Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Pulmonary Nodule | Research

Spectral CT-based radiomics signature for distinguishing malignant pulmonary nodules from benign

Authors: Hang Xu, Na Zhu, Yong Yue, Yan Guo, Qingyun Wen, Lu Gao, Yang Hou, Jin Shang

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

Objectives

To evaluate the discriminatory capability of spectral CT-based radiomics to distinguish benign from malignant solitary pulmonary solid nodules (SPSNs).

Materials and methods

A retrospective study was performed including 242 patients with SPSNs who underwent contrast-enhanced dual-layer Spectral Detector CT (SDCT) examination within one month before surgery in our hospital, which were randomly divided into training and testing datasets with a ratio of 7:3. Regions of interest (ROIs) based on 40-65 keV images of arterial phase (AP), venous phases (VP), and 120kVp of SDCT were delineated, and radiomics features were extracted. Then the optimal radiomics-based score in identifying SPSNs was calculated and selected for building radiomics-based model. The conventional model was developed based on significant clinical characteristics and spectral quantitative parameters, subsequently, the integrated model combining radiomics-based model and conventional model was established. The performance of three models was evaluated with discrimination, calibration, and clinical application.

Results

The 65 keV radiomics-based scores of AP and VP had the optimal performance in distinguishing benign from malignant SPSNs (AUC65keV-AP = 0.92, AUC65keV-VP = 0.88). The diagnostic efficiency of radiomics-based model (AUC = 0.96) based on 65 keV images of AP and VP outperformed conventional model (AUC = 0.86) in the identification of SPSNs, and that of integrated model (AUC = 0.97) was slightly further improved. Evaluation of three models showed the potential for generalizability.

Conclusions

Among the 40-65 keV radiomics-based scores based on SDCT, 65 keV radiomics-based score had the optimal performance in distinguishing benign from malignant SPSNs. The integrated model combining radiomics-based model based on 65 keV images of AP and VP with Zeff-AP was significantly superior to conventional model in the discrimination of SPSNs.
Appendix
Available only for authorised users
Literature
3.
go back to reference Alilou M, Beig N, Orooji M, Rajiah P, Velcheti V, Rakshit S, Reddy N, Yang M, Jacono F, Gilkeson RC, Linden P, Madabhushi A. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Med Phys. 2017;44(7):3556–69. https://doi.org/10.1002/mp.12208.CrossRef Alilou M, Beig N, Orooji M, Rajiah P, Velcheti V, Rakshit S, Reddy N, Yang M, Jacono F, Gilkeson RC, Linden P, Madabhushi A. An integrated segmentation and shape-based classification scheme for distinguishing adenocarcinomas from granulomas on lung CT. Med Phys. 2017;44(7):3556–69. https://​doi.​org/​10.​1002/​mp.​12208.CrossRef
4.
go back to reference Beig N, Khorrami M, Alilou M, Prasanna P, Braman N, Orooji M, Rakshit S, Bera K, Rajiah P, Ginsberg J, Donatelli C, Thawani R, Yang M, Jacono F, Tiwari P, Velcheti V, Gilkeson R, Linden P, Madabhushi A. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology. 2019;290(3):783–92. https://doi.org/10.1148/radiol.2018180910.CrossRef Beig N, Khorrami M, Alilou M, Prasanna P, Braman N, Orooji M, Rakshit S, Bera K, Rajiah P, Ginsberg J, Donatelli C, Thawani R, Yang M, Jacono F, Tiwari P, Velcheti V, Gilkeson R, Linden P, Madabhushi A. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology. 2019;290(3):783–92. https://​doi.​org/​10.​1148/​radiol.​2018180910.CrossRef
7.
go back to reference Feng B, Chen X, Chen Y, Lu S, Liu K, Li K, Liu Z, Hao Y, Li Z, Zhu Z, Yao N, Liang G, Zhang J, Long W, Liu X. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol. 2020;30(12):6497–507. https://doi.org/10.1007/s00330-020-07024-z.CrossRef Feng B, Chen X, Chen Y, Lu S, Liu K, Li K, Liu Z, Hao Y, Li Z, Zhu Z, Yao N, Liang G, Zhang J, Long W, Liu X. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol. 2020;30(12):6497–507. https://​doi.​org/​10.​1007/​s00330-020-07024-z.CrossRef
11.
go back to reference Forghani R, Chatterjee A, Reinhold C, Perez-Lara A, Romero-Sanchez G, Ueno Y, Bayat M, Alexander JWM, Kadi L, Chankowsky J, Seuntjens J, Forghani B. Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning. Eur Radiol. 2019;29(11):6172–81. https://doi.org/10.1007/s00330-019-06159-y.CrossRef Forghani R, Chatterjee A, Reinhold C, Perez-Lara A, Romero-Sanchez G, Ueno Y, Bayat M, Alexander JWM, Kadi L, Chankowsky J, Seuntjens J, Forghani B. Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning. Eur Radiol. 2019;29(11):6172–81. https://​doi.​org/​10.​1007/​s00330-019-06159-y.CrossRef
12.
go back to reference Al Ajmi E, Forghani B, Reinhold C, Bayat M, Forghani R. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm. Eur Radiol. 2018;28(6):2604–11. https://doi.org/10.1007/s00330-017-5214-0.CrossRef Al Ajmi E, Forghani B, Reinhold C, Bayat M, Forghani R. Spectral multi-energy CT texture analysis with machine learning for tissue classification: an investigation using classification of benign parotid tumours as a testing paradigm. Eur Radiol. 2018;28(6):2604–11. https://​doi.​org/​10.​1007/​s00330-017-5214-0.CrossRef
13.
go back to reference Hsu CC, Jeavon C, Fomin I, Du L, Buchan C, Watkins TW, Nae Y, Parry NM, Aviv RI. Dual-Layer Spectral CT Imaging of Upper Aerodigestive Tract Cancer: Analysis of Spectral Imaging Parameters and Impact on Tumor Staging. AJNR Am J Neuroradiol. 2021;42(9):1683–9. https://doi.org/10.3174/ajnr.A7239.CrossRef Hsu CC, Jeavon C, Fomin I, Du L, Buchan C, Watkins TW, Nae Y, Parry NM, Aviv RI. Dual-Layer Spectral CT Imaging of Upper Aerodigestive Tract Cancer: Analysis of Spectral Imaging Parameters and Impact on Tumor Staging. AJNR Am J Neuroradiol. 2021;42(9):1683–9. https://​doi.​org/​10.​3174/​ajnr.​A7239.CrossRef
15.
go back to reference Moon JI, Choi BH, Baek HJ, Ryu KH, Park SE, Ha JY, Jung EJ, Lee HS, An HJ. Comprehensive analyses with radiological and biological markers of breast cancer on contrast-enhanced chest CT: a single center experience using dual-layer spectral detector CT. Eur Radiol. 2020;30(5):2782–90. https://doi.org/10.1007/s00330-019-06615-9.CrossRef Moon JI, Choi BH, Baek HJ, Ryu KH, Park SE, Ha JY, Jung EJ, Lee HS, An HJ. Comprehensive analyses with radiological and biological markers of breast cancer on contrast-enhanced chest CT: a single center experience using dual-layer spectral detector CT. Eur Radiol. 2020;30(5):2782–90. https://​doi.​org/​10.​1007/​s00330-019-06615-9.CrossRef
16.
go back to reference Lennartz S, Zopfs D, Abdullayev N, Bratke G, Le Blanc M, Slebocki K, Wagner A, Wybranski C, Wahba R, Maintz D, Grosse Hokamp N, Persigehl T. Iodine overlays to improve differentiation between peritoneal carcinomatosis and benign peritoneal lesions. Eur Radiol. 2020;30(7):3968–76. https://doi.org/10.1007/s00330-020-06729-5.CrossRef Lennartz S, Zopfs D, Abdullayev N, Bratke G, Le Blanc M, Slebocki K, Wagner A, Wybranski C, Wahba R, Maintz D, Grosse Hokamp N, Persigehl T. Iodine overlays to improve differentiation between peritoneal carcinomatosis and benign peritoneal lesions. Eur Radiol. 2020;30(7):3968–76. https://​doi.​org/​10.​1007/​s00330-020-06729-5.CrossRef
18.
22.
go back to reference Wu L, Cao G, Zhao L, Tang K, Lin J, Miao S, Lin T, Sun J, Zheng X. Spectral CT Analysis of Solitary Pulmonary Nodules for Differentiating Malignancy from Benignancy: The Value of Iodine Concentration Spatial Distribution Difference. Biomed Res Int. 2018;2018:4830659. https://doi.org/10.1155/2018/4830659.CrossRef Wu L, Cao G, Zhao L, Tang K, Lin J, Miao S, Lin T, Sun J, Zheng X. Spectral CT Analysis of Solitary Pulmonary Nodules for Differentiating Malignancy from Benignancy: The Value of Iodine Concentration Spatial Distribution Difference. Biomed Res Int. 2018;2018:4830659. https://​doi.​org/​10.​1155/​2018/​4830659.CrossRef
23.
go back to reference Zegadlo A, Zabicka M, Kania-Pudlo M, Maliborski A, Rozyk A, Sosnicki W. Assessment of Solitary Pulmonary Nodules Based on Virtual Monochrome Images and Iodine-Dependent Images Using a Single-Source Dual-Energy CT with Fast kVp Switching. J Clin Med. 2020;9(8):2514. https://doi.org/10.3390/jcm9082514.CrossRef Zegadlo A, Zabicka M, Kania-Pudlo M, Maliborski A, Rozyk A, Sosnicki W. Assessment of Solitary Pulmonary Nodules Based on Virtual Monochrome Images and Iodine-Dependent Images Using a Single-Source Dual-Energy CT with Fast kVp Switching. J Clin Med. 2020;9(8):2514. https://​doi.​org/​10.​3390/​jcm9082514.CrossRef
25.
go back to reference Apfaltrer P, Meyer M, Meier C, Henzler T, Barraza JM Jr, Dinter DJ, Hohenberger P, Schoepf UJ, Schoenberg SO, Fink C. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Invest Radiol. 2012;47(1):65–70. https://doi.org/10.1097/RLI.0b013e31823003d2.CrossRef Apfaltrer P, Meyer M, Meier C, Henzler T, Barraza JM Jr, Dinter DJ, Hohenberger P, Schoepf UJ, Schoenberg SO, Fink C. Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Invest Radiol. 2012;47(1):65–70. https://​doi.​org/​10.​1097/​RLI.​0b013e31823003d2​.CrossRef
28.
go back to reference A. Zwanenburg, M. Vallieres, M.A. Abdalah, H. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R.J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G.J.R. Cook, C. Davatzikos, A. Depeursinge, M.C. Desseroit, N. Dinapoli, C.V. Dinh, S. Echegaray, I. El Naqa, A.Y. Fedorov, R. Gatta, R.J. Gillies, V. Goh, M. Gotz, M. Guckenberger, S.M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R.T.H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegard, K.H. Maier-Hein, O. Morin, H. Muller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E.A.G. Pfaehler, A. Rahmim, A.U.K. Rao, J. Scherer, M.M. Siddique, N.M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E.G.C. Troost, T. Upadhaya, V. Valentini, L.V. van Dijk, J. van Griethuysen, F.H.P. van Velden, P. Whybra, C. Richter, S. Lock, The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping, Radiology 295(2) (2020) 328–338.https://doi.org/10.1148/radiol.2020191145. A. Zwanenburg, M. Vallieres, M.A. Abdalah, H. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R.J. Beukinga, R. Boellaard, M. Bogowicz, L. Boldrini, I. Buvat, G.J.R. Cook, C. Davatzikos, A. Depeursinge, M.C. Desseroit, N. Dinapoli, C.V. Dinh, S. Echegaray, I. El Naqa, A.Y. Fedorov, R. Gatta, R.J. Gillies, V. Goh, M. Gotz, M. Guckenberger, S.M. Ha, M. Hatt, F. Isensee, P. Lambin, S. Leger, R.T.H. Leijenaar, J. Lenkowicz, F. Lippert, A. Losnegard, K.H. Maier-Hein, O. Morin, H. Muller, S. Napel, C. Nioche, F. Orlhac, S. Pati, E.A.G. Pfaehler, A. Rahmim, A.U.K. Rao, J. Scherer, M.M. Siddique, N.M. Sijtsema, J. Socarras Fernandez, E. Spezi, R. Steenbakkers, S. Tanadini-Lang, D. Thorwarth, E.G.C. Troost, T. Upadhaya, V. Valentini, L.V. van Dijk, J. van Griethuysen, F.H.P. van Velden, P. Whybra, C. Richter, S. Lock, The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping, Radiology 295(2) (2020) 328–338.https://​doi.​org/​10.​1148/​radiol.​2020191145.
30.
go back to reference Wu G, Woodruff HC, Shen J, Refaee T, Sanduleanu S, Ibrahim A, Leijenaar RTH, Wang R, Xiong J, Bian J, Wu J, Lambin P. Diagnosis of Invasive Lung Adenocarcinoma Based on Chest CT Radiomic Features of Part-Solid Pulmonary Nodules: A Multicenter Study. Radiology. 2020;297(2):451–8. https://doi.org/10.1148/radiol.2020192431.CrossRef Wu G, Woodruff HC, Shen J, Refaee T, Sanduleanu S, Ibrahim A, Leijenaar RTH, Wang R, Xiong J, Bian J, Wu J, Lambin P. Diagnosis of Invasive Lung Adenocarcinoma Based on Chest CT Radiomic Features of Part-Solid Pulmonary Nodules: A Multicenter Study. Radiology. 2020;297(2):451–8. https://​doi.​org/​10.​1148/​radiol.​2020192431.CrossRef
33.
go back to reference Huang SY, Franc BL, Harnish RJ, Liu G, Mitra D, Copeland TP, Arasu VA, Kornak J, Jones EF, Behr SC, Hylton NM, Price ER, Esserman L, Seo Y. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer. 2018;4:24. https://doi.org/10.1038/s41523-018-0078-2.CrossRef Huang SY, Franc BL, Harnish RJ, Liu G, Mitra D, Copeland TP, Arasu VA, Kornak J, Jones EF, Behr SC, Hylton NM, Price ER, Esserman L, Seo Y. Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer. 2018;4:24. https://​doi.​org/​10.​1038/​s41523-018-0078-2.CrossRef
34.
go back to reference Saleem BR, Beukinga RJ, Boellaard R, Glaudemans AW, Reijnen MM, Zeebregts CJ, Slart RH. Textural features of (18)F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection. Eur J Nucl Med Mol Imaging. 2017;44(5):886–94. https://doi.org/10.1007/s00259-016-3599-7.CrossRef Saleem BR, Beukinga RJ, Boellaard R, Glaudemans AW, Reijnen MM, Zeebregts CJ, Slart RH. Textural features of (18)F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection. Eur J Nucl Med Mol Imaging. 2017;44(5):886–94. https://​doi.​org/​10.​1007/​s00259-016-3599-7.CrossRef
35.
go back to reference Zheng X, Li C, Zhang L, Cao F, Fang X, Qian L, Dong J. Combining Intravoxel Incoherent Motion Diffusion Weighted Imaging and Texture Analysis for a Nomogram to Predict Early Treatment Response to Concurrent Chemoradiotherapy in Cervical Cancer Patients. J Oncol. 2021;2021:9345353. https://doi.org/10.1155/2021/9345353.CrossRef Zheng X, Li C, Zhang L, Cao F, Fang X, Qian L, Dong J. Combining Intravoxel Incoherent Motion Diffusion Weighted Imaging and Texture Analysis for a Nomogram to Predict Early Treatment Response to Concurrent Chemoradiotherapy in Cervical Cancer Patients. J Oncol. 2021;2021:9345353. https://​doi.​org/​10.​1155/​2021/​9345353.CrossRef
38.
Metadata
Title
Spectral CT-based radiomics signature for distinguishing malignant pulmonary nodules from benign
Authors
Hang Xu
Na Zhu
Yong Yue
Yan Guo
Qingyun Wen
Lu Gao
Yang Hou
Jin Shang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-10572-4

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine