Skip to main content
Top
Published in: Journal of Nuclear Cardiology 6/2018

01-12-2018 | Original Article

Quantification of intramyocardial blood volume with 99mTc-RBC SPECT-CT imaging: A preclinical study

Authors: Hassan Mohy-ud-Din, PhD, Nabil E. Boutagy, PhD, John C. Stendahl, MD, PhD, Zhen W. Zhuang, MD, Albert J. Sinusas, MD, Chi Liu, PhD

Published in: Journal of Nuclear Cardiology | Issue 6/2018

Login to get access

Abstract

Background

Currently, there is no established non-invasive imaging approach to directly evaluate myocardial microcirculatory function in order to diagnose microvascular disease independent of co-existing epicardial disease. In this work, we developed a methodological framework for quantification of intramyocardial blood volume (IMBV) as a novel index of microcirculatory function with SPECT/CT imaging of 99mTc-labeled red blood cells (RBCs).

Methods

Dual-gated myocardial SPECT/CT equilibrium imaging of 99mTc-RBCs was performed on twelve canines under resting conditions. Five correction schemes were studied: cardiac gating with no other corrections (CG), CG with attenuation correction (CG + AC), CG + AC with scatter correction (CG + AC + SC), dual cardiorespiratory gating with AC + SC (DG + AC + SC), and DG + AC + SC with partial volume correction (DG + AC + SC + PVC). Quantification of IMBV using each approach was evaluated in comparison to those obtained from all corrections. The in vivo SPECT estimates of IMBV values were validated against those obtained from ex vivo microCT imaging of the casted hearts.

Results

The estimated IMBV with all corrections was 0.15 ± 0.03 for the end-diastolic phase and 0.11 ± 0.03 for the end-systolic phase. The cycle-dependent change in IMBV (ΔIMBV) with all corrections was 23.9 ± 8.6%. Schemes that applied no correction or partial correction resulted in significant over-estimation of IMBV and significant under-underestimation of ΔIMBV. Estimates of IMBV and ΔIMBV using all corrections were consistent with values reported in the literature using invasive techniques. In vivo SPECT estimates of IMBV strongly correlated (R2 ≥ 0.70) with ex vivo measures for the various correction schemes, while the fully corrected scheme yielded the smallest bias.

Conclusions

Non-invasive quantification of IMBV is feasible using 99mTc-RBCs SPECT/CT imaging, however, requires full compensation of physical degradation factors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Association AH. Heart disease and stroke statistics–at-a-glance. 2015. Association AH. Heart disease and stroke statistics–at-a-glance. 2015.
2.
go back to reference Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39:1037-47.CrossRefPubMedPubMedCentral Prior JO, Allenbach G, Valenta I, Kosinski M, Burger C, Verdun FR, et al. Quantification of myocardial blood flow with 82Rb positron emission tomography: clinical validation with 15O-water. Eur J Nucl Med Mol Imaging 2012;39:1037-47.CrossRefPubMedPubMedCentral
3.
go back to reference Mohy-ud-Din H, Lodge MA, Rahmim A. Quantitative myocardial perfusion PET parametric imaging at the voxel-level. Phys Med Biol 2015;60:6013.CrossRefPubMed Mohy-ud-Din H, Lodge MA, Rahmim A. Quantitative myocardial perfusion PET parametric imaging at the voxel-level. Phys Med Biol 2015;60:6013.CrossRefPubMed
4.
go back to reference Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med 2012;53:1230-4.CrossRefPubMed Fiechter M, Ghadri JR, Gebhard C, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Diagnostic value of 13N-ammonia myocardial perfusion PET: added value of myocardial flow reserve. J Nucl Med 2012;53:1230-4.CrossRefPubMed
5.
go back to reference Qian J, Ge J, Baumgart D, Sack S, Haude M, Erbel R. Prevalence of microvascular disease in patients with significant coronary artery disease. Herz 1999;24:548-57.CrossRefPubMed Qian J, Ge J, Baumgart D, Sack S, Haude M, Erbel R. Prevalence of microvascular disease in patients with significant coronary artery disease. Herz 1999;24:548-57.CrossRefPubMed
6.
go back to reference Fearon WF. Letter by Faron regarding article, “Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management”. Circulation 2011;123:e212; author reply e3. Fearon WF. Letter by Faron regarding article, “Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management”. Circulation 2011;123:e212; author reply e3.
7.
go back to reference Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation 2010;121:2317-25.CrossRefPubMed Lanza GA, Crea F. Primary coronary microvascular dysfunction: clinical presentation, pathophysiology, and management. Circulation 2010;121:2317-25.CrossRefPubMed
8.
go back to reference Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC 2015;8:1445-53.PubMed Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC 2015;8:1445-53.PubMed
9.
go back to reference Lin T, Rechenmacher S, Rasool S, Varadarajan P, Pai RG. Reduced survival in patients with “coronary microvascular disease”. Int J Angiol 2012;21:089-94.CrossRef Lin T, Rechenmacher S, Rasool S, Varadarajan P, Pai RG. Reduced survival in patients with “coronary microvascular disease”. Int J Angiol 2012;21:089-94.CrossRef
10.
go back to reference Marks DS, Gudapati S, Prisant LM, Weir B, DiDonato-Gonzalez C, Waller JL, et al. Mortality in patients with microvascular disease. J Clin Hypertens 2004;6:304-9.CrossRef Marks DS, Gudapati S, Prisant LM, Weir B, DiDonato-Gonzalez C, Waller JL, et al. Mortality in patients with microvascular disease. J Clin Hypertens 2004;6:304-9.CrossRef
11.
go back to reference Britten MB, Zeiher AM, Schächinger V. Microvascular dysfunction in angiographically normal or mildly diseased coronary arteries predicts adverse cardiovascular long-term outcome. Coron Artery Dis 2004;15:259-64.CrossRefPubMed Britten MB, Zeiher AM, Schächinger V. Microvascular dysfunction in angiographically normal or mildly diseased coronary arteries predicts adverse cardiovascular long-term outcome. Coron Artery Dis 2004;15:259-64.CrossRefPubMed
12.
go back to reference Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J 2009:ehp205. Recio-Mayoral A, Mason JC, Kaski JC, Rubens MB, Harari OA, Camici PG. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur Heart J 2009:ehp205.
14.
go back to reference Selthofer-Relatić K, Bošnjak I, Kibel A. Obesity related coronary microvascular dysfunction: from basic to clinical practice. Cardiol Res Pract 2016;2016. Selthofer-Relatić K, Bošnjak I, Kibel A. Obesity related coronary microvascular dysfunction: from basic to clinical practice. Cardiol Res Pract 2016;2016.
15.
go back to reference Gallucci G, Capobianco AM, Coccaro M, Venetucci A, Suriano V, Fusco V. Myocardial perfusion defects after radiation therapy and anthracycline chemotherapy for left breast cancer: a possible marker of microvascular damage. Three cases and review of the literature. Tumori 2008;94:129-33.CrossRefPubMed Gallucci G, Capobianco AM, Coccaro M, Venetucci A, Suriano V, Fusco V. Myocardial perfusion defects after radiation therapy and anthracycline chemotherapy for left breast cancer: a possible marker of microvascular damage. Three cases and review of the literature. Tumori 2008;94:129-33.CrossRefPubMed
16.
go back to reference Wu CC, Feldman MD, Mills JD, Manaugh CA, Fischer D, Jafar MZ, et al. Myocardial contrast echocardiography can be used to quantify intramyocardial blood volume—New insights into structural mechanisms of coronary autoregulation. Circulation 1997;96:1004-11.CrossRefPubMed Wu CC, Feldman MD, Mills JD, Manaugh CA, Fischer D, Jafar MZ, et al. Myocardial contrast echocardiography can be used to quantify intramyocardial blood volume—New insights into structural mechanisms of coronary autoregulation. Circulation 1997;96:1004-11.CrossRefPubMed
17.
go back to reference Porter TR. Capillary blood flow abnormalities in the skeletal muscle and microvascular complications in diabetes lessons that cannot be learned from larger vessels. J Am Coll Cardiol 2009;53:2184-5.CrossRefPubMed Porter TR. Capillary blood flow abnormalities in the skeletal muscle and microvascular complications in diabetes lessons that cannot be learned from larger vessels. J Am Coll Cardiol 2009;53:2184-5.CrossRefPubMed
18.
go back to reference Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2014:CIRCULATIONAHA. 114.009625. Mohammed SF, Hussain S, Mirzoyev SA, Edwards WD, Maleszewski JJ, Redfield MM. Coronary microvascular rarefaction and myocardial fibrosis in heart failure with preserved ejection fraction. Circulation 2014:CIRCULATIONAHA. 114.009625.
19.
go back to reference Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res 1994;74:1157-65.CrossRefPubMed Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res 1994;74:1157-65.CrossRefPubMed
20.
go back to reference Judd RM, Levy BI. Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 1991;68:217-25.CrossRefPubMed Judd RM, Levy BI. Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 1991;68:217-25.CrossRefPubMed
21.
go back to reference Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54:83-9.CrossRefPubMed Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54:83-9.CrossRefPubMed
22.
go back to reference Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 2014;41:S17-25.CrossRefPubMed Bailey DL, Willowson KP. Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality. Eur J Nucl Med Mol Imaging 2014;41:S17-25.CrossRefPubMed
23.
go back to reference Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.CrossRefPubMedPubMedCentral Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-902.CrossRefPubMedPubMedCentral
24.
go back to reference Kennedy JA, Israel O, Frenkel A. 3D iteratively reconstructed spatial resolution map and sensitivity characterization of a dedicated cardiac SPECT camera. J Nucl Cardiol 2014;21:443-52.CrossRefPubMed Kennedy JA, Israel O, Frenkel A. 3D iteratively reconstructed spatial resolution map and sensitivity characterization of a dedicated cardiac SPECT camera. J Nucl Cardiol 2014;21:443-52.CrossRefPubMed
25.
go back to reference Chan C, Harris M, Le M, Biondi J, Grobshtein Y, Liu Y-H, et al. End-expiration respiratory gating for a high resolution stationary cardiac SPECT system. Phys Med Biol 2014;59:6267.CrossRefPubMedPubMedCentral Chan C, Harris M, Le M, Biondi J, Grobshtein Y, Liu Y-H, et al. End-expiration respiratory gating for a high resolution stationary cardiac SPECT system. Phys Med Biol 2014;59:6267.CrossRefPubMedPubMedCentral
26.
go back to reference Fan P, Hutton BF, Holstensson M, Ljungberg M, Pretorius PH, Prasad R, et al. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators. Med Phys 2015;42:6895-911.CrossRefPubMed Fan P, Hutton BF, Holstensson M, Ljungberg M, Pretorius PH, Prasad R, et al. Scatter and crosstalk corrections for 99mTc/123I dual-radionuclide imaging using a CZT SPECT system with pinhole collimators. Med Phys 2015;42:6895-911.CrossRefPubMed
27.
go back to reference Shepp L, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE trans Med imaging 1982;M-1:113-22. Shepp L, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE trans Med imaging 1982;M-1:113-22.
28.
go back to reference Chan C, Dey J, Grobshtein Y, Wu J, Liu Y-H, Lampert R, et al. The impact of system matrix dimension on small FOV SPECT reconstruction with truncated projections. Med Phys 2016;43:213-24.CrossRefPubMed Chan C, Dey J, Grobshtein Y, Wu J, Liu Y-H, Lampert R, et al. The impact of system matrix dimension on small FOV SPECT reconstruction with truncated projections. Med Phys 2016;43:213-24.CrossRefPubMed
29.
go back to reference Chan C, Liu H, Grobshtein Y, Stacy MR, Sinusas AJ, Liu C. Simultaneous partial volume correction and noise regularization for cardiac SPECT/CT. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference 2013. Chan C, Liu H, Grobshtein Y, Stacy MR, Sinusas AJ, Liu C. Simultaneous partial volume correction and noise regularization for cardiac SPECT/CT. 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference 2013.
30.
go back to reference Liu H, Chan C, Grobshtein Y, Ma T, Liu Y, Wang S, et al. Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT. Phys Med Biol 2015;60:6751.CrossRefPubMedPubMedCentral Liu H, Chan C, Grobshtein Y, Ma T, Liu Y, Wang S, et al. Anatomical-based partial volume correction for low-dose dedicated cardiac SPECT/CT. Phys Med Biol 2015;60:6751.CrossRefPubMedPubMedCentral
31.
go back to reference Vollmar S, Sué M, Klein J, Jacobs A, Herholz K. VINCI-volume imaging in neurological research, co-registration and ROIs included. Vollmar S, Sué M, Klein J, Jacobs A, Herholz K. VINCI-volume imaging in neurological research, co-registration and ROIs included.
32.
go back to reference Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, et al. The medical imaging interaction toolkit: challenges and advances. Int J Comput Assisted Radiol Surg 2013;8:607-20.CrossRef Nolden M, Zelzer S, Seitel A, Wald D, Müller M, Franz AM, et al. The medical imaging interaction toolkit: challenges and advances. Int J Comput Assisted Radiol Surg 2013;8:607-20.CrossRef
33.
go back to reference Yang J, Mega M, Huang SC, Lin KP, Toga A, Small G et al. Investigation of partial volume correction methods for brain FDG-PET studies. 1995 IEEE Nucl Sci Symp Med Imaging Conf Rec 1-3 1996:1670-4. Yang J, Mega M, Huang SC, Lin KP, Toga A, Small G et al. Investigation of partial volume correction methods for brain FDG-PET studies. 1995 IEEE Nucl Sci Symp Med Imaging Conf Rec 1-3 1996:1670-4.
34.
go back to reference Liu Y, Bahn RC, Ritman EL. Dynamic intramyocardial blood volume: evaluation with a radiological opaque marker method. Am J Physiol-Heart C 1992;263:H963-7.CrossRef Liu Y, Bahn RC, Ritman EL. Dynamic intramyocardial blood volume: evaluation with a radiological opaque marker method. Am J Physiol-Heart C 1992;263:H963-7.CrossRef
35.
go back to reference Wu X, Ewert D, Liu Y, Ritman EL. In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for autoregulation. Circulation 1992;85:730-7.CrossRefPubMed Wu X, Ewert D, Liu Y, Ritman EL. In vivo relation of intramyocardial blood volume to myocardial perfusion. Evidence supporting microvascular site for autoregulation. Circulation 1992;85:730-7.CrossRefPubMed
36.
go back to reference McCommis KS, Goldstein TA, Zhang H, Misselwitz B, Gropler RJ, Zheng J. Quantification of myocardial blood volume during dipyridamole and doubtamine stress: a perfusion CMR study. J Cardiovasc Magn Reson 2007;9:785-92.CrossRefPubMed McCommis KS, Goldstein TA, Zhang H, Misselwitz B, Gropler RJ, Zheng J. Quantification of myocardial blood volume during dipyridamole and doubtamine stress: a perfusion CMR study. J Cardiovasc Magn Reson 2007;9:785-92.CrossRefPubMed
37.
go back to reference Morgenstern C, Höljes U, Arnold G, Lochner W. The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pflügers Archiv 1973;340:101-11.CrossRefPubMed Morgenstern C, Höljes U, Arnold G, Lochner W. The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pflügers Archiv 1973;340:101-11.CrossRefPubMed
38.
go back to reference Kassab GS, Lin DH, Fung Y. Morphometry of pig coronary venous system. Am J Physiol-Heart C 1994;267:H2100-13.CrossRef Kassab GS, Lin DH, Fung Y. Morphometry of pig coronary venous system. Am J Physiol-Heart C 1994;267:H2100-13.CrossRef
39.
go back to reference Hoffman E, Ritman E. Intramyocardial blood volume—implications for analysis of myocardial mechanical characteristics via in vivo imaging of the heart. Activ Metab Perfus Heart 1987; 421-32. Hoffman E, Ritman E. Intramyocardial blood volume—implications for analysis of myocardial mechanical characteristics via in vivo imaging of the heart. Activ Metab Perfus Heart 1987; 421-32.
40.
go back to reference Spaan J. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 1985;56:293-309.CrossRefPubMed Spaan J. Coronary diastolic pressure-flow relation and zero flow pressure explained on the basis of intramyocardial compliance. Circ Res 1985;56:293-309.CrossRefPubMed
41.
go back to reference Pascotto M, Wei K, Micari A, Bragadeesh T, Goodman NC, Kaul S. Phasic changes in arterial blood volume is influenced by collateral blood flow: implications for the quantification of coronary stenosis at rest. Heart 2007;93:438-43.CrossRefPubMed Pascotto M, Wei K, Micari A, Bragadeesh T, Goodman NC, Kaul S. Phasic changes in arterial blood volume is influenced by collateral blood flow: implications for the quantification of coronary stenosis at rest. Heart 2007;93:438-43.CrossRefPubMed
42.
go back to reference Heusch G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 2008;153:1589-601.CrossRefPubMedPubMedCentral Heusch G. Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 2008;153:1589-601.CrossRefPubMedPubMedCentral
43.
go back to reference Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981;49:584-93.CrossRefPubMed Spaan JA, Breuls NP, Laird JD. Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981;49:584-93.CrossRefPubMed
44.
go back to reference Duncker DJ, Koller A, Merkus D, Canty JM. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis 2015;57:409-22.CrossRefPubMed Duncker DJ, Koller A, Merkus D, Canty JM. Regulation of coronary blood flow in health and ischemic heart disease. Prog Cardiovasc Dis 2015;57:409-22.CrossRefPubMed
45.
go back to reference Tsuiki K, Ritman EL. Direct evidence that left ventricular myocardium is incompressible throughout systole and diastole. Tohoku J Exper Med 1980;132:119-20.CrossRef Tsuiki K, Ritman EL. Direct evidence that left ventricular myocardium is incompressible throughout systole and diastole. Tohoku J Exper Med 1980;132:119-20.CrossRef
Metadata
Title
Quantification of intramyocardial blood volume with 99mTc-RBC SPECT-CT imaging: A preclinical study
Authors
Hassan Mohy-ud-Din, PhD
Nabil E. Boutagy, PhD
John C. Stendahl, MD, PhD
Zhen W. Zhuang, MD
Albert J. Sinusas, MD
Chi Liu, PhD
Publication date
01-12-2018
Publisher
Springer US
Published in
Journal of Nuclear Cardiology / Issue 6/2018
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-017-0970-4

Other articles of this Issue 6/2018

Journal of Nuclear Cardiology 6/2018 Go to the issue