Skip to main content
Top
Published in: BMC Cancer 1/2024

Open Access 01-12-2024 | Lung Cancer | Research

Utility of bronchoscopically obtained frozen cytology pellets for next-generation sequencing

Authors: Chihiro Mimura, Rei Takamiya, Shodai Fujimoto, Takafumi Fukui, Atsuhiko Yatani, Jun Yamada, Mizuki Takayasu, Naoya Takata, Hiroki Sato, Kiyoko Fukuda, Koichi Furukawa, Daisuke Hazama, Naoko Katsurada, Masatsugu Yamamoto, Shingo Matsumoto, Koichi Goto, Motoko Tachihara

Published in: BMC Cancer | Issue 1/2024

Login to get access

Abstract

Background

Next-generation sequencing (NGS) is essential for lung cancer treatment. It is important to collect sufficient tissue specimens, but sometimes we cannot obtain large enough samples for NGS analysis. We investigated the yield of NGS analysis by frozen cytology pellets using an Oncomine Comprehensive Assay or Oncomine Precision Assay.

Methods

We retrospectively enrolled patients with lung cancer who underwent bronchoscopy at Kobe University Hospital and were enrolled in the Lung Cancer Genomic Screening Project for Individualized Medicine. We investigated the amount of extracted DNA and RNA and determined the NGS success rates. We also compared the amount of DNA and RNA by bronchoscopy methods. To create the frozen cytology pellets, we first effectively collected the cells and then quickly centrifuged and cryopreserved them.

Results

A total of 132 patients were enrolled in this study between May 2016 and December 2022; of them, 75 were subjected to frozen cytology pellet examinations and 57 were subjected to frozen tissue examinations. The amount of DNA and RNA obtained by frozen cytology pellets was nearly equivalent to frozen tissues. Frozen cytology pellets collected by endobronchial ultrasound-guided transbronchial needle aspiration yielded significantly more DNA than those collected by transbronchial biopsy methods. (P < 0.01) In RNA content, cytology pellets were not inferior to frozen tissue. The success rate of NGS analysis with frozen cytology pellet specimens was comparable to the success rate of NGS analysis with frozen tissue specimens.

Conclusions

Our study showed that frozen cytology pellets may have equivalent diagnostic value to frozen tissue for NGS analyses. Bronchial cytology specimens are usually used only for cytology, but NGS analysis is possible if enough cells are collected to create pellet specimens. In particular, the frozen cytology pellets obtained by endobronchial ultrasound-guided transbronchial needle aspiration yielded sufficient amounts of DNA.

Trial registration

This was registered with the University Medical Hospital Information Network in Japan (UMINCTR registration no. UMIN000052050).
Appendix
Available only for authorised users
Literature
1.
go back to reference Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. Non-small cell lung cancer, version 3. 2022. J Natl Compr Cancer Netw. 2022;20(5):497–530.CrossRef Ettinger DS, Wood DE, Aisner DL, Akerley W, Bauman JR, Bharat A, et al. Non-small cell lung cancer, version 3. 2022. J Natl Compr Cancer Netw. 2022;20(5):497–530.CrossRef
2.
go back to reference Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the college of American pathologists, the international association for the study of lung cancer, and the association for molecular pathology. J Thorac Oncol. 2018;13(3):321–46.CrossRef Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the college of American pathologists, the international association for the study of lung cancer, and the association for molecular pathology. J Thorac Oncol. 2018;13(3):321–46.CrossRef
3.
go back to reference Kalemkerian GP, Narula N, Kennedy EB, Biermann WA, Donington J, Leighl NB, et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American society of clinical oncology endorsement of the college of American pathologists/international association for the study of lung cancer/association for molecular pathology clinical practice guideline update. J Clin Oncol. 2018;36(9):911–9.CrossRefPubMed Kalemkerian GP, Narula N, Kennedy EB, Biermann WA, Donington J, Leighl NB, et al. Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American society of clinical oncology endorsement of the college of American pathologists/international association for the study of lung cancer/association for molecular pathology clinical practice guideline update. J Clin Oncol. 2018;36(9):911–9.CrossRefPubMed
4.
go back to reference Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with osimertinib in untreated, EGFR -mutated advanced NSCLC. N Engl J Med. 2020;382(1):41–50.CrossRefPubMed Ramalingam SS, Vansteenkiste J, Planchard D, Cho BC, Gray JE, Ohe Y, et al. Overall survival with osimertinib in untreated, EGFR -mutated advanced NSCLC. N Engl J Med. 2020;382(1):41–50.CrossRefPubMed
5.
go back to reference Mok T, Camidge DR, Gadgeel SM, Rosell R, Dziadziuszko R, Kim DW, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31(8):1056–64.CrossRefPubMed Mok T, Camidge DR, Gadgeel SM, Rosell R, Dziadziuszko R, Kim DW, et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann Oncol. 2020;31(8):1056–64.CrossRefPubMed
6.
go back to reference Shaw AT, Ou SHI, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1 -rearranged non–small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.CrossRefPubMedPubMedCentral Shaw AT, Ou SHI, Bang YJ, Camidge DR, Solomon BJ, Salgia R, et al. Crizotinib in ROS1 -rearranged non–small-cell lung cancer. N Engl J Med. 2014;371(21):1963–71.CrossRefPubMedPubMedCentral
7.
go back to reference Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland Å, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307–16.CrossRefPubMed Planchard D, Smit EF, Groen HJM, Mazieres J, Besse B, Helland Å, et al. Dabrafenib plus trametinib in patients with previously untreated BRAFV600E-mutant metastatic non-small-cell lung cancer: an open-label, phase 2 trial. Lancet Oncol. 2017;18(10):1307–16.CrossRefPubMed
8.
go back to reference Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJM, et al. Capmatinib in MET Exon 14–mutated or MET -amplified non–small-cell lung cancer. N Engl J Med. 2020;383(10):944–57.CrossRefPubMed Wolf J, Seto T, Han JY, Reguart N, Garon EB, Groen HJM, et al. Capmatinib in MET Exon 14–mutated or MET -amplified non–small-cell lung cancer. N Engl J Med. 2020;383(10):944–57.CrossRefPubMed
9.
go back to reference Pennell NA, Mutebi A, Zhou ZY, Ricculli ML, Tang W, Wang H, et al. Economic impact of next-generation sequencing versus single-gene testing to detect genomic alterations in metastatic non–small-cell lung cancer using a decision analytic model. JCO Precis Oncol. 2019;3:1–9.CrossRefPubMed Pennell NA, Mutebi A, Zhou ZY, Ricculli ML, Tang W, Wang H, et al. Economic impact of next-generation sequencing versus single-gene testing to detect genomic alterations in metastatic non–small-cell lung cancer using a decision analytic model. JCO Precis Oncol. 2019;3:1–9.CrossRefPubMed
10.
go back to reference Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Guidelines for validation of next-generation sequencing-based oncology panels. J Mol Diagn. 2017;19(3):341–65.CrossRefPubMed Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, et al. Guidelines for validation of next-generation sequencing-based oncology panels. J Mol Diagn. 2017;19(3):341–65.CrossRefPubMed
11.
go back to reference Kunimasa K, Matsumoto S, Nishino K, Nakamura H, Kuhara H, Tamiya M, et al. Improvement strategies for successful next-generation sequencing analysis of lung cancer. Future Oncol. 2020;16(22):1597–608.CrossRefPubMed Kunimasa K, Matsumoto S, Nishino K, Nakamura H, Kuhara H, Tamiya M, et al. Improvement strategies for successful next-generation sequencing analysis of lung cancer. Future Oncol. 2020;16(22):1597–608.CrossRefPubMed
12.
go back to reference Takeyasu Y, Yoshida T, Motoi N, Teishikata T, Tanaka M, et al. Feasibility of next-generation sequencing (Oncomine™ DX Target Test) for the screening of oncogenic mutations in advanced non-small-cell lung cancer patients. Jpn J Clin Oncol. 2021;51(7):1114–22.CrossRefPubMed Takeyasu Y, Yoshida T, Motoi N, Teishikata T, Tanaka M, et al. Feasibility of next-generation sequencing (Oncomine™ DX Target Test) for the screening of oncogenic mutations in advanced non-small-cell lung cancer patients. Jpn J Clin Oncol. 2021;51(7):1114–22.CrossRefPubMed
13.
go back to reference Sunami K, Takahashi H, Tsuchihara K, Takeda M, Suzuki T, Naito Y, et al. Clinical practice guidance for next-generation sequencing in cancer diagnosis and treatment (Edition 1.0). Cancer Sci. 2018;109(9):2980–5.CrossRefPubMedPubMedCentral Sunami K, Takahashi H, Tsuchihara K, Takeda M, Suzuki T, Naito Y, et al. Clinical practice guidance for next-generation sequencing in cancer diagnosis and treatment (Edition 1.0). Cancer Sci. 2018;109(9):2980–5.CrossRefPubMedPubMedCentral
14.
go back to reference LüderRipoli F, Mohr A, Conradine Hammer S, Willenbrock S, Hewicker-Trautwein M, Hennecke S, et al. A comparison of fresh frozen vs. formalin-fixed, paraffin-embedded specimens of canine mammary tumors via branched-DNA assay. Int J Mol Sci. 2016;17(5):724.CrossRef LüderRipoli F, Mohr A, Conradine Hammer S, Willenbrock S, Hewicker-Trautwein M, Hennecke S, et al. A comparison of fresh frozen vs. formalin-fixed, paraffin-embedded specimens of canine mammary tumors via branched-DNA assay. Int J Mol Sci. 2016;17(5):724.CrossRef
15.
go back to reference Morikawa K, Kida H, Handa H, Inoue T, Saji H, Koike J, et al. A prospective validation study of lung cancer gene panel testing using cytological specimens. Cancers (Basel). 2022;14(15):3784.CrossRefPubMed Morikawa K, Kida H, Handa H, Inoue T, Saji H, Koike J, et al. A prospective validation study of lung cancer gene panel testing using cytological specimens. Cancers (Basel). 2022;14(15):3784.CrossRefPubMed
16.
go back to reference Jiang J, Tang C, Li Y, Lin Z, Li Z, Zhou C, et al. Cell pellet from fixative medium of transbronchial lung biopsy sample improves lung cancer ancillary test. Lung Cancer. 2023;175:9–16.CrossRefPubMed Jiang J, Tang C, Li Y, Lin Z, Li Z, Zhou C, et al. Cell pellet from fixative medium of transbronchial lung biopsy sample improves lung cancer ancillary test. Lung Cancer. 2023;175:9–16.CrossRefPubMed
17.
go back to reference Furuya N, Matsumoto S, Kakinuma K, Morikawa K, Inoue T, Saji H, et al. Suitability of transbronchial brushing cytology specimens for next-generation sequencing in peripheral lung cancer. Cancer Sci. 2021;112(1):380–7.CrossRefPubMed Furuya N, Matsumoto S, Kakinuma K, Morikawa K, Inoue T, Saji H, et al. Suitability of transbronchial brushing cytology specimens for next-generation sequencing in peripheral lung cancer. Cancer Sci. 2021;112(1):380–7.CrossRefPubMed
18.
go back to reference Feller-Kopman D, Yung RCW, Burroughs F, Li QK. Cytology of endobronchial ultrasound-guided transbronchial needle aspiration. Cancer Cytopathol. 2009;117(6):482–90. Feller-Kopman D, Yung RCW, Burroughs F, Li QK. Cytology of endobronchial ultrasound-guided transbronchial needle aspiration. Cancer Cytopathol. 2009;117(6):482–90.
19.
go back to reference Stoy SP, Segal JP, Mueller J, Furtado LV, Vokes EE, Patel JD, et al. Feasibility of endobronchial ultrasound-guided transbronchial needle aspiration cytology specimens for next generation sequencing in non-small-cell lung cancer. Clin Lung Cancer. 2018;19(3):230–238.e2.CrossRefPubMed Stoy SP, Segal JP, Mueller J, Furtado LV, Vokes EE, Patel JD, et al. Feasibility of endobronchial ultrasound-guided transbronchial needle aspiration cytology specimens for next generation sequencing in non-small-cell lung cancer. Clin Lung Cancer. 2018;19(3):230–238.e2.CrossRefPubMed
20.
go back to reference Takeuchi S, Yanagitani N, Seto T, Hattori Y, Ohashi K, Morise M, et al. Phase 1/2 study of alectinib in RET-rearranged previously-treated non-small cell lung cancer (ALL-RET). Transl Lung Cancer Res. 2021;10(1):314–25.CrossRefPubMedPubMedCentral Takeuchi S, Yanagitani N, Seto T, Hattori Y, Ohashi K, Morise M, et al. Phase 1/2 study of alectinib in RET-rearranged previously-treated non-small cell lung cancer (ALL-RET). Transl Lung Cancer Res. 2021;10(1):314–25.CrossRefPubMedPubMedCentral
21.
go back to reference Tamiya Y, Matsumoto S, Zenke Y, Yoh K, Ikeda T, Shibata Y, et al. Large-scale clinico-genomic profile of non-small cell lung cancer with KRAS G12C: results from LC-SCRUM-Asia study. Lung Cancer. 2023;176:103–11.CrossRefPubMed Tamiya Y, Matsumoto S, Zenke Y, Yoh K, Ikeda T, Shibata Y, et al. Large-scale clinico-genomic profile of non-small cell lung cancer with KRAS G12C: results from LC-SCRUM-Asia study. Lung Cancer. 2023;176:103–11.CrossRefPubMed
22.
go back to reference Hazeki N, Tachihara M, Tsukamoto R, Tokunaga S, Tamura D, Shinke H, et al. Utility of cell blocks obtained by catheter aspiration via a guide sheath during endobronchial ultrasonography. Respir Investig. 2017;55(2):161–5.CrossRefPubMed Hazeki N, Tachihara M, Tsukamoto R, Tokunaga S, Tamura D, Shinke H, et al. Utility of cell blocks obtained by catheter aspiration via a guide sheath during endobronchial ultrasonography. Respir Investig. 2017;55(2):161–5.CrossRefPubMed
23.
go back to reference Qu X, Yeung C, Coleman I, Nelson PS, Fang M. Comparison of four next generation sequencing platforms for fusion detection: Oncomine by ThermoFisher, AmpliSeq by illumina, FusionPlex by ArcherDX, and QIAseq by QIAGEN. Cancer Genet. 2020;243:11–8.CrossRefPubMedPubMedCentral Qu X, Yeung C, Coleman I, Nelson PS, Fang M. Comparison of four next generation sequencing platforms for fusion detection: Oncomine by ThermoFisher, AmpliSeq by illumina, FusionPlex by ArcherDX, and QIAseq by QIAGEN. Cancer Genet. 2020;243:11–8.CrossRefPubMedPubMedCentral
24.
go back to reference Bormann Chung C, Lee J, Barritault M, Bringuier PP, Xu Z, Huang WY, et al. Evaluating targeted next-generation sequencing assays and reference materials for NTRK fusion detection. J Mol Diagn. 2022;24(1):18–32.CrossRefPubMed Bormann Chung C, Lee J, Barritault M, Bringuier PP, Xu Z, Huang WY, et al. Evaluating targeted next-generation sequencing assays and reference materials for NTRK fusion detection. J Mol Diagn. 2022;24(1):18–32.CrossRefPubMed
25.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.CrossRefPubMed Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.CrossRefPubMed
26.
go back to reference Kunimasa K, Matsumoto S, Nishino K, Honma K, Maeda N, Kuhara H, et al. Comparison of sampling methods for next generation sequencing for patients with lung cancer. Cancer Med. 2022;11(14):2744–54.CrossRefPubMedPubMedCentral Kunimasa K, Matsumoto S, Nishino K, Honma K, Maeda N, Kuhara H, et al. Comparison of sampling methods for next generation sequencing for patients with lung cancer. Cancer Med. 2022;11(14):2744–54.CrossRefPubMedPubMedCentral
27.
go back to reference Katsurada N, Tachihara M, Jimbo N, Yamamoto M, Yoshioka J, Mimura C, et al. Yield of tumor samples with a large guide-sheath in endobronchial ultrasound transbronchial biopsy for non-small cell lung cancer: a prospective study. PLoS One. 2021;16(10):e0259236.CrossRefPubMedPubMedCentral Katsurada N, Tachihara M, Jimbo N, Yamamoto M, Yoshioka J, Mimura C, et al. Yield of tumor samples with a large guide-sheath in endobronchial ultrasound transbronchial biopsy for non-small cell lung cancer: a prospective study. PLoS One. 2021;16(10):e0259236.CrossRefPubMedPubMedCentral
28.
go back to reference Schmid-Bindert G, Wang Y, Jiang H, Sun H, Henzler T, Wang H, et al. EBUS-TBNA provides highest RNA yield for multiple biomarker testing from routinely obtained small biopsies in Non-small cell lung cancer patients - a comparative study of three different minimal invasive sampling methods. PLoS One. 2013;8(10):e77948.CrossRefPubMedPubMedCentral Schmid-Bindert G, Wang Y, Jiang H, Sun H, Henzler T, Wang H, et al. EBUS-TBNA provides highest RNA yield for multiple biomarker testing from routinely obtained small biopsies in Non-small cell lung cancer patients - a comparative study of three different minimal invasive sampling methods. PLoS One. 2013;8(10):e77948.CrossRefPubMedPubMedCentral
29.
go back to reference Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, et al. Measurement of gene expression in archival paraffin-embedded tissues. Am J Pathol. 2004;164(1):35–42.CrossRefPubMedPubMedCentral Cronin M, Pho M, Dutta D, Stephans JC, Shak S, Kiefer MC, et al. Measurement of gene expression in archival paraffin-embedded tissues. Am J Pathol. 2004;164(1):35–42.CrossRefPubMedPubMedCentral
30.
go back to reference Nam SK, Im J, Kwak Y, Han N, Nam KH, Seo AN, et al. Effects of fixation and storage of human tissue samples on nucleic acid preservation. Korean J Pathol. 2014;48(1):36.CrossRefPubMedPubMedCentral Nam SK, Im J, Kwak Y, Han N, Nam KH, Seo AN, et al. Effects of fixation and storage of human tissue samples on nucleic acid preservation. Korean J Pathol. 2014;48(1):36.CrossRefPubMedPubMedCentral
31.
go back to reference Uchimura K, Yanase K, Imabayashi T, Takeyasu Y, Furuse H, Tanaka M, et al. The impact of core tissues on successful next-generation sequencing analysis of specimens obtained through endobronchial ultrasound-guided transbronchial needle aspiration. Cancers (Basel). 2021;13(23):5879.CrossRefPubMed Uchimura K, Yanase K, Imabayashi T, Takeyasu Y, Furuse H, Tanaka M, et al. The impact of core tissues on successful next-generation sequencing analysis of specimens obtained through endobronchial ultrasound-guided transbronchial needle aspiration. Cancers (Basel). 2021;13(23):5879.CrossRefPubMed
32.
go back to reference Livi V, Sotgiu G, Cancellieri A, Paioli D, Leoncini F, Magnini D, et al. Ultrasound-guided needle aspiration biopsy of superficial metastasis of lung cancer with and without rapid on-site evaluation: a randomized trial. Cancers (Basel). 2022;14(20):5156.CrossRefPubMed Livi V, Sotgiu G, Cancellieri A, Paioli D, Leoncini F, Magnini D, et al. Ultrasound-guided needle aspiration biopsy of superficial metastasis of lung cancer with and without rapid on-site evaluation: a randomized trial. Cancers (Basel). 2022;14(20):5156.CrossRefPubMed
33.
go back to reference Tone M, Inomata M, Awano N, Kuse N, Takada K, Minami J, et al. Comparison of adequacy between transbronchial lung cryobiopsy samples and endobronchial ultrasound-guided transbronchial needle aspiration samples for next-generation sequencing analysis. Thorac Cancer. 2021;12(2):251–8.CrossRefPubMed Tone M, Inomata M, Awano N, Kuse N, Takada K, Minami J, et al. Comparison of adequacy between transbronchial lung cryobiopsy samples and endobronchial ultrasound-guided transbronchial needle aspiration samples for next-generation sequencing analysis. Thorac Cancer. 2021;12(2):251–8.CrossRefPubMed
Metadata
Title
Utility of bronchoscopically obtained frozen cytology pellets for next-generation sequencing
Authors
Chihiro Mimura
Rei Takamiya
Shodai Fujimoto
Takafumi Fukui
Atsuhiko Yatani
Jun Yamada
Mizuki Takayasu
Naoya Takata
Hiroki Sato
Kiyoko Fukuda
Koichi Furukawa
Daisuke Hazama
Naoko Katsurada
Masatsugu Yamamoto
Shingo Matsumoto
Koichi Goto
Motoko Tachihara
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2024
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-024-12250-5

Other articles of this Issue 1/2024

BMC Cancer 1/2024 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine