Skip to main content
Top
Published in: Strahlentherapie und Onkologie 5/2016

01-05-2016 | Review Article

Adenosine can thwart antitumor immune responses elicited by radiotherapy

Therapeutic strategies alleviating protumor ADO activities

Authors: Prof. Dr. med. Peter Vaupel, M.A., Prof. Dr. rer.nat. Gabriele Multhoff

Published in: Strahlentherapie und Onkologie | Issue 5/2016

Login to get access

Abstract

Background

By studying the bioenergetic status we could show that the development of tumor hypoxia is accompanied, apart from myriad other biologically relevant effects, by a substantial accumulation of adenosine (ADO). ADO has been shown to act as a strong immunosuppressive agent in tumors by modulating the innate and adaptive immune system. In contrast to ADO, standard radiotherapy (RT) can either stimulate or abrogate antitumor immune responses. Herein, we present ADO-mediated mechanisms that may thwart antitumor immune responses elicited by RT.

Materials and methods

An overview of the generation, accumulation, and ADO-related multifaceted inhibition of immune functions, contrasted with the antitumor immune effects of RT, is provided.

Results

Upon hypoxic stress, cancer cells release ATP into the extracellular space where nucleotides are converted into ADO by hypoxia-sensitive, membrane-bound ectoenzymes (CD39/CD73). ADO actions are mediated upon binding to surface receptors, mainly A2A receptors on tumor and immune cells. Receptor activation leads to a broad spectrum of strong immunosuppressive properties facilitating tumor escape from immune control. Mechanisms include (1) impaired activity of CD4 + T and CD8 + T, NK cells and dendritic cells (DC), decreased production of immuno-stimulatory lymphokines, and (2) activation of Treg cells, expansion of MDSCs, promotion of M2 macrophages, and increased activity of major immunosuppressive cytokines. In addition, ADO can directly stimulate tumor proliferation and angiogenesis.

Conclusion

ADO mechanisms described can thwart antitumor immune responses elicited by RT. Therapeutic strategies alleviating tumor-promoting activities of ADO include respiratory hyperoxia or mild hyperthermia, inhibition of CD39/CD73 ectoenzymes or blockade of A2A receptors, and inhibition of ATP-release channels or ADO transporters.
Literature
1.
go back to reference Gaipl US, Multhoff G, Scheithauer H et al (2014) Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6:597–610CrossRefPubMed Gaipl US, Multhoff G, Scheithauer H et al (2014) Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6:597–610CrossRefPubMed
2.
go back to reference Demaria S, Pilones KA, Vanpouille-Box C et al (2014) The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res 182:170–181CrossRefPubMedPubMedCentral Demaria S, Pilones KA, Vanpouille-Box C et al (2014) The optimal partnership of radiation and immunotherapy: from preclinical studies to clinical translation. Radiat Res 182:170–181CrossRefPubMedPubMedCentral
4.
go back to reference Frey B, Rubner Y, Kulzer L et al (2014) Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36CrossRefPubMed Frey B, Rubner Y, Kulzer L et al (2014) Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36CrossRefPubMed
5.
go back to reference Zegers CM, Rekers NH, Quaden DH et al (2015) Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting antitumor effects. Clin Cancer Res 21:1151–1560CrossRefPubMed Zegers CM, Rekers NH, Quaden DH et al (2015) Radiotherapy combined with the immunocytokine L19-IL2 provides long-lasting antitumor effects. Clin Cancer Res 21:1151–1560CrossRefPubMed
6.
go back to reference Lauber K, Brix N, Ernst A et al (2015) Targeting the heat shock response in combination with radiotherapy: sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 368:209–229CrossRefPubMed Lauber K, Brix N, Ernst A et al (2015) Targeting the heat shock response in combination with radiotherapy: sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 368:209–229CrossRefPubMed
7.
go back to reference Ma Y, Conforti R, Aymeric L et al (2011) How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 30:71–82CrossRefPubMed Ma Y, Conforti R, Aymeric L et al (2011) How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 30:71–82CrossRefPubMed
9.
go back to reference Georgakilas AG (2015) Role of the immune system and inflammation in ionizing radiation effects. Cancer Lett 368:154–156CrossRefPubMed Georgakilas AG (2015) Role of the immune system and inflammation in ionizing radiation effects. Cancer Lett 368:154–156CrossRefPubMed
10.
go back to reference Candeias S, Testard I (2015) The many interactions between the innate immune system and the response to radiation. Cancer Lett 356:173–178CrossRef Candeias S, Testard I (2015) The many interactions between the innate immune system and the response to radiation. Cancer Lett 356:173–178CrossRef
11.
go back to reference Hellweg CE (2015) The Nuclear Factor κB pathway: a link to the immune system in the radiation response. Cancer Lett 368:275–289CrossRefPubMed Hellweg CE (2015) The Nuclear Factor κB pathway: a link to the immune system in the radiation response. Cancer Lett 368:275–289CrossRefPubMed
12.
go back to reference Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059CrossRefPubMed Apetoh L, Ghiringhelli F, Tesniere A et al (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–1059CrossRefPubMed
13.
14.
go back to reference Multhoff G, Pockley AG, Schmid TE et al (2015) The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Lett 368:179–184CrossRefPubMed Multhoff G, Pockley AG, Schmid TE et al (2015) The role of heat shock protein 70 (Hsp70) in radiation-induced immunomodulation. Cancer Lett 368:179–184CrossRefPubMed
15.
go back to reference Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377CrossRefPubMed Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377CrossRefPubMed
16.
go back to reference Le QT, Shirato H, Giaccia AJ et al (2015) Emerging treatment paradigms in radiation oncology. Clin Cancer Res 21:3393–3401CrossRefPubMed Le QT, Shirato H, Giaccia AJ et al (2015) Emerging treatment paradigms in radiation oncology. Clin Cancer Res 21:3393–3401CrossRefPubMed
17.
go back to reference Persa E, Balogh A, Safrany G et al (2015) The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett 368:252–261CrossRefPubMed Persa E, Balogh A, Safrany G et al (2015) The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett 368:252–261CrossRefPubMed
18.
go back to reference Hekim N, Cetin Z, Nikitaki Z et al (2015) Radiation triggering immune response and inflammation. Cancer Lett 368:156–163CrossRefPubMed Hekim N, Cetin Z, Nikitaki Z et al (2015) Radiation triggering immune response and inflammation. Cancer Lett 368:156–163CrossRefPubMed
19.
go back to reference Antonioli L, Hasko G, Fornai M et al (2014) Adenosine pathway and cancer: where do we go from here? Expert Opin Ther Targets 18:973–977CrossRefPubMed Antonioli L, Hasko G, Fornai M et al (2014) Adenosine pathway and cancer: where do we go from here? Expert Opin Ther Targets 18:973–977CrossRefPubMed
20.
go back to reference Park HJ, Griffin RJ, Hui S et al (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177:311–327CrossRefPubMed Park HJ, Griffin RJ, Hui S et al (2012) Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res 177:311–327CrossRefPubMed
21.
go back to reference Antonioli L, Blandizzi C, Pacher P et al (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nature Rev Cancer 13:842–857CrossRef Antonioli L, Blandizzi C, Pacher P et al (2013) Immunity, inflammation and cancer: a leading role for adenosine. Nature Rev Cancer 13:842–857CrossRef
22.
go back to reference Sitkovsky MV, Kjaergaard J, Lukashev D et al (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952CrossRefPubMed Sitkovsky MV, Kjaergaard J, Lukashev D et al (2008) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14:5947–5952CrossRefPubMed
23.
go back to reference Young A, Mittal D, Stagg J et al (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4:879–888CrossRefPubMed Young A, Mittal D, Stagg J et al (2014) Targeting cancer-derived adenosine: new therapeutic approaches. Cancer Discov 4:879–888CrossRefPubMed
25.
go back to reference Hoskin DW, Reynolds T, Blay J (1994) Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumours. Int J Cancer 59:854–855CrossRefPubMed Hoskin DW, Reynolds T, Blay J (1994) Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumours. Int J Cancer 59:854–855CrossRefPubMed
26.
go back to reference Vaupel P, Mayer A (2016) Hypoxia-driven adenosine accumulation: a crucial microenvironmental factor promoting tumor progression. Adv Exp Med Biol 876:177–183 Vaupel P, Mayer A (2016) Hypoxia-driven adenosine accumulation: a crucial microenvironmental factor promoting tumor progression. Adv Exp Med Biol 876:177–183
27.
go back to reference Busse M, Vaupel P (1996) Accumulation of purine catabolites in solid tumors exposed to therapeutic hyperthermia. Experientia 52:469–473CrossRefPubMed Busse M, Vaupel P (1996) Accumulation of purine catabolites in solid tumors exposed to therapeutic hyperthermia. Experientia 52:469–473CrossRefPubMed
28.
go back to reference Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605PubMed Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57:2602–2605PubMed
29.
go back to reference Hatfield SM, Kjaergaard J, Lukashev D et al (2014) Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection. J Mol Med 92:1283–1292CrossRefPubMedPubMedCentral Hatfield SM, Kjaergaard J, Lukashev D et al (2014) Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection. J Mol Med 92:1283–1292CrossRefPubMedPubMedCentral
31.
go back to reference Becker JC, Andersen MH, Schrama D et al (2013) Immune-suppressive properties of the tumor microenvironment. Cancer Immmunol Immunother 62:1137–1148CrossRef Becker JC, Andersen MH, Schrama D et al (2013) Immune-suppressive properties of the tumor microenvironment. Cancer Immmunol Immunother 62:1137–1148CrossRef
32.
go back to reference Gessi S, Merighi S, Sacchetto V et al (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808:1400–1412CrossRefPubMed Gessi S, Merighi S, Sacchetto V et al (2011) Adenosine receptors and cancer. Biochim Biophys Acta 1808:1400–1412CrossRefPubMed
33.
34.
go back to reference Muller-Haegele S, Muller L, Whiteside TL (2014) Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Rev Clin Immunol 10:897–914CrossRefPubMed Muller-Haegele S, Muller L, Whiteside TL (2014) Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Rev Clin Immunol 10:897–914CrossRefPubMed
35.
go back to reference Fishman P, Bar-Yehuda S, Synowitz M et al (2009) Adenosine receptors and cancer. Handb Exp Pharmacol 193:399–441CrossRefPubMed Fishman P, Bar-Yehuda S, Synowitz M et al (2009) Adenosine receptors and cancer. Handb Exp Pharmacol 193:399–441CrossRefPubMed
36.
go back to reference Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920CrossRefPubMed Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920CrossRefPubMed
37.
go back to reference Hatfield SM, Kjaergaard J, Lukashev D et al (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7:277ra30CrossRefPubMedPubMedCentral Hatfield SM, Kjaergaard J, Lukashev D et al (2015) Immunological mechanisms of the antitumor effects of supplemental oxygenation. Sci Transl Med 7:277ra30CrossRefPubMedPubMedCentral
39.
go back to reference Bayer C, Shi K, Astner ST et al (2011) Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 80:965–968CrossRefPubMed Bayer C, Shi K, Astner ST et al (2011) Acute versus chronic hypoxia: why a simplified classification is simply not enough. Int J Radiat Oncol Biol Phys 80:965–968CrossRefPubMed
40.
go back to reference Vaupel P, Mayer A (2014) Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol 812:19–24CrossRefPubMed Vaupel P, Mayer A (2014) Hypoxia in tumors: pathogenesis-related classification, characterization of hypoxia subtypes, and associated biological and clinical implications. Adv Exp Med Biol 812:19–24CrossRefPubMed
42.
go back to reference Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358CrossRefPubMed Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene 29:5346–5358CrossRefPubMed
43.
go back to reference Vaupel P (1974) Atemgaswechsel und Glucosestoffwechsel von Implantationsturmoren (DS-Carcinosarkom) in vivo. Funktionsanalyse biologischer Systeme. Steiner, Wiesbaden Vaupel P (1974) Atemgaswechsel und Glucosestoffwechsel von Implantationsturmoren (DS-Carcinosarkom) in vivo. Funktionsanalyse biologischer Systeme. Steiner, Wiesbaden
44.
go back to reference Mayer A, Vaupel P (2013) Hypoxia, lactate accumulation, and acidosis: siblings or accomplices driving tumor progression and resistance to therapy? Adv Exp Med Biol 789:203–209CrossRefPubMed Mayer A, Vaupel P (2013) Hypoxia, lactate accumulation, and acidosis: siblings or accomplices driving tumor progression and resistance to therapy? Adv Exp Med Biol 789:203–209CrossRefPubMed
45.
go back to reference Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69:522–530PubMed Lardner A (2001) The effects of extracellular pH on immune function. J Leukoc Biol 69:522–530PubMed
46.
go back to reference Gottfried E, Kreutz M, Mackensen A (2012) Tumor metabolism as modulator of immune response and tumor progression. Semin Cancer Biol 22:335–341CrossRefPubMed Gottfried E, Kreutz M, Mackensen A (2012) Tumor metabolism as modulator of immune response and tumor progression. Semin Cancer Biol 22:335–341CrossRefPubMed
48.
go back to reference Mendler AN, Hu B, Prinz PU et al (2012) Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131:633–640CrossRefPubMed Mendler AN, Hu B, Prinz PU et al (2012) Tumor lactic acidosis suppresses CTL function by inhibition of p38 and JNK/c-Jun activation. Int J Cancer 131:633–640CrossRefPubMed
49.
go back to reference Adams JL, Smothers J, Srinivasan R et al (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 14:603–622CrossRefPubMed Adams JL, Smothers J, Srinivasan R et al (2015) Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov 14:603–622CrossRefPubMed
50.
go back to reference Häusler SF, Del Barrio IM, Diessner J et al (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res 6:129–139PubMedPubMedCentral Häusler SF, Del Barrio IM, Diessner J et al (2014) Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion. Am J Transl Res 6:129–139PubMedPubMedCentral
51.
go back to reference Iannone R, Miele L, Maiolino P et al (2014) Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res 4:172–181PubMedPubMedCentral Iannone R, Miele L, Maiolino P et al (2014) Adenosine limits the therapeutic effectiveness of anti-CTLA4 mAb in a mouse melanoma model. Am J Cancer Res 4:172–181PubMedPubMedCentral
52.
go back to reference Allard B, Pommey S, Smyth MJ et al (2013) Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19:5626–5635CrossRefPubMed Allard B, Pommey S, Smyth MJ et al (2013) Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs. Clin Cancer Res 19:5626–5635CrossRefPubMed
54.
go back to reference Schalper KA, Carvajal-Hausdorf D, Oyarzo MP (2014) Possible role of hemichannels in cancer. Front Physiology 5:237 Schalper KA, Carvajal-Hausdorf D, Oyarzo MP (2014) Possible role of hemichannels in cancer. Front Physiology 5:237
55.
go back to reference Vaupel P, Muller-Klieser W, Otte J et al (1984) Impact of various thermal doses on the oxygenation and blood flow in malignant tumors upon localized hyperthermia. Adv Exp Med Biol 169:621–629CrossRefPubMed Vaupel P, Muller-Klieser W, Otte J et al (1984) Impact of various thermal doses on the oxygenation and blood flow in malignant tumors upon localized hyperthermia. Adv Exp Med Biol 169:621–629CrossRefPubMed
56.
go back to reference Lee CT, Mace T, Repasky EA (2010) Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer? Int J Hypethermia 26:232–246CrossRef Lee CT, Mace T, Repasky EA (2010) Hypoxia-driven immunosuppression: a new reason to use thermal therapy in the treatment of cancer? Int J Hypethermia 26:232–246CrossRef
57.
go back to reference Ban HS, Uto Y, Nakamura l (2011) Hypoxia-inducible factor inhibitors: a survey of recent patented compounds (2004-2010). Expert Opin Ther Pat 21:131–146 Ban HS, Uto Y, Nakamura l (2011) Hypoxia-inducible factor inhibitors: a survey of recent patented compounds (2004-2010). Expert Opin Ther Pat 21:131–146
58.
go back to reference Sitkovsky M, Ohta A (2013) Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J Mol Med 93:147–155 Sitkovsky M, Ohta A (2013) Targeting the hypoxia-adenosinergic signaling pathway to improve the adoptive immunotherapy of cancer. J Mol Med 93:147–155
Metadata
Title
Adenosine can thwart antitumor immune responses elicited by radiotherapy
Therapeutic strategies alleviating protumor ADO activities
Authors
Prof. Dr. med. Peter Vaupel, M.A.
Prof. Dr. rer.nat. Gabriele Multhoff
Publication date
01-05-2016
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 5/2016
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-016-0948-1

Other articles of this Issue 5/2016

Strahlentherapie und Onkologie 5/2016 Go to the issue