Skip to main content
Top
Published in: Radiation Oncology 1/2018

Open Access 01-12-2018 | Review

The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies

Authors: C. M. van Leeuwen, A. L. Oei, J. Crezee, A. Bel, N. A. P. Franken, L. J. A. Stalpers, H. P. Kok

Published in: Radiation Oncology | Issue 1/2018

Login to get access

Abstract

Background

Prediction of radiobiological response is a major challenge in radiotherapy. Of several radiobiological models, the linear-quadratic (LQ) model has been best validated by experimental and clinical data. Clinically, the LQ model is mainly used to estimate equivalent radiotherapy schedules (e.g. calculate the equivalent dose in 2 Gy fractions, EQD2), but increasingly also to predict tumour control probability (TCP) and normal tissue complication probability (NTCP) using logistic models. The selection of accurate LQ parameters α, β and α/β is pivotal for a reliable estimate of radiation response. The aim of this review is to provide an overview of published values for the LQ parameters of human tumours as a guideline for radiation oncologists and radiation researchers to select appropriate radiobiological parameter values for LQ modelling in clinical radiotherapy.

Methods and materials

We performed a systematic literature search and found sixty-four clinical studies reporting α, β and α/β for tumours. Tumour site, histology, stage, number of patients, type of LQ model, radiation type, TCP model, clinical endpoint and radiobiological parameter estimates were extracted. Next, we stratified by tumour site and by tumour histology. Study heterogeneity was expressed by the I2 statistic, i.e. the percentage of variance in reported values not explained by chance.

Results

A large heterogeneity in LQ parameters was found within and between studies (I2 > 75%). For the same tumour site, differences in histology partially explain differences in the LQ parameters: epithelial tumours have higher α/β values than adenocarcinomas. For tumour sites with different histologies, such as in oesophageal cancer, the α/β estimates correlate well with histology. However, many other factors contribute to the study heterogeneity of LQ parameters, e.g. tumour stage, type of LQ model, TCP model and clinical endpoint (i.e. survival, tumour control and biochemical control).

Conclusions

The value of LQ parameters for tumours as published in clinical radiotherapy studies depends on many clinical and methodological factors. Therefore, for clinical use of the LQ model, LQ parameters for tumour should be selected carefully, based on tumour site, histology and the applied LQ model. To account for uncertainties in LQ parameter estimates, exploring a range of values is recommended.
Appendix
Available only for authorised users
Literature
4.
go back to reference Bentzen SM, Joiner MC. The linear-quadratic approach in clinical practice. In: Joiner MC, van der Kogel A, editors. Basic Clin. Radiobiol. 4th ed. London: Hodder Arnold; 2009. p. 120–34.CrossRef Bentzen SM, Joiner MC. The linear-quadratic approach in clinical practice. In: Joiner MC, van der Kogel A, editors. Basic Clin. Radiobiol. 4th ed. London: Hodder Arnold; 2009. p. 120–34.CrossRef
12.
go back to reference Datta NR, Rajkumar A, Basu R. Variations in clinical estimates of tumor volume regression parameters and time factor during external radiotherapy in cancer cervix: does it mimic the linear-quadratic model of cell survival? Indian J Cancer. 2005;42:70–7.CrossRefPubMed Datta NR, Rajkumar A, Basu R. Variations in clinical estimates of tumor volume regression parameters and time factor during external radiotherapy in cancer cervix: does it mimic the linear-quadratic model of cell survival? Indian J Cancer. 2005;42:70–7.CrossRefPubMed
57.
go back to reference Valdagni R, Nahum AE, Magnani T, Italia C, Lanceni A, Montanaro P, et al. Long-term biochemical control of prostate cancer after standard or hyper-fractionation: evidence for different outcomes between low-intermediate and high risk patients. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2011;101:454–9. https://doi.org/10.1016/j.radonc.2011.07.017.CrossRef Valdagni R, Nahum AE, Magnani T, Italia C, Lanceni A, Montanaro P, et al. Long-term biochemical control of prostate cancer after standard or hyper-fractionation: evidence for different outcomes between low-intermediate and high risk patients. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2011;101:454–9. https://​doi.​org/​10.​1016/​j.​radonc.​2011.​07.​017.CrossRef
72.
go back to reference Roberts SA, Hendry JH. Inter-tumour heterogeneity and tumour control. In: Dale RG, Jones B, editors. Radiobiol. Model. Radiat. Oncol. 1st ed. London: British Institute of Radiology; 2007. p. 169–95.CrossRef Roberts SA, Hendry JH. Inter-tumour heterogeneity and tumour control. In: Dale RG, Jones B, editors. Radiobiol. Model. Radiat. Oncol. 1st ed. London: British Institute of Radiology; 2007. p. 169–95.CrossRef
76.
go back to reference Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol. 2004;49:4825–35.CrossRefPubMed Guerrero M, Li XA. Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol. 2004;49:4825–35.CrossRefPubMed
81.
go back to reference Mavroidis P, Milickovic N, Cruz WF, Tselis N, Karabis A, Stathakis S, et al. Comparison of different fractionation schedules toward a single fraction in high-dose-rate brachytherapy as monotherapy for low-risk prostate Cancer using 3-dimensional radiobiological models. Int J Radiat Oncol. 2014;88:216–23. https://doi.org/10.1016/j.ijrobp.2013.10.016.CrossRef Mavroidis P, Milickovic N, Cruz WF, Tselis N, Karabis A, Stathakis S, et al. Comparison of different fractionation schedules toward a single fraction in high-dose-rate brachytherapy as monotherapy for low-risk prostate Cancer using 3-dimensional radiobiological models. Int J Radiat Oncol. 2014;88:216–23. https://​doi.​org/​10.​1016/​j.​ijrobp.​2013.​10.​016.CrossRef
Metadata
Title
The alfa and beta of tumours: a review of parameters of the linear-quadratic model, derived from clinical radiotherapy studies
Authors
C. M. van Leeuwen
A. L. Oei
J. Crezee
A. Bel
N. A. P. Franken
L. J. A. Stalpers
H. P. Kok
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2018
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-018-1040-z

Other articles of this Issue 1/2018

Radiation Oncology 1/2018 Go to the issue