Skip to main content
Top
Published in: Radiation Oncology 1/2022

Open Access 01-12-2022 | Cervical Cancer | Research

Dose prediction for cervical cancer VMAT patients with a full-scale 3D-cGAN-based model and the comparison of different input data on the prediction results

Authors: Gongsen Zhang, Zejun Jiang, Jian Zhu, Linlin Wang

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Excerpt

Cervical cancer is the second most common female malignant tumor in the world [1], for which radiotherapy is currently one of the main treatment methods. Related surveys show that approximately 80% of cervical cancer patients receive radiotherapy at different stages [2, 3]. Intensity modulated radiotherapy (IMRT) and volumetric modulated arc radiotherapy (VMAT) have become standard radiotherapy methods. Compared with 3-dimensional conformal radiotherapy (3D-CRT), the dose distribution formed by new technologies above using reverse optimization algorithms is highly consistent with the planned target area and has better uniformity[47]. However, advanced technology also brings corresponding computational burden, which greatly increases the total planning time. According to statistics, it takes an average of approximately 4 h for radiotherapists to delineate the planning target volume (PTV) and organs at risk (OARs), and may even take longer for some complex diseases. After that, a radiotherapy plan meeting the treatment standards is formulated by radiation physicists, which takes approximately 10 h for each patient [8, 9]. The large amount of time required for the treatment plan inevitably leads to delayed treatment, thereby affecting the quality of treatment and prognosis of patients [10]. …
Literature
1.
go back to reference Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-86.CrossRefPubMed
2.
go back to reference Small W, Jr, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:428–34.PubMedCrossRef Small W, Jr, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71:428–34.PubMedCrossRef
3.
go back to reference Grigsby PW. Radiotherapy for pelvic recurrence after radical hysterectomy for cervical cancer. Radiat Med. 2005;23:327–30.PubMed Grigsby PW. Radiotherapy for pelvic recurrence after radical hysterectomy for cervical cancer. Radiat Med. 2005;23:327–30.PubMed
4.
go back to reference Cibula D, Pötter R, Planchamp F, et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology guidelines for the management of patients with cervical cancer. Virchows Arch. 2018;472(6):919–36.PubMedCrossRef Cibula D, Pötter R, Planchamp F, et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology guidelines for the management of patients with cervical cancer. Virchows Arch. 2018;472(6):919–36.PubMedCrossRef
5.
go back to reference Wang W, Zhang F, Hu K, et al. Image-guided, intensity-modulated radiation therapy in definitive radiotherapy for 1433 patients with cervical cancer. Gynecol Oncol. 2018;151(3):444–8.PubMedCrossRef Wang W, Zhang F, Hu K, et al. Image-guided, intensity-modulated radiation therapy in definitive radiotherapy for 1433 patients with cervical cancer. Gynecol Oncol. 2018;151(3):444–8.PubMedCrossRef
6.
go back to reference Lin Y, Chen K, Lu Z, et al. Intensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysis. Radiat Oncol. 2018;13(1):1–8.CrossRef Lin Y, Chen K, Lu Z, et al. Intensity-modulated radiation therapy for definitive treatment of cervical cancer: a meta-analysis. Radiat Oncol. 2018;13(1):1–8.CrossRef
7.
go back to reference Chen VE, Gillespie EF, Manger RP, et al. The impact of daily bladder filling on small bowel dose for intensity modulated radiation therapy for cervical cancer. Med Dosim. 2019;44(2):102–6.PubMedCrossRef Chen VE, Gillespie EF, Manger RP, et al. The impact of daily bladder filling on small bowel dose for intensity modulated radiation therapy for cervical cancer. Med Dosim. 2019;44(2):102–6.PubMedCrossRef
8.
go back to reference Rehman J, Zahra, Ahmad N, et al. Intensity modulated radiation therapy: a review of current practice and future outlooks. J Radiat Res Appl Sci. 2018;11(4):361–7.CrossRef Rehman J, Zahra, Ahmad N, et al. Intensity modulated radiation therapy: a review of current practice and future outlooks. J Radiat Res Appl Sci. 2018;11(4):361–7.CrossRef
9.
go back to reference Boon IS, Au Yong T, Boon CS. Assessing the role of artificial intelligence (AI) in clinical oncology: utility of machine learning in radiotherapy target volume delineation. Medicines. 2018;5(4):131.PubMedCentralCrossRef Boon IS, Au Yong T, Boon CS. Assessing the role of artificial intelligence (AI) in clinical oncology: utility of machine learning in radiotherapy target volume delineation. Medicines. 2018;5(4):131.PubMedCentralCrossRef
10.
go back to reference Delahaut G, Témam S, Ambroise J, et al. Prognostic impact of tumor growth velocity in head and neck squamous cell carcinoma treated by radiotherapy: a pilot study. Head Neck. 2019;41(9):3041–8.PubMedCrossRef Delahaut G, Témam S, Ambroise J, et al. Prognostic impact of tumor growth velocity in head and neck squamous cell carcinoma treated by radiotherapy: a pilot study. Head Neck. 2019;41(9):3041–8.PubMedCrossRef
11.
12.
go back to reference Wada Y, Monzen H, Tamura M, et al. Dosimetric evaluation of simplified knowledge-based plan with an extensive stepping validation approach in volumetric-modulated arc therapy-stereotactic body radiotherapy for lung cancer. J Med Phys. 2021;46(1):7.PubMedPubMedCentral Wada Y, Monzen H, Tamura M, et al. Dosimetric evaluation of simplified knowledge-based plan with an extensive stepping validation approach in volumetric-modulated arc therapy-stereotactic body radiotherapy for lung cancer. J Med Phys. 2021;46(1):7.PubMedPubMedCentral
13.
go back to reference Cagni E, Botti A, Chendi A, et al. Use of knowledge based DVH predictions to enhance automated re-planning strategies in head and neck adaptive radiotherapy. Phys Med Biol. 2021;66:135004.CrossRef Cagni E, Botti A, Chendi A, et al. Use of knowledge based DVH predictions to enhance automated re-planning strategies in head and neck adaptive radiotherapy. Phys Med Biol. 2021;66:135004.CrossRef
14.
go back to reference Jeong C, Park JW, Kwak J, et al. Volumetric-modulated arc radiotherapy using knowledge-based planning: application to spine stereotactic body radiotherapy. Prog Med Phys. 2019;30(4):94–103.CrossRef Jeong C, Park JW, Kwak J, et al. Volumetric-modulated arc radiotherapy using knowledge-based planning: application to spine stereotactic body radiotherapy. Prog Med Phys. 2019;30(4):94–103.CrossRef
15.
go back to reference Bossart E, Duffy M, Simpson G, et al. Assessment of specific versus combined purpose knowledge based models in prostate radiotherapy. J Appl Clin Med Phys. 2018;19(6):209–16.PubMedPubMedCentralCrossRef Bossart E, Duffy M, Simpson G, et al. Assessment of specific versus combined purpose knowledge based models in prostate radiotherapy. J Appl Clin Med Phys. 2018;19(6):209–16.PubMedPubMedCentralCrossRef
16.
go back to reference Visak J, McGarry RC, Randall ME, et al. Development and clinical validation of a robust knowledge-based planning model for stereotactic body radiotherapy treatment of centrally located lung tumors. J Appl Clin Med Phys. 2021;22(1):146–55.PubMedCrossRef Visak J, McGarry RC, Randall ME, et al. Development and clinical validation of a robust knowledge-based planning model for stereotactic body radiotherapy treatment of centrally located lung tumors. J Appl Clin Med Phys. 2021;22(1):146–55.PubMedCrossRef
17.
go back to reference Hu J, Liu B, Xie W, et al. Quantitative comparison of knowledge-based and manual intensity modulated radiation therapy planning for nasopharyngeal carcinoma. Front Oncol. 2021;10:3028.CrossRef Hu J, Liu B, Xie W, et al. Quantitative comparison of knowledge-based and manual intensity modulated radiation therapy planning for nasopharyngeal carcinoma. Front Oncol. 2021;10:3028.CrossRef
18.
go back to reference Ge Y, Wu QJ. Knowledge-based planning for intensity‐modulated radiation therapy: a review of data‐driven approaches. Med Phys. 2019;46(6):2760–75.PubMedCrossRef Ge Y, Wu QJ. Knowledge-based planning for intensity‐modulated radiation therapy: a review of data‐driven approaches. Med Phys. 2019;46(6):2760–75.PubMedCrossRef
19.
go back to reference Wu A, Li Y, Qi M, et al. Robustness comparative study of dose–volume–histogram prediction models for knowledge-based radiotherapy treatment planning. J Radiat Res Appl Sci. 2020;13(1):390–7.CrossRef Wu A, Li Y, Qi M, et al. Robustness comparative study of dose–volume–histogram prediction models for knowledge-based radiotherapy treatment planning. J Radiat Res Appl Sci. 2020;13(1):390–7.CrossRef
20.
go back to reference Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: a survey. Comput Electron Agric. 2018;147:70–90.CrossRef Kamilaris A, Prenafeta-Boldú FX. Deep learning in agriculture: a survey. Comput Electron Agric. 2018;147:70–90.CrossRef
21.
go back to reference Pouyanfar S, Sadiq S, Yan Y, et al. A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv (CSUR). 2018;51(5):1–36.CrossRef Pouyanfar S, Sadiq S, Yan Y, et al. A survey on deep learning: algorithms, techniques, and applications. ACM Comput Surv (CSUR). 2018;51(5):1–36.CrossRef
22.
go back to reference Grigorescu S, Trasnea B, Cocias T, et al. A survey of deep learning techniques for autonomous driving. J Field Robot. 2020;37(3):362–86.CrossRef Grigorescu S, Trasnea B, Cocias T, et al. A survey of deep learning techniques for autonomous driving. J Field Robot. 2020;37(3):362–86.CrossRef
23.
go back to reference Minaee S, Boykov YY, Porikli F, et al. Image segmentation using deep learning: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 2021. Minaee S, Boykov YY, Porikli F, et al. Image segmentation using deep learning: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 2021.
24.
go back to reference Li J, Sun A, Han J, et al. A survey on deep learning for named entity recognition. IEEE Transactions on Knowledge and Data Engineering 2020. Li J, Sun A, Han J, et al. A survey on deep learning for named entity recognition. IEEE Transactions on Knowledge and Data Engineering 2020.
25.
go back to reference Nguyen D, Jia X, Sher D, et al. 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol. 2019;64(6):065020.PubMedCrossRef Nguyen D, Jia X, Sher D, et al. 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol. 2019;64(6):065020.PubMedCrossRef
26.
go back to reference Ma M, Buyyounouski MK, Vasudevan V, et al. Dose distribution prediction in isodose feature cc reserving voxelization domain using deep convolutional neural network. Med Phys. 2019;46(7):2978–87.PubMedCrossRef Ma M, Buyyounouski MK, Vasudevan V, et al. Dose distribution prediction in isodose feature cc reserving voxelization domain using deep convolutional neural network. Med Phys. 2019;46(7):2978–87.PubMedCrossRef
27.
go back to reference Chen X, Men K, Li Y, et al. A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning. Med Phys. 2019;46(1):56–64.PubMedCrossRef Chen X, Men K, Li Y, et al. A feasibility study on an automated method to generate patient-specific dose distributions for radiotherapy using deep learning. Med Phys. 2019;46(1):56–64.PubMedCrossRef
28.
go back to reference Barragán-Montero AM, Nguyen D, Lu W, et al. Three‐dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med Phys. 2019;46(8):3679–91.PubMedCrossRef Barragán-Montero AM, Nguyen D, Lu W, et al. Three‐dimensional dose prediction for lung IMRT patients with deep neural networks: robust learning from heterogeneous beam configurations. Med Phys. 2019;46(8):3679–91.PubMedCrossRef
29.
go back to reference Nguyen D, Long T, Jia X, et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep. 2019;9(1):1–10. Nguyen D, Long T, Jia X, et al. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep. 2019;9(1):1–10.
30.
go back to reference Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46(1):e1-36.PubMedCrossRef Sahiner B, Pezeshk A, Hadjiiski LM, et al. Deep learning in medical imaging and radiation therapy. Med Phys. 2019;46(1):e1-36.PubMedCrossRef
31.
go back to reference Kearney V, Chan JW, Haaf S, et al. DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys Med Biol. 2018;63(23):235022.PubMedCrossRef Kearney V, Chan JW, Haaf S, et al. DoseNet: a volumetric dose prediction algorithm using 3D fully-convolutional neural networks. Phys Med Biol. 2018;63(23):235022.PubMedCrossRef
32.
go back to reference Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. 2014. Preprint http://arxiv.org/abs/1406.2661. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. 2014. Preprint http://​arxiv.​org/​abs/​1406.​2661.​ 
33.
go back to reference Mirza M, Osindero S. Conditional generative adversarial nets. 2014. Preprint http://arxiv.org/abs/1411.1784. Mirza M, Osindero S. Conditional generative adversarial nets. 2014. Preprint http://​arxiv.​org/​abs/​1411.​1784.​
34.
go back to reference Mahmood R, Babier A, McNiven A, et al. Automated treatment planning in radiation therapy using generative adversarial networks. Proc Mac Learn Res. 2018;85:1–15. Mahmood R, Babier A, McNiven A, et al. Automated treatment planning in radiation therapy using generative adversarial networks. Proc Mac Learn Res. 2018;85:1–15.
36.
go back to reference Huang H, Lin L, Tong R, et al. Unet 3+: a full-scale connected unet for medical image segmentation[C]//ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020;1055–1059. Huang H, Lin L, Tong R, et al. Unet 3+: a full-scale connected unet for medical image segmentation[C]//ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020;1055–1059.
37.
go back to reference Eminowicz G, Rompokos V, Stacey C, et al. The dosimetric impact of target volume delineation variation for cervical cancer radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2016;120:493–9.CrossRef Eminowicz G, Rompokos V, Stacey C, et al. The dosimetric impact of target volume delineation variation for cervical cancer radiotherapy. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2016;120:493–9.CrossRef
38.
go back to reference Erdi YE, Rosenzweig K, Erdi AK, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol. 2002;62(1):51–60.PubMedCrossRef Erdi YE, Rosenzweig K, Erdi AK, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol. 2002;62(1):51–60.PubMedCrossRef
39.
go back to reference Small W Jr, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(2):428–34.PubMedCrossRef Small W Jr, Mell LK, Anderson P, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy in postoperative treatment of endometrial and cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(2):428–34.PubMedCrossRef
40.
go back to reference Lim K, Small W Jr, Portelance L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.PubMedCrossRef Lim K, Small W Jr, Portelance L, et al. Consensus guidelines for delineation of clinical target volume for intensity-modulated pelvic radiotherapy for the definitive treatment of cervix cancer. Int J Radiat Oncol Biol Phys. 2011;79(2):348–55.PubMedCrossRef
41.
go back to reference Small W Jr, Bosch WR, Harkenrider MM, et al. NRG Oncology/RTOG consensus guidelines for delineation of clinical target volume for intensity modulated pelvic radiation therapy in postoperative treatment of endometrial and cervical cancer: an update. Int J Radiat Oncol Biol Phys. 2021;109(1):413–24.PubMedCrossRef Small W Jr, Bosch WR, Harkenrider MM, et al. NRG Oncology/RTOG consensus guidelines for delineation of clinical target volume for intensity modulated pelvic radiation therapy in postoperative treatment of endometrial and cervical cancer: an update. Int J Radiat Oncol Biol Phys. 2021;109(1):413–24.PubMedCrossRef
42.
go back to reference Tanabe Y, Ishida T, Eto H, et al. Evaluation of the correlation between prostatic displacement and rectal deformation using the Dice similarity coefficient of the rectum. Med Dosim. 2019;44:e39–43.PubMedCrossRef Tanabe Y, Ishida T, Eto H, et al. Evaluation of the correlation between prostatic displacement and rectal deformation using the Dice similarity coefficient of the rectum. Med Dosim. 2019;44:e39–43.PubMedCrossRef
43.
go back to reference Liang K, Fu H, Zhou H, et al. Accurate and automatic 3D segmentation of femur and pelvis from CT images of the hip based on deep learning. J Imaging Sci Technol. 2021;65:30411–1.CrossRef Liang K, Fu H, Zhou H, et al. Accurate and automatic 3D segmentation of femur and pelvis from CT images of the hip based on deep learning. J Imaging Sci Technol. 2021;65:30411–1.CrossRef
44.
go back to reference Yun YJ, Ahn BC, Kavitha MS, et al. An efficient region precise thresholding and direct hough transform in femur and femoral neck segmentation using pelvis CT. IEEE Access 2020; PP(99): 1–1. Yun YJ, Ahn BC, Kavitha MS, et al. An efficient region precise thresholding and direct hough transform in femur and femoral neck segmentation using pelvis CT. IEEE Access 2020; PP(99): 1–1.
45.
go back to reference Wang C, Connolly B, Lopes P, et al. Pelvis segmentation using multi-pass U-Net and iterative shape estimation[C]/ MICCAI 2018. In: 21st international conference on medical image computing & computer assisted intervention. 2019. Wang C, Connolly B, Lopes P, et al. Pelvis segmentation using multi-pass U-Net and iterative shape estimation[C]/ MICCAI 2018. In: 21st international conference on medical image computing & computer assisted intervention. 2019.
46.
go back to reference Hirashima H, Nakamura M, Baillehache P, et al. Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT. Radiat Oncol. 2021;16(1):1–10.CrossRef Hirashima H, Nakamura M, Baillehache P, et al. Development of in-house fully residual deep convolutional neural network-based segmentation software for the male pelvic CT. Radiat Oncol. 2021;16(1):1–10.CrossRef
47.
48.
go back to reference Hedden N, Xu H. Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models. Phys Med. 2021;83:101–7.PubMedCrossRef Hedden N, Xu H. Radiation therapy dose prediction for left-sided breast cancers using two-dimensional and three-dimensional deep learning models. Phys Med. 2021;83:101–7.PubMedCrossRef
49.
go back to reference Guerreiro F, Seravalli E, Janssens GO, et al. Deep learning prediction of proton and photon dose distributions for paediatric abdominal tumours. Radiother Oncol. 2020;156:36–42.PubMedCrossRef Guerreiro F, Seravalli E, Janssens GO, et al. Deep learning prediction of proton and photon dose distributions for paediatric abdominal tumours. Radiother Oncol. 2020;156:36–42.PubMedCrossRef
50.
51.
go back to reference Tomohiro K, Noriyuki K, Kengo I, et al. A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients. J Radiat Res. 2019;(5):5. Tomohiro K, Noriyuki K, Kengo I, et al. A convolutional neural network approach for IMRT dose distribution prediction in prostate cancer patients. J Radiat Res. 2019;(5):5.
52.
go back to reference Liu Z, Fan J, Li M, et al. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys. 2019;46(5):1972–83.PubMedCrossRef Liu Z, Fan J, Li M, et al. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys. 2019;46(5):1972–83.PubMedCrossRef
53.
go back to reference Zhou J, Peng Z, Song Y, et al. A method of using deep learning to predict three-dimensional dose distributions for intensity modulated radiotherapy of rectal cancer. J Appl Clin Med Phys. 2020;21(5):26–37.PubMedPubMedCentralCrossRef Zhou J, Peng Z, Song Y, et al. A method of using deep learning to predict three-dimensional dose distributions for intensity modulated radiotherapy of rectal cancer. J Appl Clin Med Phys. 2020;21(5):26–37.PubMedPubMedCentralCrossRef
54.
go back to reference Li H, Peng X, Zeng J, et al. Explainable attention guided adversarial deep network for 3D radiotherapy dose distribution prediction. Knowl-Based Syst. 2022;241.CrossRef Li H, Peng X, Zeng J, et al. Explainable attention guided adversarial deep network for 3D radiotherapy dose distribution prediction. Knowl-Based Syst. 2022;241.CrossRef
Metadata
Title
Dose prediction for cervical cancer VMAT patients with a full-scale 3D-cGAN-based model and the comparison of different input data on the prediction results
Authors
Gongsen Zhang
Zejun Jiang
Jian Zhu
Linlin Wang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-022-02155-7

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue