activity ofASP8273, an irreversible mutant selective EGFR-TKI, in NSCLC patients with tumors harboring EGFR activating mutations and T790M resistance mutation. 26th, European Journal of Cancer, 50(s 6), 168. doi:10.​1016/​S0959-8049(14)70730-0.
50.
go back to reference Lee, K. O., Cha, M. Y., Kim, M., Song, J. Y., Lee, J. H., Kim, Y. H., et al. (2014). Discovery of HM61713 as anorally available and mutant EGFR selective inhibitor. Cancer Research, 74(19 s):Abstract nr LB-100. doi:10.1158/1538-7445.AM2014-LB-100. Lee, K. O., Cha, M. Y., Kim, M., Song, J. Y., Lee, J. H., Kim, Y. H., et al. (2014). Discovery of HM61713 as anorally available and mutant EGFR selective inhibitor. Cancer Research, 74(19 s):Abstract nr LB-100. doi:10.​1158/​1538-7445.​AM2014-LB-100.
51.
go back to reference Kim, D. W., Lee, D. H., Kang, J. H., Park, K., Han, J. Y., Lee, J. S., Jang, I. J., et al. (2014). Clinical activity and safety of HM61713, an EGFR-mutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs). Journal of Clinical Oncology, 32(5 s), 8011. Kim, D. W., Lee, D. H., Kang, J. H., Park, K., Han, J. Y., Lee, J. S., Jang, I. J., et al. (2014). Clinical activity and safety of HM61713, an EGFR-mutant selective inhibitor, in advanced non-small cell lung cancer (NSCLC) patients (pts) with EGFR mutations who had received EGFR tyrosine kinase inhibitors (TKIs). Journal of Clinical Oncology, 32(5 s), 8011.
52.
go back to reference Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L., et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 263(5151), 1281–1284.PubMedCrossRef Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L., et al. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science, 263(5151), 1281–1284.PubMedCrossRef
53.
58.
go back to reference Shaw, A. T., Kim, D. W., Nakagawa, K., Seto, T., Crino, L., Ahn, M. J., et al. (2013). Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. New England Journal of Medicine, 368(25), 2385–2394. doi:10.1056/NEJMoa1214886.PubMedCrossRef Shaw, A. T., Kim, D. W., Nakagawa, K., Seto, T., Crino, L., Ahn, M. J., et al. (2013). Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. New England Journal of Medicine, 368(25), 2385–2394. doi:10.​1056/​NEJMoa1214886.PubMedCrossRef
59.
61.
go back to reference Awad, M. M., & Shaw, A. T. (2014). ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clinical Advances in Hematology and Oncology, 12(7), 429–439.PubMedCentralPubMed Awad, M. M., & Shaw, A. T. (2014). ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clinical Advances in Hematology and Oncology, 12(7), 429–439.PubMedCentralPubMed
62.
63.
go back to reference Kodama, T., Tsukaguchi, T., Satoh, Y., Yoshida, M., Watanabe, Y., Kondoh, O., et al. (2014). Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Molecular Cancer Therapeutics, 13(12), 2910–2918. doi:10.1158/1535-7163.MCT-14-0274.PubMedCrossRef Kodama, T., Tsukaguchi, T., Satoh, Y., Yoshida, M., Watanabe, Y., Kondoh, O., et al. (2014). Alectinib shows potent antitumor activity against RET-rearranged non-small cell lung cancer. Molecular Cancer Therapeutics, 13(12), 2910–2918. doi:10.​1158/​1535-7163.​MCT-14-0274.PubMedCrossRef
64.
go back to reference Gadgeel, S. M., Gandhi, L., Riely, G. J., Chiappori, A. A., West, H. L., Azada, M. C., et al. (2014). Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncology, 15(10), 1119–1128. doi:10.1016/S1470-2045(14)70362-6.PubMedCrossRef Gadgeel, S. M., Gandhi, L., Riely, G. J., Chiappori, A. A., West, H. L., Azada, M. C., et al. (2014). Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncology, 15(10), 1119–1128. doi:10.​1016/​S1470-2045(14)70362-6.PubMedCrossRef
66.
go back to reference Squillace, R. M., Anjum, R., Miller, D., Vodala, S., Moran, L., Wang, F., et al. (2014). AP26113 possesses pan-inhibitory activity versus crizotinib-resistant ALK mutants and oncogenic ROS1 fusions. Cancer Research, 73, 5655.CrossRef Squillace, R. M., Anjum, R., Miller, D., Vodala, S., Moran, L., Wang, F., et al. (2014). AP26113 possesses pan-inhibitory activity versus crizotinib-resistant ALK mutants and oncogenic ROS1 fusions. Cancer Research, 73, 5655.CrossRef
67.
go back to reference Rivera, V. M., Wang, F., Anjum, R., Zhang, S., Squillace, R., Keats, J., et al. (2012). AP26113 is a dual ALK/EGFR inhibitor: Characterization against EGFR T790M in cell and mouse models of NSCLC. Cancer Research, 72, 1794.CrossRef Rivera, V. M., Wang, F., Anjum, R., Zhang, S., Squillace, R., Keats, J., et al. (2012). AP26113 is a dual ALK/EGFR inhibitor: Characterization against EGFR T790M in cell and mouse models of NSCLC. Cancer Research, 72, 1794.CrossRef
68.
go back to reference Zhang, S., Wang, F., Keats, J., Ning, Y., Wardwell, S. D., Moran, L., et al. (2010). AP26113, a potent ALKinhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066. Cancer Res, 70(8s):Abstract nr LB-298. doi:10.1158/1538-7445.AM10-LB-298. Zhang, S., Wang, F., Keats, J., Ning, Y., Wardwell, S. D., Moran, L., et al. (2010). AP26113, a potent ALKinhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066. Cancer Res, 70(8s):Abstract nr LB-298. doi:10.​1158/​1538-7445.​AM10-LB-298.
69.
go back to reference Gettinger, S. N., Bazhenova, L., Salgia, R., Langer, C. J., Gold, K. A., Rosell, R., et al. (2014). Updated efficacy and safety of the ALK inhibitor AP26113 in patients (pts) with advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 32(5s), abstr 8047. Gettinger, S. N., Bazhenova, L., Salgia, R., Langer, C. J., Gold, K. A., Rosell, R., et al. (2014). Updated efficacy and safety of the ALK inhibitor AP26113 in patients (pts) with advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC). Journal of Clinical Oncology, 32(5s), abstr 8047.
72.
go back to reference Mori, M., Ueno, Y., Konagai, S., Fushiki, H., Shimada, I., Kondoh, Y., et al. (2014). The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice. Molecular Cancer Therapeutics, 13(2), 329–340. doi:10.1158/1535-7163.MCT-13-0395.PubMedCrossRef Mori, M., Ueno, Y., Konagai, S., Fushiki, H., Shimada, I., Kondoh, Y., et al. (2014). The selective anaplastic lymphoma receptor tyrosine kinase inhibitor ASP3026 induces tumor regression and prolongs survival in non-small cell lung cancer model mice. Molecular Cancer Therapeutics, 13(2), 329–340. doi:10.​1158/​1535-7163.​MCT-13-0395.PubMedCrossRef
73.
go back to reference Maitland, L. M., Ou, S. I., Tolcher, A. W., LoRusso, P., Bahceci, E., Ball, H. A., et al. (2014). Safety, activity, and pharmacokinetics of an oral anaplastic lymphoma kinase (ALK) inhibitor, ASP3026, observed in a “fast follower” phase 1 trial design. Journal of Clinical Oncology, 32(5s), 2624. Maitland, L. M., Ou, S. I., Tolcher, A. W., LoRusso, P., Bahceci, E., Ball, H. A., et al. (2014). Safety, activity, and pharmacokinetics of an oral anaplastic lymphoma kinase (ALK) inhibitor, ASP3026, observed in a “fast follower” phase 1 trial design. Journal of Clinical Oncology, 32(5s), 2624.
76.
go back to reference Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Medicine, 8(8), 793–800. doi:10.1038/nm730.PubMed Dong, H., Strome, S. E., Salomao, D. R., Tamura, H., Hirano, F., Flies, D. B., et al. (2002). Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Medicine, 8(8), 793–800. doi:10.​1038/​nm730.PubMed
77.
go back to reference Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. Journal of Experimental Medicine, 192(7), 1027–1034.PubMedCentralPubMedCrossRef Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., et al. (2000). Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. Journal of Experimental Medicine, 192(7), 1027–1034.PubMedCentralPubMedCrossRef
78.
go back to reference Dong, H., Zhu, G., Tamada, K., & Chen, L. (1999). B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Medicine, 5(12), 1365–1369. doi:10.1038/70932.PubMedCrossRef Dong, H., Zhu, G., Tamada, K., & Chen, L. (1999). B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Medicine, 5(12), 1365–1369. doi:10.​1038/​70932.PubMedCrossRef
79.
go back to reference Wang, C., Thudium, K. B., Han, M., Wang, X. T., Huang, H., Feingersh, D., et al. (2014). In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res, 2(9), 846–856. doi:10.1158/2326-6066.CIR-14-0040.PubMedCrossRef Wang, C., Thudium, K. B., Han, M., Wang, X. T., Huang, H., Feingersh, D., et al. (2014). In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol Res, 2(9), 846–856. doi:10.​1158/​2326-6066.​CIR-14-0040.PubMedCrossRef
82.
go back to reference Brahmer, J. R., Horn, L., Gandhi, L., Spigel, D. R., Antonia, S. J., Rizvi, N. A., et al. (2014) Nivolumab (anti-PD-1,BMS-936558, ONO-4538) in patients (pts) with advanced non-small-cell lung cancer (NSCLC): Survival and clinical activity by subgroup analysis. Journal of Clinical Oncology, 32(5s). abstr 8112. Brahmer, J. R., Horn, L., Gandhi, L., Spigel, D. R., Antonia, S. J., Rizvi, N. A., et al. (2014) Nivolumab (anti-PD-1,BMS-936558, ONO-4538) in patients (pts) with advanced non-small-cell lung cancer (NSCLC): Survival and clinical activity by subgroup analysis. Journal of Clinical Oncology, 32(5s). abstr 8112.
85.
go back to reference Garon, E. B., Gandhi, L., Rizvi, N., Hui, R., Balmanoukian, A. S., Patnaik, A. et al. (2014). Antitumor activity ofpembrolizumab (Pembro; MK-3475) and correlation with programmed death ligand 1 (PD-L1) expression in a pooled analysis of patients (pts) with advanced non-small cell lung carcinoma (NSCLC). Annals of Oncology, 25(5):1-41. doi:10.1093/annonc/mdu438. Garon, E. B., Gandhi, L., Rizvi, N., Hui, R., Balmanoukian, A. S., Patnaik, A. et al. (2014). Antitumor activity ofpembrolizumab (Pembro; MK-3475) and correlation with programmed death ligand 1 (PD-L1) expression in a pooled analysis of patients (pts) with advanced non-small cell lung carcinoma (NSCLC). Annals of Oncology, 25(5):1-41. doi:10.​1093/​annonc/​mdu438.
88.
go back to reference Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567. doi:10.1038/nature14011.PubMedCrossRef Herbst, R. S., Soria, J. C., Kowanetz, M., Fine, G. D., Hamid, O., Gordon, M. S., et al. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563–567. doi:10.​1038/​nature14011.PubMedCrossRef
89.
go back to reference Spigel, D. R., Scott, N. G., Horn, L., Herbst, R. S., Gandhi, L., Gordon, M. S., et al. (2013). Clinical activity,safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). Journal Clinical Oncology, 31(suppl), abstr 8008. Spigel, D. R., Scott, N. G., Horn, L., Herbst, R. S., Gandhi, L., Gordon, M. S., et al. (2013). Clinical activity,safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). Journal Clinical Oncology, 31(suppl), abstr 8008.
91.
go back to reference Lutzk, J., Scott, J. A., Blake-Haskins, A., Li X., Robbins, P. B., Shalabi, A. M., et al. (2014). A phase 1 study ofMEDI4736, an anti–PD-L1 antibody, in patients with advanced solid tumors. Journal of Clinical Oncology, 32(5s), abstr 3001. Lutzk, J., Scott, J. A., Blake-Haskins, A., Li X., Robbins, P. B., Shalabi, A. M., et al. (2014). A phase 1 study ofMEDI4736, an anti–PD-L1 antibody, in patients with advanced solid tumors. Journal of Clinical Oncology, 32(5s), abstr 3001.
94.
go back to reference Lynch, T. J., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., et al. (2012). Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of Clinical Oncology, 30(17), 2046–2054. doi:10.1200/JCO.2011.38.4032.PubMedCrossRef Lynch, T. J., Bondarenko, I., Luft, A., Serwatowski, P., Barlesi, F., Chacko, R., et al. (2012). Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. Journal of Clinical Oncology, 30(17), 2046–2054. doi:10.​1200/​JCO.​2011.​38.​4032.PubMedCrossRef
97.
go back to reference Zatloukal, P., Heo, D. S., Park, K., Kang, J., Butts, C., Bradford, D., et al. (2009). Randomized phase IIclinical trial comparing tremelimumab (CP-675,206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC). Journal Clinical Oncology, 27(15s), abstr 8071. Zatloukal, P., Heo, D. S., Park, K., Kang, J., Butts, C., Bradford, D., et al. (2009). Randomized phase IIclinical trial comparing tremelimumab (CP-675,206) with best supportive care (BSC) following first-line platinum-based therapy in patients (pts) with advanced non-small cell lung cancer (NSCLC). Journal Clinical Oncology, 27(15s), abstr 8071.
101.
Metadata
Title
New strategies to develop new medications for lung cancer and metastasis
Authors
Yujie Zhao
Alex A. Adjei
Publication date
01-06-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9553-5

Other articles of this Issue 2/2015

Cancer and Metastasis Reviews 2/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine