Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Poxvirus | Research

Identification and screening of host proteins interacting with ORFV-ORF047 protein

Authors: Guohua Chen, Xiaobing He, Huaijie Jia, Yongxiang Fang, Xiaoxia Wang, Zhongzi Lou, Fan Yang, Weike Li, Zhizhong Jing

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Orf virus (ORFV) is a member of the genus Parapoxvirus and family Poxviridae. The virus has a worldwide distribution and infects sheep, goats, humans, and wild animals. However, due to the complex structure of the poxvirus, the underlying mechanism of the entry and infection by ORFV remains largely unknown. ORFV ORF047 encodes a protein named L1R. Poxviral L1R serves as the receptor-binding protein and blocks virus binding and entry independently of glycosaminoglycans (GAGs). The study aimed to identify the host interaction partners of ORFV ORF047.

Methods

Yeast two-hybrid cDNA library of sheep testicular cells was applied to screen the host targets with ORF047 as the bait. ORF047 was cloned into a pBT3-N vector and expressed in the NMY51 yeast strain. Then, the expression of bait proteins was validated by Western blot analysis.

Results

Sheep SERP1and PABPC4 were identified as host target proteins of ORFV ORF047, and a Co-IP assay further verified their interaction.

Conclusions

New host cell proteins SERP1and PABPC4 were found to interact with ORFV ORF047 and might involve viral mRNA translation and replication.
Literature
1.
go back to reference Wolffe EJ, Vijaya S, Moss B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology. 1995;211:53–63.CrossRef Wolffe EJ, Vijaya S, Moss B. A myristylated membrane protein encoded by the vaccinia virus L1R open reading frame is the target of potent neutralizing monoclonal antibodies. Virology. 1995;211:53–63.CrossRef
2.
go back to reference Ravanello MP, Hruby DE. Conditional lethal expression of the vaccinia virus L1R myristylated protein reveals a role in virion assembly. J Virol. 1994;68:6401–10.CrossRef Ravanello MP, Hruby DE. Conditional lethal expression of the vaccinia virus L1R myristylated protein reveals a role in virion assembly. J Virol. 1994;68:6401–10.CrossRef
3.
go back to reference Bisht H, Weisberg AS, Moss B. Vaccinia virus l1 protein is required for cell entry and membrane fusion. J Virol. 2008;82:8687–94.CrossRef Bisht H, Weisberg AS, Moss B. Vaccinia virus l1 protein is required for cell entry and membrane fusion. J Virol. 2008;82:8687–94.CrossRef
4.
go back to reference Golden JW, Josleyn MD, Hooper JW. Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies. Vaccine. 2008;26:3507–15.CrossRef Golden JW, Josleyn MD, Hooper JW. Targeting the vaccinia virus L1 protein to the cell surface enhances production of neutralizing antibodies. Vaccine. 2008;26:3507–15.CrossRef
5.
go back to reference Shinoda K, Wyatt LS, Irvine KR, Moss B. Engineering the vaccinia virus L1 protein for increased neutralizing antibody response after DNA immunization. Virol J. 2009;6:28.CrossRef Shinoda K, Wyatt LS, Irvine KR, Moss B. Engineering the vaccinia virus L1 protein for increased neutralizing antibody response after DNA immunization. Virol J. 2009;6:28.CrossRef
6.
go back to reference Foo CH, Whitbeck JC, Ponce-de-Leon M, Saw WT, Cohen GH, Eisenberg RJ. The myristate moiety and amino terminus of vaccinia virus l1 constitute a bipartite functional region needed for entry. J Virol. 2012;86:5437–51.CrossRef Foo CH, Whitbeck JC, Ponce-de-Leon M, Saw WT, Cohen GH, Eisenberg RJ. The myristate moiety and amino terminus of vaccinia virus l1 constitute a bipartite functional region needed for entry. J Virol. 2012;86:5437–51.CrossRef
7.
go back to reference Foo CH, Lou H, Whitbeck JC, Ponce-de-Leon M, Atanasiu D, Eisenberg RJ, et al. Vaccinia virus L1 binds to cell surfaces and blocks virus entry independently of glycosaminoglycans. Virology. 2009;385:368–82.CrossRef Foo CH, Lou H, Whitbeck JC, Ponce-de-Leon M, Atanasiu D, Eisenberg RJ, et al. Vaccinia virus L1 binds to cell surfaces and blocks virus entry independently of glycosaminoglycans. Virology. 2009;385:368–82.CrossRef
8.
go back to reference Karki M, Kumar A, Venkatesan G, Arya S, Pandey AB. Genetic analysis of L1R myristoylated protein of Capripoxviruses reveals structural homogeneity among poxviruses. Infect Genet Evol. 2018;58:224–31.CrossRef Karki M, Kumar A, Venkatesan G, Arya S, Pandey AB. Genetic analysis of L1R myristoylated protein of Capripoxviruses reveals structural homogeneity among poxviruses. Infect Genet Evol. 2018;58:224–31.CrossRef
9.
go back to reference Caravaglio JV, Khachemoune A. Orf virus infection in humans: a review with a focus on advances in diagnosis and treatment. J Drugs Dermatol. 2017;16:684–9.PubMed Caravaglio JV, Khachemoune A. Orf virus infection in humans: a review with a focus on advances in diagnosis and treatment. J Drugs Dermatol. 2017;16:684–9.PubMed
10.
go back to reference Thaminy S, Miller J, Stagljar I. The split-ubiquitin membrane-based yeast two-hybrid system. Methods Mol Biol. 2004;261:297–312.PubMed Thaminy S, Miller J, Stagljar I. The split-ubiquitin membrane-based yeast two-hybrid system. Methods Mol Biol. 2004;261:297–312.PubMed
11.
go back to reference Stagljar I, Korostensky C, Johnsson N, te Heesen S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA. 1998;95:5187–92.CrossRef Stagljar I, Korostensky C, Johnsson N, te Heesen S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA. 1998;95:5187–92.CrossRef
12.
go back to reference Fetchko M, Stagljar I. Application of the split-ubiquitin membrane yeast two-hybrid system to investigate membrane protein interactions. Methods. 2004;32:349–62.CrossRef Fetchko M, Stagljar I. Application of the split-ubiquitin membrane yeast two-hybrid system to investigate membrane protein interactions. Methods. 2004;32:349–62.CrossRef
13.
go back to reference Marik A, Naiya H, Das M, Mukherjee G, Basu S, Saha C, et al. Split-ubiquitin yeast two-hybrid interaction reveals a novel interaction between a natural resistance associated macrophage protein and a membrane bound thioredoxin in Brassica juncea. Plant Mol Biol. 2016;92:519–37.CrossRef Marik A, Naiya H, Das M, Mukherjee G, Basu S, Saha C, et al. Split-ubiquitin yeast two-hybrid interaction reveals a novel interaction between a natural resistance associated macrophage protein and a membrane bound thioredoxin in Brassica juncea. Plant Mol Biol. 2016;92:519–37.CrossRef
14.
go back to reference Thaminy S, Auerbach D, Arnoldo A, Stagljar I. Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res. 2003;13:1744–53.CrossRef Thaminy S, Auerbach D, Arnoldo A, Stagljar I. Identification of novel ErbB3-interacting factors using the split-ubiquitin membrane yeast two-hybrid system. Genome Res. 2003;13:1744–53.CrossRef
15.
go back to reference Jia HJ, Zhan LL, Wang XX, He XB, Chen GH, Zhang Y, et al. Transcriptome analysis of sheep oral mucosa response to Orf virus infection. PLoS ONE. 2017;12. Jia HJ, Zhan LL, Wang XX, He XB, Chen GH, Zhang Y, et al. Transcriptome analysis of sheep oral mucosa response to Orf virus infection. PLoS ONE. 2017;12.
16.
go back to reference Zhou JSMH, Guo QS. Culturing of ovine testicular cells and observation of pathological changes of the cells innoculated with attenuated sheep poxvirus. Chin J Vet Sci Tech. 2004;9:71–4. Zhou JSMH, Guo QS. Culturing of ovine testicular cells and observation of pathological changes of the cells innoculated with attenuated sheep poxvirus. Chin J Vet Sci Tech. 2004;9:71–4.
17.
go back to reference Guohua Chen. HJ, Xiaobing He., Chunyan Wang., Qiwang Jing., Zhizhong Jing. orf Virus ORF047 gene eukaryotic expression and cell localization. Chin J Zoonosis. 2018;34:67~70. Guohua Chen. HJ, Xiaobing He., Chunyan Wang., Qiwang Jing., Zhizhong Jing. orf Virus ORF047 gene eukaryotic expression and cell localization. Chin J Zoonosis. 2018;34:67~70.
18.
go back to reference Ravanello MP, Hruby DE. Characterization of the vaccinia virus L1R myristylprotein as a component of the intracellular virion envelope. J Gen Virol. 1994;75(Pt 6):1479–83.CrossRef Ravanello MP, Hruby DE. Characterization of the vaccinia virus L1R myristylprotein as a component of the intracellular virion envelope. J Gen Virol. 1994;75(Pt 6):1479–83.CrossRef
19.
go back to reference Liu D, Yin B, Wang Q, Ju W, Chen Y, Qiu H, et al. Cytoplasmic poly(A) binding protein 4 is highly expressed in human colorectal cancer and correlates with better prognosis. J Genet Genomics. 2012;39:369–74.CrossRef Liu D, Yin B, Wang Q, Ju W, Chen Y, Qiu H, et al. Cytoplasmic poly(A) binding protein 4 is highly expressed in human colorectal cancer and correlates with better prognosis. J Genet Genomics. 2012;39:369–74.CrossRef
20.
go back to reference Burgess HM, Richardson WA, Anderson RC, Salaun C, Graham SV, Gray NK. Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs. J Cell Sci. 2011;124:3344–55.CrossRef Burgess HM, Richardson WA, Anderson RC, Salaun C, Graham SV, Gray NK. Nuclear relocalisation of cytoplasmic poly(A)-binding proteins PABP1 and PABP4 in response to UV irradiation reveals mRNA-dependent export of metazoan PABPs. J Cell Sci. 2011;124:3344–55.CrossRef
21.
go back to reference Gorgoni B, Gray NK. The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief Funct Genomic Proteomic. 2004;3:125–41.CrossRef Gorgoni B, Gray NK. The roles of cytoplasmic poly(A)-binding proteins in regulating gene expression: a developmental perspective. Brief Funct Genomic Proteomic. 2004;3:125–41.CrossRef
22.
go back to reference Smith RWP, Gray NK. Poly(A)-binding protein (PABP): a common viral target. Biochem J. 2010;426:1–11.CrossRef Smith RWP, Gray NK. Poly(A)-binding protein (PABP): a common viral target. Biochem J. 2010;426:1–11.CrossRef
23.
go back to reference Burgui I, Aragon T, Ortin J, Nieto A. PABP1 and elF4Gl associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J Gen Virol. 2003;84:3263–74.CrossRef Burgui I, Aragon T, Ortin J, Nieto A. PABP1 and elF4Gl associate with influenza virus NS1 protein in viral mRNA translation initiation complexes. J Gen Virol. 2003;84:3263–74.CrossRef
24.
go back to reference Wang XY, Bai J, Zhang LL, Wang XW, Li YF, Jiang P. Poly(A)-binding protein interacts with the nucleocapsid protein of porcine reproductive and respiratory syndrome virus and participates in viral replication. Antivir Res. 2012;96:315–23.CrossRef Wang XY, Bai J, Zhang LL, Wang XW, Li YF, Jiang P. Poly(A)-binding protein interacts with the nucleocapsid protein of porcine reproductive and respiratory syndrome virus and participates in viral replication. Antivir Res. 2012;96:315–23.CrossRef
25.
go back to reference Faria D, Lentze N, Almaca J, Luz S, Alessio L, Tian Y, et al. Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Arch. 2012;463:819–27.CrossRef Faria D, Lentze N, Almaca J, Luz S, Alessio L, Tian Y, et al. Regulation of ENaC biogenesis by the stress response protein SERP1. Pflugers Arch. 2012;463:819–27.CrossRef
26.
go back to reference Yamaguchi A, Hori O, Stern DM, Hartmann E, Ogawa S, Tohyama M. Stress-associated endoplasmic reticulum protein 1 (SERP1)/Ribosome-associated membrane protein 4 (RAMP4) stabilizes membrane proteins during stress and facilitates subsequent glycosylation. J Cell Biol. 1999;147:1195–204.CrossRef Yamaguchi A, Hori O, Stern DM, Hartmann E, Ogawa S, Tohyama M. Stress-associated endoplasmic reticulum protein 1 (SERP1)/Ribosome-associated membrane protein 4 (RAMP4) stabilizes membrane proteins during stress and facilitates subsequent glycosylation. J Cell Biol. 1999;147:1195–204.CrossRef
Metadata
Title
Identification and screening of host proteins interacting with ORFV-ORF047 protein
Authors
Guohua Chen
Xiaobing He
Huaijie Jia
Yongxiang Fang
Xiaoxia Wang
Zhongzi Lou
Fan Yang
Weike Li
Zhizhong Jing
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01499-y

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.