Skip to main content
Top
Published in: Radiation Oncology 1/2022

Open Access 01-12-2022 | Research

Quantification of biological range uncertainties in patients treated at the Krakow proton therapy centre

Authors: Magdalena Garbacz, Jan Gajewski, Marco Durante, Kamil Kisielewicz, Nils Krah, Renata Kopeć, Paweł Olko, Vincenzo Patera, Ilaria Rinaldi, Marzena Rydygier, Angelo Schiavi, Emanuele Scifoni, Tomasz Skóra, Agata Skrzypek, Francesco Tommasino, Antoni Rucinski

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Abstract

Background

Variable relative biological effectiveness (vRBE) in proton therapy might significantly modify the prediction of RBE-weighted dose delivered to a patient during proton therapy. In this study we will present a method to quantify the biological range extension of the proton beam, which results from the application of vRBE approach in RBE-weighted dose calculation.

Methods and materials

The treatment plans of 95 patients (brain and skull base patients) were used for RBE-weighted dose calculation with constant and the McNamara RBE model. For this purpose the Monte Carlo tool FRED was used. The RBE-weighted dose distributions were analysed using indices from dose-volume histograms. We used the volumes receiving at least 95% of the prescribed dose (V95) to estimate the biological range extension resulting from vRBE approach.

Results

The vRBE model shows higher median value of relative deposited dose and D95 in the planning target volume by around 1% for brain patients and 4% for skull base patients. The maximum doses in organs at risk calculated with vRBE was up to 14 Gy above dose limit. The mean biological range extension was greater than 0.4 cm.

Discussion

Our method of estimation of biological range extension is insensitive for dose inhomogeneities and can be easily used for different proton plans with intensity-modulated proton therapy (IMPT) optimization. Using volumes instead of dose profiles, which is the common method, is more universal. However it was tested only for IMPT plans on fields arranged around the tumor area.

Conclusions

Adopting a vRBE model results in an increase in dose and an extension of the beam range, which is especially disadvantageous in cancers close to organs at risk. Our results support the need to re-optimization of proton treatment plans when considering vRBE.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mendenhall NP, Malyapa RS, Su Z, Yeung D, Mendenhall WM, Li Z. Proton therapy for head and neck cancer: rationale, potential indications, practical considerations, and current clinical evidence. Acta Oncol. 2011;50(6):763–71.CrossRef Mendenhall NP, Malyapa RS, Su Z, Yeung D, Mendenhall WM, Li Z. Proton therapy for head and neck cancer: rationale, potential indications, practical considerations, and current clinical evidence. Acta Oncol. 2011;50(6):763–71.CrossRef
2.
go back to reference Sreeraman R, Indelicato DJ. Proton therapy for the treatment of children with CNS malignancies. CNS Oncol. 2014;3(2):149–58.CrossRef Sreeraman R, Indelicato DJ. Proton therapy for the treatment of children with CNS malignancies. CNS Oncol. 2014;3(2):149–58.CrossRef
3.
go back to reference Paganetti H, editor. Proton therapy physics. Boca Raton: CRC Press; 2016. Paganetti H, editor. Proton therapy physics. Boca Raton: CRC Press; 2016.
4.
go back to reference Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59(22):R419–72.CrossRef Paganetti H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol. 2014;59(22):R419–72.CrossRef
6.
go back to reference Marshall TI, Chaudhary P, Michaelidesová A, Vachelová J, Davídková M, Vondráček V, et al. Investigating the implications of a variable RBE on proton dose fractionation across a clinical pencil beam scanned spread-out Bragg peak. Int J Radiat Oncol Biol Phys. 2016;95(1):70–7.CrossRef Marshall TI, Chaudhary P, Michaelidesová A, Vachelová J, Davídková M, Vondráček V, et al. Investigating the implications of a variable RBE on proton dose fractionation across a clinical pencil beam scanned spread-out Bragg peak. Int J Radiat Oncol Biol Phys. 2016;95(1):70–7.CrossRef
7.
go back to reference Ilicic K, Combs SE, Schmid TE. New insights in the relative radiobiological effectiveness of proton irradiation. Radiat Oncol. 2018;13(1):6.CrossRef Ilicic K, Combs SE, Schmid TE. New insights in the relative radiobiological effectiveness of proton irradiation. Radiat Oncol. 2018;13(1):6.CrossRef
8.
go back to reference Sørensen BS, Pawelke J, Bauer J, Burnet NG, Dasu A, Høyer M, et al. Does the uncertainty in relative biological effectiveness affect patient treatment in proton therapy? Radiother Oncol. 2021;163:177–84.CrossRef Sørensen BS, Pawelke J, Bauer J, Burnet NG, Dasu A, Høyer M, et al. Does the uncertainty in relative biological effectiveness affect patient treatment in proton therapy? Radiother Oncol. 2021;163:177–84.CrossRef
9.
go back to reference Krishna GS, Srinivas V, Ayyangar KM, Reddy PY. Comparative study of old and new versions of treatment planning system using dose volume histogram indices of clinical plans. J Med Phys. 2016;41(3):192–7.CrossRef Krishna GS, Srinivas V, Ayyangar KM, Reddy PY. Comparative study of old and new versions of treatment planning system using dose volume histogram indices of clinical plans. J Med Phys. 2016;41(3):192–7.CrossRef
10.
go back to reference Bodensteiner D. RayStation: External beam treatment planning system. Med Dosim. 2018;43(2):168–76.CrossRef Bodensteiner D. RayStation: External beam treatment planning system. Med Dosim. 2018;43(2):168–76.CrossRef
11.
go back to reference Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39(11):6818–37.CrossRef Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39(11):6818–37.CrossRef
12.
go back to reference Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang J-M, et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41(6):064301.CrossRef Sarrut D, Bardiès M, Boussion N, Freud N, Jan S, Létang J-M, et al. A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med Phys. 2014;41(6):064301.CrossRef
13.
go back to reference Battistoni G, Cerutti F, Fassò A, Ferrari A, Muraro S, Ranft J, et al. The FLUKA code: description and benchmarking. In: AIP conference proceedings, AIP; 2007. p. 31–49. Battistoni G, Cerutti F, Fassò A, Ferrari A, Muraro S, Ranft J, et al. The FLUKA code: description and benchmarking. In: AIP conference proceedings, AIP; 2007. p. 31–49.
14.
go back to reference Schiavi A, Senzacqua M, Pioli S, Mairani A, Magro G, Molinelli S, et al. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy. Phys Med Biol. 2017;62(18):7482–504.CrossRef Schiavi A, Senzacqua M, Pioli S, Mairani A, Magro G, Molinelli S, et al. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy. Phys Med Biol. 2017;62(18):7482–504.CrossRef
15.
go back to reference Giantsoudi D, Schuemann J, Jia X, Dowdell S, Jiang S, Paganetti H. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study. Phys Med Biol. 2015;60(6):2257–69.CrossRef Giantsoudi D, Schuemann J, Jia X, Dowdell S, Jiang S, Paganetti H. Validation of a GPU-based Monte Carlo code (gPMC) for proton radiation therapy: clinical cases study. Phys Med Biol. 2015;60(6):2257–69.CrossRef
16.
go back to reference Guterres Marmitt G, Pin A, Ng Wei Siang K, Janssens G, Souris K, Cohilis M, Langendijk JA, Both S, Knopf A, Meijers A. Platform for automatic patient quality assurance via Monte Carlo simulations in proton therapy. Phys Med. 2020;70:49–57.CrossRef Guterres Marmitt G, Pin A, Ng Wei Siang K, Janssens G, Souris K, Cohilis M, Langendijk JA, Both S, Knopf A, Meijers A. Platform for automatic patient quality assurance via Monte Carlo simulations in proton therapy. Phys Med. 2020;70:49–57.CrossRef
17.
go back to reference Paganetti H. Relating the proton relative biological effectiveness to tumor control and normal tissue complication probabilities assuming interpatient variability in α/β. Acta Oncol. 2017;56(11):1379–86.CrossRef Paganetti H. Relating the proton relative biological effectiveness to tumor control and normal tissue complication probabilities assuming interpatient variability in α/β. Acta Oncol. 2017;56(11):1379–86.CrossRef
18.
go back to reference Guan F, Peeler C, Bronk L, Geng C, Taleei R, Randeniya S, et al. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Med Phys. 2015;42(11):6234–47.CrossRef Guan F, Peeler C, Bronk L, Geng C, Taleei R, Randeniya S, et al. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Med Phys. 2015;42(11):6234–47.CrossRef
19.
go back to reference Unkelbach J, Botas P, Giantsoudi D, Gorissen BL, Paganetti H. Reoptimization of intensity modulated proton therapy plans based on linear energy transfer. Int J Radiat Oncol Biol Phys. 2016;96(5):1097–106.CrossRef Unkelbach J, Botas P, Giantsoudi D, Gorissen BL, Paganetti H. Reoptimization of intensity modulated proton therapy plans based on linear energy transfer. Int J Radiat Oncol Biol Phys. 2016;96(5):1097–106.CrossRef
20.
go back to reference Traneus E, Ödén J. Introducing proton track-end objectives in intensity modulated proton therapy optimization to reduce linear energy transfer and relative biological effectiveness in critical structures. Int J Radiat Oncol Biol Phys. 2019;103(3):747–57.CrossRef Traneus E, Ödén J. Introducing proton track-end objectives in intensity modulated proton therapy optimization to reduce linear energy transfer and relative biological effectiveness in critical structures. Int J Radiat Oncol Biol Phys. 2019;103(3):747–57.CrossRef
21.
go back to reference Grün R, Friedrich T, Krämer M, Zink K, Durante M, Engenhart-Cabillic R, et al. Physical and biological factors determining the effective proton range. Med Phys. 2013;40(11):111716.CrossRef Grün R, Friedrich T, Krämer M, Zink K, Durante M, Engenhart-Cabillic R, et al. Physical and biological factors determining the effective proton range. Med Phys. 2013;40(11):111716.CrossRef
22.
go back to reference Gajewski J, Garbacz M, Chang C-W, Czerska K, Durante M, Krah N, Krzempek K, Kopeć R, Lin L, Mojżeszek N, Patera V, Pawlik-Niedzwiecka M, Rinaldi I, Rydygier M, Pluta E, Scifoni E, Skrzypek A, Tommasino F, Schiavi A, Rucinski A. Commissioning of GPU-accelerated Monte Carlo code Fred for clinical applications in proton therapy. Front Phys. 2020. https://doi.org/10.3389/fphy.2020.567300.CrossRef Gajewski J, Garbacz M, Chang C-W, Czerska K, Durante M, Krah N, Krzempek K, Kopeć R, Lin L, Mojżeszek N, Patera V, Pawlik-Niedzwiecka M, Rinaldi I, Rydygier M, Pluta E, Scifoni E, Skrzypek A, Tommasino F, Schiavi A, Rucinski A. Commissioning of GPU-accelerated Monte Carlo code Fred for clinical applications in proton therapy. Front Phys. 2020. https://​doi.​org/​10.​3389/​fphy.​2020.​567300.CrossRef
23.
go back to reference Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57:1159–72.CrossRef Carabe A, Moteabbed M, Depauw N, Schuemann J, Paganetti H. Range uncertainty in proton therapy due to variable biological effectiveness. Phys Med Biol. 2012;57:1159–72.CrossRef
24.
go back to reference McNamara AL, Schuemann J, Paganetti H. A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. Phys Med Biol. 2015;60(21):8399–416.CrossRef McNamara AL, Schuemann J, Paganetti H. A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. Phys Med Biol. 2015;60(21):8399–416.CrossRef
25.
go back to reference Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat Environ Biophys. 1997;36(1):59–66.CrossRef Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G. Computation of cell survival in heavy ion beams for therapy. The model and its approximation. Radiat Environ Biophys. 1997;36(1):59–66.CrossRef
26.
go back to reference van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, et al. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 2018;13(1):96.CrossRef van Leeuwen CM, Oei AL, Crezee J, Bel A, Franken NAP, Stalpers LJA, et al. The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies. Radiat Oncol. 2018;13(1):96.CrossRef
27.
go back to reference Polster L, Schuemann J, Rinaldi I, Burigo L, McNamara AL, Stewart RD, et al. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Phys Med Biol. 2015;60(13):5053–70.CrossRef Polster L, Schuemann J, Rinaldi I, Burigo L, McNamara AL, Stewart RD, et al. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Phys Med Biol. 2015;60(13):5053–70.CrossRef
28.
go back to reference Aditya Panchal, pyup.io bot, Gabriel Couture, gertsikkema, Nicolas Galler, Hideki_Nakamoto, David C Hall, Akihisa Wakita. dicompyler/dicompyler-core v0.5.5. 2019. https://doi.org/10.5281/zenodo.3236628. Aditya Panchal, pyup.io bot, Gabriel Couture, gertsikkema, Nicolas Galler, Hideki_Nakamoto, David C Hall, Akihisa Wakita. dicompyler/dicompyler-core v0.5.5. 2019. https://​doi.​org/​10.​5281/​zenodo.​3236628.​
29.
go back to reference Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945;1(6):80–3.CrossRef Wilcoxon F. Individual comparisons by ranking methods. Biometrics Bulletin. 1945;1(6):80–3.CrossRef
30.
go back to reference McNamara AL, Willers H, Paganetti H. Modelling variable proton relative biological effectiveness for treatment planning. Br J Radiol. 2020;93(1107):20190334.CrossRef McNamara AL, Willers H, Paganetti H. Modelling variable proton relative biological effectiveness for treatment planning. Br J Radiol. 2020;93(1107):20190334.CrossRef
31.
go back to reference Missiaggia M, Cartechini G, Scifoni E, Rovituso M, Tommasino F, Verroi E, et al. Microdosimetric measurements as a tool to assess potential in-field and out-of-field toxicity regions in proton therapy. Phys Med Biol. 2020;65(24):245024.CrossRef Missiaggia M, Cartechini G, Scifoni E, Rovituso M, Tommasino F, Verroi E, et al. Microdosimetric measurements as a tool to assess potential in-field and out-of-field toxicity regions in proton therapy. Phys Med Biol. 2020;65(24):245024.CrossRef
32.
go back to reference Tommasino F, Widesott L, Fracchiolla F, Lorentini S, Righetto R, Algranati C, et al. Clinical implementation in proton therapy of multi-field optimization by a hybrid method combining conventional PTV with robust optimization. Phys Med Biol. 2020;65(4):045002.CrossRef Tommasino F, Widesott L, Fracchiolla F, Lorentini S, Righetto R, Algranati C, et al. Clinical implementation in proton therapy of multi-field optimization by a hybrid method combining conventional PTV with robust optimization. Phys Med Biol. 2020;65(4):045002.CrossRef
33.
go back to reference Yepes P, Adair A, Frank SJ, Grosshans DR, Liao Z, Liu A, et al. Fixed- versus variable-RBE computations for intensity modulated proton therapy. Adv Radiat Oncol. 2019;4(1):156–67.CrossRef Yepes P, Adair A, Frank SJ, Grosshans DR, Liao Z, Liu A, et al. Fixed- versus variable-RBE computations for intensity modulated proton therapy. Adv Radiat Oncol. 2019;4(1):156–67.CrossRef
34.
go back to reference Giovannini G, Böhlen T, Cabal G, Bauer J, Tessonnier T, Frey K, et al. Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios. Radiat Oncol. 2016;11:68.CrossRef Giovannini G, Böhlen T, Cabal G, Bauer J, Tessonnier T, Frey K, et al. Variable RBE in proton therapy: comparison of different model predictions and their influence on clinical-like scenarios. Radiat Oncol. 2016;11:68.CrossRef
35.
go back to reference Lühr A, von Neubeck C, Krause M, Troost EGC. Relative biological effectiveness in proton beam therapy—current knowledge and future challenges. Clin Transl Radiat Oncol. 2018;9:35–41.CrossRef Lühr A, von Neubeck C, Krause M, Troost EGC. Relative biological effectiveness in proton beam therapy—current knowledge and future challenges. Clin Transl Radiat Oncol. 2018;9:35–41.CrossRef
36.
go back to reference Testa M, Schümann J, Lu H-M, Shin J, Faddegon B, Perl J, et al. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy. Med Phys. 2013;40(12):121719.CrossRef Testa M, Schümann J, Lu H-M, Shin J, Faddegon B, Perl J, et al. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy. Med Phys. 2013;40(12):121719.CrossRef
37.
go back to reference Tseng YD, Maes SM, Kicska G, Sponsellor P, Traneus E, Wong T, et al. Comparative photon and proton dosimetry for patients with mediastinal lymphoma in the era of Monte Carlo treatment planning and variable relative biological effectiveness. Radiat Oncol. 2019;14(1):243.CrossRef Tseng YD, Maes SM, Kicska G, Sponsellor P, Traneus E, Wong T, et al. Comparative photon and proton dosimetry for patients with mediastinal lymphoma in the era of Monte Carlo treatment planning and variable relative biological effectiveness. Radiat Oncol. 2019;14(1):243.CrossRef
38.
go back to reference Ytre-Hauge KS, Fjæra LF, Rørvik E, Dahle TJ, Dale JE, Pilskog S, et al. Inter-patient variations in relative biological effectiveness for cranio-spinal irradiation with protons. Sci Rep. 2020;10(1):1–9.CrossRef Ytre-Hauge KS, Fjæra LF, Rørvik E, Dahle TJ, Dale JE, Pilskog S, et al. Inter-patient variations in relative biological effectiveness for cranio-spinal irradiation with protons. Sci Rep. 2020;10(1):1–9.CrossRef
39.
go back to reference McMahon SJ, Paganetti H, Prise KM. LET-weighted doses effectively reduce biological variability in proton radiotherapy planning. Phys Med Biol. 2018;63(22):225009.CrossRef McMahon SJ, Paganetti H, Prise KM. LET-weighted doses effectively reduce biological variability in proton radiotherapy planning. Phys Med Biol. 2018;63(22):225009.CrossRef
Metadata
Title
Quantification of biological range uncertainties in patients treated at the Krakow proton therapy centre
Authors
Magdalena Garbacz
Jan Gajewski
Marco Durante
Kamil Kisielewicz
Nils Krah
Renata Kopeć
Paweł Olko
Vincenzo Patera
Ilaria Rinaldi
Marzena Rydygier
Angelo Schiavi
Emanuele Scifoni
Tomasz Skóra
Agata Skrzypek
Francesco Tommasino
Antoni Rucinski
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-022-02022-5

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue