Skip to main content
Top
Published in: Radiation Oncology 1/2022

Open Access 01-12-2022 | Prostate Cancer | Research

Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer

Authors: Maria Kawula, Dinu Purice, Minglun Li, Gerome Vivar, Seyed-Ahmad Ahmadi, Katia Parodi, Claus Belka, Guillaume Landry, Christopher Kurz

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Abstract

Background

The evaluation of automatic segmentation algorithms is commonly performed using geometric metrics. An analysis based on dosimetric parameters might be more relevant in clinical practice but is often lacking in the literature. The aim of this study was to investigate the impact of state-of-the-art 3D U-Net-generated organ delineations on dose optimization in radiation therapy (RT) for prostate cancer patients.

Methods

A database of 69 computed tomography images with prostate, bladder, and rectum delineations was used for single-label 3D U-Net training with dice similarity coefficient (DSC)-based loss. Volumetric modulated arc therapy (VMAT) plans have been generated for both manual and automatic segmentations with the same optimization settings. These were chosen to give consistent plans when applying perturbations to the manual segmentations. Contours were evaluated in terms of DSC, average and 95% Hausdorff distance (HD). Dose distributions were evaluated with the manual segmentation as reference using dose volume histogram (DVH) parameters and a 3%/3 mm gamma-criterion with 10% dose cut-off. A Pearson correlation coefficient between DSC and dosimetric metrics, i.e. gamma index and DVH parameters, has been calculated.

Results

3D U-Net-based segmentation achieved a DSC of 0.87 (0.03) for prostate, 0.97 (0.01) for bladder and 0.89 (0.04) for rectum. The mean and 95% HD were below 1.6 (0.4) and below 5 (4) mm, respectively. The DVH parameters, V\(_{60/65/70\,{\mathrm{Gy}}}\) for the bladder and V\(_{50/65/70\,{\mathrm{Gy}}}\) for the rectum, showed agreement between dose distributions within \(\pm \, 5\%\) and \(\pm \,2\%\), respectively. The D\(_{98/2\%}\) and V\(_{95\%}\), for prostate and its 3 mm expansion (surrogate clinical target volume) showed agreement with the reference dose distribution within 2% and 3 Gy with the exception of one case. The average gamma pass-rate was 85%. The comparison between geometric and dosimetric metrics showed no strong statistically significant correlation.

Conclusions

The 3D U-Net developed for this work achieved state-of-the-art geometrical performance. Analysis based on clinically relevant DVH parameters of VMAT plans demonstrated neither excessive dose increase to OARs nor substantial under/over-dosage of the target in all but one case. Yet the gamma analysis indicated several cases with low pass rates. The study highlighted the importance of adding dosimetric analysis to the standard geometric evaluation.
Literature
1.
go back to reference Hummel S, Simpson E, Hemingway P, Stevenson M, Rees A. Intensity-modulated radiotherapy for the treatment of prostate cancer: a systematic review and economic evaluation. Health Technol Assess. 2010;14(47):1–108.CrossRef Hummel S, Simpson E, Hemingway P, Stevenson M, Rees A. Intensity-modulated radiotherapy for the treatment of prostate cancer: a systematic review and economic evaluation. Health Technol Assess. 2010;14(47):1–108.CrossRef
2.
go back to reference Guckenberger M, Flentje M. Intensity-modulated radiotherapy (IMRT) of localized prostate cancer. Strahlenther Onkol. 2007;183(2):57–62.CrossRef Guckenberger M, Flentje M. Intensity-modulated radiotherapy (IMRT) of localized prostate cancer. Strahlenther Onkol. 2007;183(2):57–62.CrossRef
3.
go back to reference Chen MJ, Weltman E, Hanriot RM, Luz FP, Cecílio PJ, Da Cruz JC, et al. Intensity modulated radiotherapy for localized prostate cancer: Rigid compliance to dose-volume constraints as a warranty of acceptable toxicity? Radiat Oncol. 2007;2(1):1–7.CrossRef Chen MJ, Weltman E, Hanriot RM, Luz FP, Cecílio PJ, Da Cruz JC, et al. Intensity modulated radiotherapy for localized prostate cancer: Rigid compliance to dose-volume constraints as a warranty of acceptable toxicity? Radiat Oncol. 2007;2(1):1–7.CrossRef
4.
go back to reference Wu QJ, Thongphiew D, Wang Z, Mathayomchan B, Chankong V, Yoo S, et al. On-line re-optimization of prostate IMRT plans for adaptive radiation therapy. Phys Med Biol. 2008;53(3):673.CrossRef Wu QJ, Thongphiew D, Wang Z, Mathayomchan B, Chankong V, Yoo S, et al. On-line re-optimization of prostate IMRT plans for adaptive radiation therapy. Phys Med Biol. 2008;53(3):673.CrossRef
5.
go back to reference McVicar N, Popescu IA, Heath E. Techniques for adaptive prostate radiotherapy. Physica Med. 2016;32(3):492–8.CrossRef McVicar N, Popescu IA, Heath E. Techniques for adaptive prostate radiotherapy. Physica Med. 2016;32(3):492–8.CrossRef
6.
go back to reference Choi H, Kim Y, Lee S, Lee Y, Park G, Jung J, et al. Inter- and intra-observer variability in contouring of the prostate gland on planning computed tomography and cone beam computed tomography. Acta Oncol (Stockh Swed). 2011;03(50):539–46.CrossRef Choi H, Kim Y, Lee S, Lee Y, Park G, Jung J, et al. Inter- and intra-observer variability in contouring of the prostate gland on planning computed tomography and cone beam computed tomography. Acta Oncol (Stockh Swed). 2011;03(50):539–46.CrossRef
7.
go back to reference Nyholm T, Jonsson J, Söderström K, Bergström P, Carlberg A, Frykholm G, et al. Variability in prostate and seminal vesicle delineations defined on magnetic resonance images, a multi-observer, -center and-sequence study. Radiat Oncol. 2013;8(1):1–12.CrossRef Nyholm T, Jonsson J, Söderström K, Bergström P, Carlberg A, Frykholm G, et al. Variability in prostate and seminal vesicle delineations defined on magnetic resonance images, a multi-observer, -center and-sequence study. Radiat Oncol. 2013;8(1):1–12.CrossRef
8.
go back to reference Wong J, Fong A, McVicar N, Smith S, Giambattista J, Wells D, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020;144:152–8.CrossRef Wong J, Fong A, McVicar N, Smith S, Giambattista J, Wells D, et al. Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol. 2020;144:152–8.CrossRef
9.
go back to reference Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in auto-segmentation. In: Seminars in radiation oncology. Elsevier; 2019. p. 185–97. Cardenas CE, Yang J, Anderson BM, Court LE, Brock KB. Advances in auto-segmentation. In: Seminars in radiation oncology. Elsevier; 2019. p. 185–97.
10.
go back to reference LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef
11.
go back to reference Savenije MH, Maspero M, Sikkes GG, van der Voort JR, van Zyp TJ, Kotte AN, Bol GH, et al. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy. Radiat Oncol. 2020;15:1–12.CrossRef Savenije MH, Maspero M, Sikkes GG, van der Voort JR, van Zyp TJ, Kotte AN, Bol GH, et al. Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy. Radiat Oncol. 2020;15:1–12.CrossRef
12.
go back to reference Chung SY, Chang JS, Choi MS, Chang Y, Choi BS, Chun J, et al. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Radiat Oncol. 2021;16(1):1–10.CrossRef Chung SY, Chang JS, Choi MS, Chang Y, Choi BS, Chun J, et al. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Radiat Oncol. 2021;16(1):1–10.CrossRef
13.
go back to reference Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth international conference on 3D vision (3DV). IEEE; 2016. pp. 565–71. Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth international conference on 3D vision (3DV). IEEE; 2016. pp. 565–71.
14.
go back to reference Balagopal A, Kazemifar S, Nguyen D, Lin MH, Hannan R, Owrangi A, et al. Fully automated organ segmentation in male pelvic CT images. Phys Med Biol. 2018;63(24):245015.CrossRef Balagopal A, Kazemifar S, Nguyen D, Lin MH, Hannan R, Owrangi A, et al. Fully automated organ segmentation in male pelvic CT images. Phys Med Biol. 2018;63(24):245015.CrossRef
15.
go back to reference Wang S, He K, Nie D, Zhou S, Gao Y, Shen D. CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation. Med Image Anal. 2019;54:168–78.CrossRef Wang S, He K, Nie D, Zhou S, Gao Y, Shen D. CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation. Med Image Anal. 2019;54:168–78.CrossRef
16.
go back to reference Tong N, Gou S, Chen S, Yao Y, Yang S, Cao M, et al. Multi-task edge-recalibrated network for male pelvic multi-organ segmentation on CT images. Phys Med Biol. 2021;66(3):035001.CrossRef Tong N, Gou S, Chen S, Yao Y, Yang S, Cao M, et al. Multi-task edge-recalibrated network for male pelvic multi-organ segmentation on CT images. Phys Med Biol. 2021;66(3):035001.CrossRef
17.
go back to reference Sultana S, Robinson A, Song DY, Lee J. Automatic multi-organ segmentation in computed tomography images using hierarchical convolutional neural network. J Med Imaging. 2020;7(5):055001. Sultana S, Robinson A, Song DY, Lee J. Automatic multi-organ segmentation in computed tomography images using hierarchical convolutional neural network. J Med Imaging. 2020;7(5):055001.
18.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. arXiv preprint arXiv:1406.2661. 2014;. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial networks. arXiv preprint arXiv:​1406.​2661. 2014;.
19.
go back to reference Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. 2015;15(1):1–28.CrossRef Taha AA, Hanbury A. Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging. 2015;15(1):1–28.CrossRef
20.
go back to reference Guo H, Wang J, Xia X, Zhong Y, Peng J, Zhang Z, et al. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer. Radiat Oncol. 2021;16(1):1–14.CrossRef Guo H, Wang J, Xia X, Zhong Y, Peng J, Zhang Z, et al. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer. Radiat Oncol. 2021;16(1):1–14.CrossRef
21.
go back to reference Sharp GC, Li R, Wolfgang J, Chen G, Peroni M, Spadea MF, et al. Plastimatch: an open source software suite for radiotherapy image processing. In: Proceedings of the XVI’th international conference on the use of computers in radiotherapy (ICCR), Amsterdam, Netherlands. 2010. Sharp GC, Li R, Wolfgang J, Chen G, Peroni M, Spadea MF, et al. Plastimatch: an open source software suite for radiotherapy image processing. In: Proceedings of the XVI’th international conference on the use of computers in radiotherapy (ICCR), Amsterdam, Netherlands. 2010.
22.
go back to reference Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Rad Oncol Biol Phys. 2010;76(3):S10–9.CrossRef Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. Int J Rad Oncol Biol Phys. 2010;76(3):S10–9.CrossRef
23.
go back to reference Prescribing I. recording, and reporting intensity-modulated photon-beam therapy (IMRT) (ICRU Report 83). J ICRU. 2010;10(1):555–9. Prescribing I. recording, and reporting intensity-modulated photon-beam therapy (IMRT) (ICRU Report 83). J ICRU. 2010;10(1):555–9.
24.
go back to reference Paddick IA. simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg. 2000;93(supplement–3):219–22.CrossRef Paddick IA. simple scoring ratio to index the conformity of radiosurgical treatment plans. J Neurosurg. 2000;93(supplement–3):219–22.CrossRef
25.
go back to reference Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Noise reduction in speech processing. Springer; 2009. p. 1–4. Benesty J, Chen J, Huang Y, Cohen I. Pearson correlation coefficient. In: Noise reduction in speech processing. Springer; 2009. p. 1–4.
26.
go back to reference Sanders J, Mok H, Tang C, Hanania A, Venkatesan A, Bruno T, et al. Benchmarking automatic segmentation algorithms against human interobserver variability of prostate and organs at risk delineation on prostate MRI. Int J Radiat Oncol Biol Phys. 2021;111(3):e291–2.CrossRef Sanders J, Mok H, Tang C, Hanania A, Venkatesan A, Bruno T, et al. Benchmarking automatic segmentation algorithms against human interobserver variability of prostate and organs at risk delineation on prostate MRI. Int J Radiat Oncol Biol Phys. 2021;111(3):e291–2.CrossRef
27.
go back to reference Zabel WJ, Conway JL, Gladwish A, Skliarenko J, Didiodato G, Goorts-Matthews L, et al. Clinical evaluation of deep learning and atlas-based auto-contouring of bladder and rectum for prostate radiation therapy. Pract Radiat Oncol. 2021;11(1):e80–9.CrossRef Zabel WJ, Conway JL, Gladwish A, Skliarenko J, Didiodato G, Goorts-Matthews L, et al. Clinical evaluation of deep learning and atlas-based auto-contouring of bladder and rectum for prostate radiation therapy. Pract Radiat Oncol. 2021;11(1):e80–9.CrossRef
28.
go back to reference Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018;126(2):312–7.CrossRef Lustberg T, van Soest J, Gooding M, Peressutti D, Aljabar P, van der Stoep J, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol. 2018;126(2):312–7.CrossRef
Metadata
Title
Dosimetric impact of deep learning-based CT auto-segmentation on radiation therapy treatment planning for prostate cancer
Authors
Maria Kawula
Dinu Purice
Minglun Li
Gerome Vivar
Seyed-Ahmad Ahmadi
Katia Parodi
Claus Belka
Guillaume Landry
Christopher Kurz
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-022-01985-9

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue