Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Radiotherapy | Research

Gene expression signature predicts radiation sensitivity in cell lines using the integral of dose–response curve

Authors: Alona Kolnohuz, Leyla Ebrahimpour, Sevinj Yolchuyeva, Venkata S. K. Manem

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Although substantial efforts have been made to build molecular biomarkers to predict radiation sensitivity, the ability to accurately stratify the patients is still limited. In this study, we aim to leverage large-scale radiogenomics datasets to build genomic predictors of radiation response using the integral of the radiation dose–response curve.

Methods

Two radiogenomics datasets consisting of 511 and 60 cancer cell lines were utilized to develop genomic predictors of radiation sensitivity. The intrinsic radiation sensitivity, defined as the integral of the dose–response curve (AUC) was used as the radioresponse variable. The biological determinants driving AUC and SF2 were compared using pathway analysis. To build the predictive model, the largest and smallest datasets consisting of 511 and 60 cancer cell lines were used as the discovery and validation cohorts, respectively, with AUC as the response variable.

Results

Utilizing a compendium of three pathway databases, we illustrated that integral of the radiobiological model provides a more comprehensive characterization of molecular processes underpinning radioresponse compared to SF2. Furthermore, more pathways were found to be unique to AUC than SF2—30, 288 and 38 in KEGG, REACTOME and WIKIPATHWAYS, respectively. Also, the leading-edge genes driving the biological pathways using AUC were unique and different compared to SF2. With regards to radiation sensitivity gene signature, we obtained a concordance index of 0.65 and 0.61 on the discovery and validation cohorts, respectively.

Conclusion

We developed an integrated framework that quantifies the impact of physical radiation dose and the biological effect of radiation therapy in interventional pre-clinical model systems. With the availability of more data in the future, the clinical potential of this signature can be assessed, which will eventually provide a framework to integrate genomics into biologically-driven precision radiation oncology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Moll M, Herrmann H, Zaharie A, Goldner G. Advancements in the radiooncological treatment of high-risk prostate cancer: a quarter century of achievements. Radiol Oncol. 2022;56:365–70.CrossRefPubMedPubMedCentral Moll M, Herrmann H, Zaharie A, Goldner G. Advancements in the radiooncological treatment of high-risk prostate cancer: a quarter century of achievements. Radiol Oncol. 2022;56:365–70.CrossRefPubMedPubMedCentral
2.
go back to reference Parisi S, Ferini G, Lillo S, Brogna A, Chillari F, Ferrantelli G, Settineri N, Santacaterina A, Platania A, Leotta S, Casablanca G, Russo A, Pontoriero A, Adamo V, Minutoli F, Bottari A, Cacciola A, Pergolizzi S. Stereotactic boost on residual disease after external-beam irradiation in clinical stage III non-small cell lung cancer: mature results of stereotactic body radiation therapy post radiation therapy (SBRTpostRT) study. Radiol Med. 2023. https://doi.org/10.1007/s11547-023-01659-w.CrossRefPubMed Parisi S, Ferini G, Lillo S, Brogna A, Chillari F, Ferrantelli G, Settineri N, Santacaterina A, Platania A, Leotta S, Casablanca G, Russo A, Pontoriero A, Adamo V, Minutoli F, Bottari A, Cacciola A, Pergolizzi S. Stereotactic boost on residual disease after external-beam irradiation in clinical stage III non-small cell lung cancer: mature results of stereotactic body radiation therapy post radiation therapy (SBRTpostRT) study. Radiol Med. 2023. https://​doi.​org/​10.​1007/​s11547-023-01659-w.CrossRefPubMed
3.
go back to reference Clark CA, Yang ES. Therapeutic targeting of DNA damage repair in the era of precision oncology and immune checkpoint inhibitors. J Immunother Precis Oncol. 2023;6:31–49.CrossRefPubMed Clark CA, Yang ES. Therapeutic targeting of DNA damage repair in the era of precision oncology and immune checkpoint inhibitors. J Immunother Precis Oncol. 2023;6:31–49.CrossRefPubMed
4.
go back to reference Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16:234–49.CrossRefPubMed Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, Richter C, Zips D, Bortfeld T. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16:234–49.CrossRefPubMed
5.
go back to reference E.G.C. Troost. Image-guided high-precision radiotherapy. Berlin: Springer Nature; 2022. E.G.C. Troost. Image-guided high-precision radiotherapy. Berlin: Springer Nature; 2022.
6.
go back to reference Grass GD, Mills MN, Scott JG, Eschrich S, Torres-Roca JF. Genomics and radiomics: tools to see the unseen to personalize radiation therapy. Appl Radia Ontcol. 2019;8:9–22.CrossRef Grass GD, Mills MN, Scott JG, Eschrich S, Torres-Roca JF. Genomics and radiomics: tools to see the unseen to personalize radiation therapy. Appl Radia Ontcol. 2019;8:9–22.CrossRef
7.
go back to reference Manem VSK, Dhawan A, Kohandel M, Sivaloganathan S. Efficacy of dose escalation on TCP, recurrence and second cancer risks: a mathematical study. Br J Radiol. 2014;87:20140377.CrossRefPubMedPubMedCentral Manem VSK, Dhawan A, Kohandel M, Sivaloganathan S. Efficacy of dose escalation on TCP, recurrence and second cancer risks: a mathematical study. Br J Radiol. 2014;87:20140377.CrossRefPubMedPubMedCentral
8.
go back to reference Manem VSK, Dhawan A. Modelling recurrence and second cancer risks induced by proton therapy. Math Med Biol. 2018;35:347–61.CrossRefPubMed Manem VSK, Dhawan A. Modelling recurrence and second cancer risks induced by proton therapy. Math Med Biol. 2018;35:347–61.CrossRefPubMed
10.
go back to reference Bentzen SM, Overgaard J. Patient-to-patient variability in the expression of radiation-induced normal tissue injury. Semin Radiat Oncol. 1994;4:68–80.CrossRefPubMed Bentzen SM, Overgaard J. Patient-to-patient variability in the expression of radiation-induced normal tissue injury. Semin Radiat Oncol. 1994;4:68–80.CrossRefPubMed
11.
go back to reference Manem VS, Dhawan A. a database of oxic and hypoxic radiation response gene signatures and their utility in pre-clinical research. Br J Radiol. 2019;92:20190198.CrossRefPubMedPubMedCentral Manem VS, Dhawan A. a database of oxic and hypoxic radiation response gene signatures and their utility in pre-clinical research. Br J Radiol. 2019;92:20190198.CrossRefPubMedPubMedCentral
12.
go back to reference Yard BD, Adams DJ, Chie EK, Tamayo P, Battaglia JS, Gopal P, Rogacki K, Pearson BE, Phillips J, Raymond DP, Pennell NA, Almeida F, Cheah JH, Clemons PA, Shamji A, Peacock CD, Schreiber SL, Hammerman PS, Abazeed ME. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun. 2016;7:11428.CrossRefPubMedPubMedCentral Yard BD, Adams DJ, Chie EK, Tamayo P, Battaglia JS, Gopal P, Rogacki K, Pearson BE, Phillips J, Raymond DP, Pennell NA, Almeida F, Cheah JH, Clemons PA, Shamji A, Peacock CD, Schreiber SL, Hammerman PS, Abazeed ME. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun. 2016;7:11428.CrossRefPubMedPubMedCentral
13.
go back to reference Manem VS, Lambie M, Smith I, Smirnov P, Kofia V, Freeman M, Koritzinsky M, Abazeed ME, Haibe-Kains B, Bratman SV. Modeling cellular response in large-scale radiogenomic databases to advance precision radiotherapy. Cancer Res. 2019;79:6227–37.CrossRefPubMedPubMedCentral Manem VS, Lambie M, Smith I, Smirnov P, Kofia V, Freeman M, Koritzinsky M, Abazeed ME, Haibe-Kains B, Bratman SV. Modeling cellular response in large-scale radiogenomic databases to advance precision radiotherapy. Cancer Res. 2019;79:6227–37.CrossRefPubMedPubMedCentral
14.
go back to reference Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.CrossRefPubMedPubMedCentral Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102:15545–50.CrossRefPubMedPubMedCentral
15.
go back to reference Väremo L, Nielsen J, Nookaew I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 2013;41:4378–91.CrossRefPubMedPubMedCentral Väremo L, Nielsen J, Nookaew I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 2013;41:4378–91.CrossRefPubMedPubMedCentral
16.
go back to reference Deng S, Vlatkovic T, Li M, Zhan T, Veldwijk MR, Herskind C. Targeting the DNA damage response and DNA repair pathways to enhance radiosensitivity in colorectal cancer. Cancers. 2022;14:4874.CrossRefPubMedPubMedCentral Deng S, Vlatkovic T, Li M, Zhan T, Veldwijk MR, Herskind C. Targeting the DNA damage response and DNA repair pathways to enhance radiosensitivity in colorectal cancer. Cancers. 2022;14:4874.CrossRefPubMedPubMedCentral
17.
go back to reference McDonald JT, Kim K, Norris AJ, Vlashi E, Phillips TM, Lagadec C, et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 2010;70:8886–95.CrossRefPubMedPubMedCentral McDonald JT, Kim K, Norris AJ, Vlashi E, Phillips TM, Lagadec C, et al. Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res. 2010;70:8886–95.CrossRefPubMedPubMedCentral
18.
go back to reference Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 2008;68:1303–9.CrossRefPubMed Ohta T, Iijima K, Miyamoto M, Nakahara I, Tanaka H, Ohtsuji M, et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 2008;68:1303–9.CrossRefPubMed
19.
go back to reference Zimta AA, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG, et al. The role of Nrf2 activity in cancer development and progression. Cancers. 2019;11:1755.CrossRefPubMedPubMedCentral Zimta AA, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG, et al. The role of Nrf2 activity in cancer development and progression. Cancers. 2019;11:1755.CrossRefPubMedPubMedCentral
21.
go back to reference Baine MJ, Lin C. Genome-based modeling for adjusting radiotherapy dose (GARD)-a significant step toward the future of personalized radiation therapy, Transl. Cancer Res. 2017;6:S418–20. Baine MJ, Lin C. Genome-based modeling for adjusting radiotherapy dose (GARD)-a significant step toward the future of personalized radiation therapy, Transl. Cancer Res. 2017;6:S418–20.
22.
go back to reference Bratman SV, Milosevic MF, Liu FF, Haibe-Kains B. Genomic biomarkers for precision radiation medicine. Lancet Oncol. 2017;18:e238.CrossRefPubMed Bratman SV, Milosevic MF, Liu FF, Haibe-Kains B. Genomic biomarkers for precision radiation medicine. Lancet Oncol. 2017;18:e238.CrossRefPubMed
23.
go back to reference McShane LM, Cavenagh MM, Lively TG, Eberhard DA, Bigbee WL, Williams PM, Mesirov JP, Polley MYC, Kim KY, Tricoli JV, Taylor JMG, Shuman DJ, Simon RM, Doroshow JH, Conley BA. Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration. BMC Med. 2013;11:220.CrossRefPubMedPubMedCentral McShane LM, Cavenagh MM, Lively TG, Eberhard DA, Bigbee WL, Williams PM, Mesirov JP, Polley MYC, Kim KY, Tricoli JV, Taylor JMG, Shuman DJ, Simon RM, Doroshow JH, Conley BA. Criteria for the use of omics-based predictors in clinical trials: explanation and elaboration. BMC Med. 2013;11:220.CrossRefPubMedPubMedCentral
Metadata
Title
Gene expression signature predicts radiation sensitivity in cell lines using the integral of dose–response curve
Authors
Alona Kolnohuz
Leyla Ebrahimpour
Sevinj Yolchuyeva
Venkata S. K. Manem
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Radiotherapy
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11634-3

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine