Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 1/2014

01-05-2014 | Original Article

Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality

Authors: Dale L. Bailey, Kathy P. Willowson

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Special Issue 1/2014

Login to get access

Abstract

The introduction of combined modality single photon emission computed tomography (SPECT)/CT cameras has revived interest in quantitative SPECT. Schemes to mitigate the deleterious effects of photon attenuation and scattering in SPECT imaging have been developed over the last 30 years but have been held back by lack of ready access to data concerning the density of the body and photon transport, which we see as key to producing quantitative data. With X-ray CT data now routinely available, validations of techniques to produce quantitative SPECT reconstructions have been undertaken. While still suffering from inferior spatial resolution and sensitivity compared to positron emission tomography (PET) imaging, SPECT scans nevertheless can be produced that are as quantitative as PET scans. Routine corrections are applied for photon attenuation and scattering, resolution recovery, instrumental dead time, radioactive decay and cross-calibration to produce SPECT images in units of kBq.ml−1. Though clinical applications of quantitative SPECT imaging are lacking due to the previous non-availability of accurately calibrated SPECT reconstructions, these are beginning to emerge as the community and industry focus on producing SPECT/CT systems that are intrinsically quantitative.
Literature
1.
go back to reference Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med 2012;53(8):1207–15. PubMed PMID: 22782315. Epub 2012/07/12. eng.PubMedCrossRef Pfeifer A, Knigge U, Mortensen J, Oturai P, Berthelsen AK, Loft A, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med 2012;53(8):1207–15. PubMed PMID: 22782315. Epub 2012/07/12. eng.PubMedCrossRef
2.
go back to reference Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;NS-25:638–43.CrossRef Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;NS-25:638–43.CrossRef
3.
go back to reference Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28(5):844–51.PubMed Bailey DL, Hutton BF, Walker PJ. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28(5):844–51.PubMed
4.
go back to reference Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;MI-1:113–22.CrossRef Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;MI-1:113–22.CrossRef
5.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;MI-13(4):601–9.CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;MI-13(4):601–9.CrossRef
6.
7.
go back to reference Moore SC. Attenuation compensation. In: Ell PJ, Holman BL, editors. Computed emission tomography. London: Oxford University Press; 1982. p. 339–60. Moore SC. Attenuation compensation. In: Ell PJ, Holman BL, editors. Computed emission tomography. London: Oxford University Press; 1982. p. 339–60.
8.
go back to reference Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 1989;10:83–97.PubMedCrossRef Fleming JS. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 1989;10:83–97.PubMedCrossRef
9.
go back to reference LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci 1994;41(6):2793–9.CrossRef LaCroix KJ, Tsui BMW, Hasegawa BH, Brown JK. Investigation of the use of X-ray CT images for attenuation compensation in SPECT. IEEE Trans Nucl Sci 1994;41(6):2793–9.CrossRef
10.
go back to reference Brown S, Bailey DL, Willowson K, Baldock CA. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isot 2008;66(9):1206–12.PubMedCrossRef Brown S, Bailey DL, Willowson K, Baldock CA. Investigation of the relationship between linear attenuation coefficients and CT Hounsfield units using radionuclides for SPECT. Appl Radiat Isot 2008;66(9):1206–12.PubMedCrossRef
11.
go back to reference Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging 2007;34(9):1415–26. PubMed PMID: 17372731. Epub 2007/03/21. eng.PubMedCrossRef Bailey DL, Roach PJ, Bailey EA, Hewlett J, Keijzers R. Development of a cost-effective modular SPECT/CT scanner. Eur J Nucl Med Mol Imaging 2007;34(9):1415–26. PubMed PMID: 17372731. Epub 2007/03/21. eng.PubMedCrossRef
12.
go back to reference Beyer T, Kinahan PE, Townsend DW, Sashin D, editors. The use of X-ray CT for attenuation correction of PET data. IEEE Nuclear Science Symposium and Medical Imaging Conference. Norfolk: Institute of Electrical and Electronics Engineers; 1994. Beyer T, Kinahan PE, Townsend DW, Sashin D, editors. The use of X-ray CT for attenuation correction of PET data. IEEE Nuclear Science Symposium and Medical Imaging Conference. Norfolk: Institute of Electrical and Electronics Engineers; 1994.
13.
go back to reference Blankespoor S, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 1996;43(4):2263–74.CrossRef Blankespoor S, Xu X, Kaiki K, Brown JK, Tang HR, Cann CE, et al. Attenuation correction of SPECT using X-ray CT on an emission-transmission CT system: myocardial perfusion assessment. IEEE Trans Nucl Sci 1996;43(4):2263–74.CrossRef
14.
go back to reference Bai C, Shao L, Da Silva A, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 2003;50(5):1510–5.CrossRef Bai C, Shao L, Da Silva A, Zhao Z. A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE Trans Nucl Sci 2003;50(5):1510–5.CrossRef
15.
go back to reference Larsson A, Johansson L, Sundström T, Riklund-Ahlström K. A method for attenuation and scatter correction of brain SPECT based on computed tomography images. Nucl Med Commun 2003;24:411–20.PubMedCrossRef Larsson A, Johansson L, Sundström T, Riklund-Ahlström K. A method for attenuation and scatter correction of brain SPECT based on computed tomography images. Nucl Med Commun 2003;24:411–20.PubMedCrossRef
16.
go back to reference Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 1997;42(8):1619–32. PubMed PMID: 9279910. Epub 1997/08/01. eng.PubMedCrossRef Beekman FJ, Kamphuis C, Frey EC. Scatter compensation methods in 3D iterative SPECT reconstruction: a simulation study. Phys Med Biol 1997;42(8):1619–32. PubMed PMID: 9279910. Epub 1997/08/01. eng.PubMedCrossRef
17.
go back to reference Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998;43(4):857–73. PubMed PMID: 9572510. Pubmed Central PMCID: 2808130. Epub 1998/05/08. eng.PubMedCentralPubMedCrossRef Kadrmas DJ, Frey EC, Karimi SS, Tsui BM. Fast implementations of reconstruction-based scatter compensation in fully 3D SPECT image reconstruction. Phys Med Biol 1998;43(4):857–73. PubMed PMID: 9572510. Pubmed Central PMCID: 2808130. Epub 1998/05/08. eng.PubMedCentralPubMedCrossRef
18.
go back to reference Buvat I, Rodrigues-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36:1476–88.PubMed Buvat I, Rodrigues-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36:1476–88.PubMed
19.
go back to reference El Fakhri G, Buvat I, Benali H, Todd-Pokropek AE, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41(8):1400–8.PubMed El Fakhri G, Buvat I, Benali H, Todd-Pokropek AE, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41(8):1400–8.PubMed
20.
go back to reference Jaszczak RJ, Greer KL, Floyd CE, Harris CG, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893–900.PubMed Jaszczak RJ, Greer KL, Floyd CE, Harris CG, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893–900.PubMed
21.
go back to reference Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34(12):2216–21. PubMed PMID: 8254414. Epub 1993/12/01. eng.PubMed Ichihara T, Ogawa K, Motomura N, Kubo A, Hashimoto S. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT. J Nucl Med 1993;34(12):2216–21. PubMed PMID: 8254414. Epub 1993/12/01. eng.PubMed
22.
go back to reference Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 2008;53:3099–112.PubMedCrossRef Willowson K, Bailey DL, Baldock C. Quantitative SPECT reconstruction using CT-derived corrections. Phys Med Biol 2008;53:3099–112.PubMedCrossRef
23.
go back to reference Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med 1994;35(2):360–7.PubMed Meikle SR, Hutton BF, Bailey DL. A transmission-dependent method for scatter correction in SPECT. J Nucl Med 1994;35(2):360–7.PubMed
24.
go back to reference Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med 1984;25:490–4.PubMed Axelsson B, Msaki P, Israelsson A. Subtraction of Compton-scattered photons in single-photon emission computerized tomography. J Nucl Med 1984;25:490–4.PubMed
25.
go back to reference Msaki P, Axelsson B, Dahl CM, Larsson SA. Generalized scatter correction method in SPECT using point scatter distribution functions. J Nucl Med 1987;28:1861–9.PubMed Msaki P, Axelsson B, Dahl CM, Larsson SA. Generalized scatter correction method in SPECT using point scatter distribution functions. J Nucl Med 1987;28:1861–9.PubMed
26.
go back to reference Msaki P, Erlandsson K, Svensson L, Nolstedt L. The convolution scatter subtraction hypothesis and its validity domain in radioisotope imaging. Phys Med Biol 1993;38:1359–70.CrossRef Msaki P, Erlandsson K, Svensson L, Nolstedt L. The convolution scatter subtraction hypothesis and its validity domain in radioisotope imaging. Phys Med Biol 1993;38:1359–70.CrossRef
27.
go back to reference Kim KM, Varrone A, Watabe H, Shidahara M, Fujita M, Innis RB, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003;44(4):512–9.PubMed Kim KM, Varrone A, Watabe H, Shidahara M, Fujita M, Innis RB, et al. Contribution of scatter and attenuation compensation to SPECT images of nonuniformly distributed brain activities. J Nucl Med 2003;44(4):512–9.PubMed
28.
go back to reference Narita Y, Eberl S, Iida H, Hutton BF, Braun M, Nakamura T, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 1996;41:2481–96.PubMedCrossRef Narita Y, Eberl S, Iida H, Hutton BF, Braun M, Nakamura T, et al. Monte Carlo and experimental evaluation of accuracy and noise properties of two scatter correction methods for SPECT. Phys Med Biol 1996;41:2481–96.PubMedCrossRef
29.
go back to reference Bailey DL, Hutton BF, Meikle SR. Development of an iterative scatter correction technique for SPECT. Aust N Z J Med 1988;18:501. Abstract. Bailey DL, Hutton BF, Meikle SR. Development of an iterative scatter correction technique for SPECT. Aust N Z J Med 1988;18:501. Abstract.
30.
go back to reference Ljungberg M, Strand S-E. Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: a Monte Carlo study. J Nucl Med 1991;32:1278–84.PubMed Ljungberg M, Strand S-E. Attenuation and scatter correction in SPECT for sources in a nonhomogeneous object: a Monte Carlo study. J Nucl Med 1991;32:1278–84.PubMed
31.
go back to reference Mukai T, Links JM, Douglass KH, Wagner Jr HN. Scatter correction in SPECT using non-uniform attenuation data. Phys Med Biol 1988;33(10):1129–40.PubMedCrossRef Mukai T, Links JM, Douglass KH, Wagner Jr HN. Scatter correction in SPECT using non-uniform attenuation data. Phys Med Biol 1988;33(10):1129–40.PubMedCrossRef
32.
go back to reference Ljungberg M, Strand S-E. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions. J Nucl Med 1990;31:493–500.PubMed Ljungberg M, Strand S-E. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions. J Nucl Med 1990;31:493–500.PubMed
33.
go back to reference Siegel JA, Maurer AH, Wu RK, Blasius KM, Denenberg BS, Gash AK, et al. Absolute left ventricular volume by an iterative build-up factor analysis of gated radionuclide images. Radiology 1984;151:477–81.PubMed Siegel JA, Maurer AH, Wu RK, Blasius KM, Denenberg BS, Gash AK, et al. Absolute left ventricular volume by an iterative build-up factor analysis of gated radionuclide images. Radiology 1984;151:477–81.PubMed
34.
go back to reference Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 1998;39(1):181–9.PubMed Iida H, Narita Y, Kado H, Kashikura A, Sugawara S, Shoji Y, et al. Effects of scatter and attenuation correction on quantitative assessment of regional cerebral blood flow with SPECT. J Nucl Med 1998;39(1):181–9.PubMed
35.
go back to reference Kim KM, Watabe H, Shidahara M, Ishida Y, Iida H. SPECT collimator dependency of scatter and validation of transmission-dependent scatter compensation methodologies. IEEE Trans Nucl Sci 2001;NS-48(June):689–96. Kim KM, Watabe H, Shidahara M, Ishida Y, Iida H. SPECT collimator dependency of scatter and validation of transmission-dependent scatter compensation methodologies. IEEE Trans Nucl Sci 2001;NS-48(June):689–96.
36.
go back to reference Larsson A, Johansson L. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images. Phys Med Biol 2003;48(21):N323–8.PubMedCrossRef Larsson A, Johansson L. Scatter-to-primary based scatter fractions for transmission-dependent convolution subtraction of SPECT images. Phys Med Biol 2003;48(21):N323–8.PubMedCrossRef
37.
go back to reference Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging 2011;11:56–66. PubMed PMID: 21684829. Pubmed Central PMCID: 3205754. Epub 2011/06/21. eng.PubMedCentralPubMedCrossRef Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative (177)Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging 2011;11:56–66. PubMed PMID: 21684829. Pubmed Central PMCID: 3205754. Epub 2011/06/21. eng.PubMedCentralPubMedCrossRef
38.
go back to reference Cranley K, Millar R, Bell T. Correction for deadtime losses in a gamma camera/data analysis system. Eur J Nucl Med 1980;5:377–82.PubMedCrossRef Cranley K, Millar R, Bell T. Correction for deadtime losses in a gamma camera/data analysis system. Eur J Nucl Med 1980;5:377–82.PubMedCrossRef
39.
go back to reference Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 2010;51(6):921–8. PubMed PMID: 20484423.PubMedCrossRef Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 2010;51(6):921–8. PubMed PMID: 20484423.PubMedCrossRef
40.
go back to reference Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med 1991;18:374–9.PubMedCrossRef Bailey DL, Jones T, Spinks TJ. A method for measuring the absolute sensitivity of positron emission tomographic scanners. Eur J Nucl Med 1991;18:374–9.PubMedCrossRef
41.
go back to reference Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3(3):299–308.PubMedCrossRef Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3(3):299–308.PubMedCrossRef
42.
go back to reference Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54(1):83–9.PubMedCrossRef Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med 2013;54(1):83–9.PubMedCrossRef
43.
go back to reference Willowson K, Bailey DL, Bailey EA, Baldock C, Roach PJ. In vivo validation of quantitative SPECT in the heart. Clin Physiol Funct Imaging 2010;30(3):214–9.PubMedCrossRef Willowson K, Bailey DL, Bailey EA, Baldock C, Roach PJ. In vivo validation of quantitative SPECT in the heart. Clin Physiol Funct Imaging 2010;30(3):214–9.PubMedCrossRef
44.
go back to reference Iida H, Nakagawara J, Hayashida K, Fukushima K, Watabe H, Koshino K, et al. Multicenter evaluation of a standardized protocol for rest and acetazolamide cerebral blood flow assessment using a quantitative SPECT reconstruction program and split-dose 123I-iodoamphetamine. J Nucl Med 2010;51(10):1624–31. PubMed PMID: 20847163. Epub 2010/09/18. eng.PubMedCrossRef Iida H, Nakagawara J, Hayashida K, Fukushima K, Watabe H, Koshino K, et al. Multicenter evaluation of a standardized protocol for rest and acetazolamide cerebral blood flow assessment using a quantitative SPECT reconstruction program and split-dose 123I-iodoamphetamine. J Nucl Med 2010;51(10):1624–31. PubMed PMID: 20847163. Epub 2010/09/18. eng.PubMedCrossRef
45.
go back to reference Cachovan M, Vija AH, Hornegger J, Kuwert T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res 2013;3(1):45. PubMed PMID: 23738809. Pubmed Central PMCID: 3680030.PubMedCentralPubMedCrossRef Cachovan M, Vija AH, Hornegger J, Kuwert T. Quantification of 99mTc-DPD concentration in the lumbar spine with SPECT/CT. EJNMMI Res 2013;3(1):45. PubMed PMID: 23738809. Pubmed Central PMCID: 3680030.PubMedCentralPubMedCrossRef
46.
go back to reference Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 2008;53(17):4595–604. PubMed PMID: 18678930. Epub 2008/08/06. eng.PubMedCrossRef Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol 2008;53(17):4595–604. PubMed PMID: 18678930. Epub 2008/08/06. eng.PubMedCrossRef
Metadata
Title
Quantitative SPECT/CT: SPECT joins PET as a quantitative imaging modality
Authors
Dale L. Bailey
Kathy P. Willowson
Publication date
01-05-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue Special Issue 1/2014
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-013-2542-4

Other articles of this Special Issue 1/2014

European Journal of Nuclear Medicine and Molecular Imaging 1/2014 Go to the issue