Skip to main content
Top
Published in: Virology Journal 1/2021

Open Access 01-12-2021 | Adenovirus | Research

Human adenoviruses in paediatric patients with respiratory tract infections in Beijing, China

Authors: Yiman Huang, Chao Wang, Fenlian Ma, Qiong Guo, Lihong Yao, Aijun Chen, Xiaoyi Luo, Lishu Zheng

Published in: Virology Journal | Issue 1/2021

Login to get access

Abstract

Background

Human adenoviruse (HAdV) is a major pathogen of paediatric respiratory tract infections (RTIs). Mutation or recombination of HAdV genes may cause changes in its pathogenicity and transmission. We described the epidemiology and genotypic diversity of HAdV in hospitalized children with RTIs in Beijing, China.

Methods

Nasopharyngeal aspirates were collected from hospitalized children with RTIs from April 2018 to March 2019. HAdVs were detected by a quantitative real-time PCR, and the hexon gene was used for phylogenetic analysis.

Results

Among 1572 samples, 90 (5.72%) were HAdV-positive. The HAdV detection rate was highest in November and July. Among HAdV-positive children, 61.11% (55/90) were co-infected with other respiratory viruses, the most common of which were human respiratory syncytial virus and human rhinovirus. The main diagnosis was bronchopneumonia, most patient have cough and fever. Children with a high viral load were more likely to have a high fever (P = 0.041) and elevated WBC count (P = 0.000). Of 55 HAdV-positive specimens, HAdV-B (63.64%), HAdV-C (27.27%), and HAdV-E (9.09%) were main epidemic species. Phylogenetic analysis indicated that hexon sequences of three samples were on the same branch with the recombinant HAdV strain (CBJ113), which was circulating in Beijing since 2016.

Conclusion

The HAdV-B3 and HAdV-B7 are the main epidemic strains in Beijing, and the recombinant HAdV-C strain CBJ113 has formed an epidemic trend.
Appendix
Available only for authorised users
Literature
1.
go back to reference Fukumi H, Nishikawa F, Kurimoto U, et al. Epidemiological studies of an outbreak of epidemic keratoconjunctivitis in Ogaki City and its vicinity, Gifu Prefecture in 1957. Jpn J Med Sci Biol. 1958;11(6):467–81.PubMedCrossRef Fukumi H, Nishikawa F, Kurimoto U, et al. Epidemiological studies of an outbreak of epidemic keratoconjunctivitis in Ogaki City and its vicinity, Gifu Prefecture in 1957. Jpn J Med Sci Biol. 1958;11(6):467–81.PubMedCrossRef
2.
go back to reference Crenshaw BJ, Jones LB, Bell CR, Kumar S, Matthews QL. Perspective on adenoviruses: epidemiology, pathogenicity, and gene therapy. Biomedicines. 2019;7(3):61.PubMedCentralCrossRef Crenshaw BJ, Jones LB, Bell CR, Kumar S, Matthews QL. Perspective on adenoviruses: epidemiology, pathogenicity, and gene therapy. Biomedicines. 2019;7(3):61.PubMedCentralCrossRef
3.
4.
go back to reference Yi L, Zou L, Lu J, et al. A cluster of adenovirus type B55 infection in a neurosurgical inpatient department of a general hospital in Guangdong, China. Influenza Other Respir Viruses. 2017;11(4):328–36.PubMedPubMedCentralCrossRef Yi L, Zou L, Lu J, et al. A cluster of adenovirus type B55 infection in a neurosurgical inpatient department of a general hospital in Guangdong, China. Influenza Other Respir Viruses. 2017;11(4):328–36.PubMedPubMedCentralCrossRef
5.
go back to reference Tan D, Zhu H, Fu Y, et al. Severe community-acquired pneumonia caused by human adenovirus in immunocompetent adults: a multicenter case series. PLoS ONE. 2016;11(3):e0151199.PubMedPubMedCentralCrossRef Tan D, Zhu H, Fu Y, et al. Severe community-acquired pneumonia caused by human adenovirus in immunocompetent adults: a multicenter case series. PLoS ONE. 2016;11(3):e0151199.PubMedPubMedCentralCrossRef
6.
go back to reference Akello JO, Kamgang R, Barbani MT, et al. Epidemiology of human adenoviruses: a 20-year retrospective observational study in hospitalized patients in Bern, Switzerland. Clin Epidemiol. 2020;12:353–66.PubMedPubMedCentralCrossRef Akello JO, Kamgang R, Barbani MT, et al. Epidemiology of human adenoviruses: a 20-year retrospective observational study in hospitalized patients in Bern, Switzerland. Clin Epidemiol. 2020;12:353–66.PubMedPubMedCentralCrossRef
7.
go back to reference Hiroi S, Morikawa S, Takahashi K, Komano J, Kase T. Molecular epidemiology of human adenoviruses d associated with epidemic keratoconjunctivitis in Osaka, Japan, 2001–2010. Jpn J Infect Dis. 2013;66(5):436–8.PubMedCrossRef Hiroi S, Morikawa S, Takahashi K, Komano J, Kase T. Molecular epidemiology of human adenoviruses d associated with epidemic keratoconjunctivitis in Osaka, Japan, 2001–2010. Jpn J Infect Dis. 2013;66(5):436–8.PubMedCrossRef
8.
go back to reference Kattareeya K, Pattara K, Hiroshi U, Niwat M. Enteric and non-enteric adenoviruses associated with acute gastroenteritis in pediatric patients in Thailand, 2011 to 2017. Plos One. 2019;14(8):e0220263.CrossRef Kattareeya K, Pattara K, Hiroshi U, Niwat M. Enteric and non-enteric adenoviruses associated with acute gastroenteritis in pediatric patients in Thailand, 2011 to 2017. Plos One. 2019;14(8):e0220263.CrossRef
9.
go back to reference Li P, Yang L, Guo J, et al. Circulation of HAdV-41 with diverse genome types and recombination in acute gastroenteritis among children in Shanghai. Sci Rep. 2017;7(1):3548.PubMedPubMedCentralCrossRef Li P, Yang L, Guo J, et al. Circulation of HAdV-41 with diverse genome types and recombination in acute gastroenteritis among children in Shanghai. Sci Rep. 2017;7(1):3548.PubMedPubMedCentralCrossRef
10.
go back to reference Lynch JR, Kajon AE. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin Respir Crit Care Med. 2016;37(4):586–602.PubMedPubMedCentralCrossRef Lynch JR, Kajon AE. Adenovirus: epidemiology, global spread of novel serotypes, and advances in treatment and prevention. Semin Respir Crit Care Med. 2016;37(4):586–602.PubMedPubMedCentralCrossRef
11.
go back to reference Westerberg S, Hagbom M, Rajan A, et al. Interaction of human enterochromaffin cells with human enteric adenovirus 41 leads to serotonin release and subsequent activation of enteric glia cells. J Virol. 2018;92(7):e00026-e118.PubMedPubMedCentralCrossRef Westerberg S, Hagbom M, Rajan A, et al. Interaction of human enterochromaffin cells with human enteric adenovirus 41 leads to serotonin release and subsequent activation of enteric glia cells. J Virol. 2018;92(7):e00026-e118.PubMedPubMedCentralCrossRef
12.
go back to reference Kajon AE, Lamson DM, Bair CR, et al. Adenovirus type 4 respiratory infections among civilian adults, Northeastern United States, 2011–2015(1). Emerg Infect Dis. 2018;24(2):201–9.PubMedPubMedCentralCrossRef Kajon AE, Lamson DM, Bair CR, et al. Adenovirus type 4 respiratory infections among civilian adults, Northeastern United States, 2011–2015(1). Emerg Infect Dis. 2018;24(2):201–9.PubMedPubMedCentralCrossRef
13.
go back to reference Fang X, Xu M, Fang Q, et al. Real-time utilization of metagenomic sequencing in the diagnosis and treatment monitoring of an invasive adenovirus B55 infection and subsequent herpes simplex virus encephalitis in an immunocompetent young adult. Open Forum Infect Dis. 2018;5(6):ofy114.PubMedPubMedCentralCrossRef Fang X, Xu M, Fang Q, et al. Real-time utilization of metagenomic sequencing in the diagnosis and treatment monitoring of an invasive adenovirus B55 infection and subsequent herpes simplex virus encephalitis in an immunocompetent young adult. Open Forum Infect Dis. 2018;5(6):ofy114.PubMedPubMedCentralCrossRef
14.
go back to reference Shu-Yan Z, Yan-Ping L, Dou-Dou H, et al. Fatal pneumonia cases caused by human adenovirus 55 in immunocompetent adults. Infect Dis. 2016;48(1):40–7.CrossRef Shu-Yan Z, Yan-Ping L, Dou-Dou H, et al. Fatal pneumonia cases caused by human adenovirus 55 in immunocompetent adults. Infect Dis. 2016;48(1):40–7.CrossRef
15.
go back to reference Cheng Z, Yan Y, Jing S, et al. Comparative genomic analysis of re-emergent human adenovirus type 55 pathogens associated with adult severe community-acquired pneumonia reveals conserved genomes and capsid proteins. Front Microbiol. 2018;9:1180.PubMedPubMedCentralCrossRef Cheng Z, Yan Y, Jing S, et al. Comparative genomic analysis of re-emergent human adenovirus type 55 pathogens associated with adult severe community-acquired pneumonia reveals conserved genomes and capsid proteins. Front Microbiol. 2018;9:1180.PubMedPubMedCentralCrossRef
16.
go back to reference Wang W, Liu Y, Zhou Y, et al. Whole-genome analyses of human adenovirus type 55 emerged in Tibet, Sichuan and Yunnan in China, in 2016. PLoS ONE. 2017;12(12):e0189625.PubMedPubMedCentralCrossRef Wang W, Liu Y, Zhou Y, et al. Whole-genome analyses of human adenovirus type 55 emerged in Tibet, Sichuan and Yunnan in China, in 2016. PLoS ONE. 2017;12(12):e0189625.PubMedPubMedCentralCrossRef
17.
go back to reference Li D, Zhou JN, Li H, et al. An outbreak of epidemic keratoconjunctivitis caused by human adenovirus type 8 in primary school, southwest China. BMC Infect Dis. 2019;19(1):624.PubMedPubMedCentralCrossRef Li D, Zhou JN, Li H, et al. An outbreak of epidemic keratoconjunctivitis caused by human adenovirus type 8 in primary school, southwest China. BMC Infect Dis. 2019;19(1):624.PubMedPubMedCentralCrossRef
18.
go back to reference Lamson BD, Kajon AE, Shudt M, et al. Molecular typing and whole genome next generation sequencing of human adenovirus 8 strains recovered from four 2012 outbreaks of keratoconjunctivitis in New York State. J Med Virol. 2018;90(9):1471–7.CrossRef Lamson BD, Kajon AE, Shudt M, et al. Molecular typing and whole genome next generation sequencing of human adenovirus 8 strains recovered from four 2012 outbreaks of keratoconjunctivitis in New York State. J Med Virol. 2018;90(9):1471–7.CrossRef
19.
go back to reference Mei YF, Skog J, Lindman K, Wadell G. Comparative analysis of the genome organization of human adenovirus 11, a member of the human adenovirus species B, and the commonly used human adenovirus 5 vector, a member of species C. J Gen Virol. 2003;84(8):2061–71.PubMedCrossRef Mei YF, Skog J, Lindman K, Wadell G. Comparative analysis of the genome organization of human adenovirus 11, a member of the human adenovirus species B, and the commonly used human adenovirus 5 vector, a member of species C. J Gen Virol. 2003;84(8):2061–71.PubMedCrossRef
20.
go back to reference Zuiyuan G, Libo T, Shuang X, et al. Epidemiological analysis of an outbreak of an adenovirus type 7 infection in a boot camp in China. PLoS ONE. 2020;15(6):e0232948.CrossRef Zuiyuan G, Libo T, Shuang X, et al. Epidemiological analysis of an outbreak of an adenovirus type 7 infection in a boot camp in China. PLoS ONE. 2020;15(6):e0232948.CrossRef
21.
go back to reference Tang L, Wang L, Tan X, Xu W. Adenovirus serotype 7 associated with a severe lower respiratory tract disease outbreak in infants in Shaanxi Province. China Virol J. 2011;8:23.PubMedCrossRef Tang L, Wang L, Tan X, Xu W. Adenovirus serotype 7 associated with a severe lower respiratory tract disease outbreak in infants in Shaanxi Province. China Virol J. 2011;8:23.PubMedCrossRef
22.
go back to reference Peigert SM, Jagat R, Archit K, et al. Molecular epidemiology of circulating human adenovirus types in acute conjunctivitis cases in Chandigarh, North India. Indian J Med Microb. 2018;36(1):113–5.CrossRef Peigert SM, Jagat R, Archit K, et al. Molecular epidemiology of circulating human adenovirus types in acute conjunctivitis cases in Chandigarh, North India. Indian J Med Microb. 2018;36(1):113–5.CrossRef
24.
go back to reference Hashimoto S, Gonzalez G, Harada S, et al. Recombinant type Human mastadenovirus D85 associated with epidemic keratoconjunctivitis since 2015 in Japan. J Med Virol. 2018;90(5):881–9.PubMedCrossRef Hashimoto S, Gonzalez G, Harada S, et al. Recombinant type Human mastadenovirus D85 associated with epidemic keratoconjunctivitis since 2015 in Japan. J Med Virol. 2018;90(5):881–9.PubMedCrossRef
25.
go back to reference Takahashi K, Gonzalez G, Kobayashi M, et al. Pediatric infections by human mastadenovirus C types 2, 89, and a recombinant type detected in Japan between 2011 and 2018. Viruses. 2019;11(12):1131.PubMedCentralCrossRef Takahashi K, Gonzalez G, Kobayashi M, et al. Pediatric infections by human mastadenovirus C types 2, 89, and a recombinant type detected in Japan between 2011 and 2018. Viruses. 2019;11(12):1131.PubMedCentralCrossRef
26.
go back to reference Robinson CM, Singh G, Henquell C, et al. Computational analysis and identification of an emergent human adenovirus pathogen implicated in a respiratory fatality. Virology. 2011;409(2):141–7.PubMedCrossRef Robinson CM, Singh G, Henquell C, et al. Computational analysis and identification of an emergent human adenovirus pathogen implicated in a respiratory fatality. Virology. 2011;409(2):141–7.PubMedCrossRef
27.
go back to reference Wang Y, Li Y, Lu R, et al. Phylogenetic evidence for intratypic recombinant events in a novel human adenovirus C that causes severe acute respiratory infection in children. Sci Rep. 2016;6:23014.PubMedPubMedCentralCrossRef Wang Y, Li Y, Lu R, et al. Phylogenetic evidence for intratypic recombinant events in a novel human adenovirus C that causes severe acute respiratory infection in children. Sci Rep. 2016;6:23014.PubMedPubMedCentralCrossRef
28.
go back to reference Singh G, Robinson CM, Dehghan S, et al. Overreliance on the hexon gene, leading to misclassification of human adenoviruses. J Virol. 2012;86(8):4693–5.PubMedPubMedCentralCrossRef Singh G, Robinson CM, Dehghan S, et al. Overreliance on the hexon gene, leading to misclassification of human adenoviruses. J Virol. 2012;86(8):4693–5.PubMedPubMedCentralCrossRef
29.
go back to reference Zhang L, Liu W, Liu D, et al. Epidemiological and clinical features of human metapneumovirus in hospitalised paediatric patients with acute respiratory illness: a cross-sectional study in Southern China, from 2013 to 2016. BMJ Open. 2018;8(2):e019308.PubMedPubMedCentralCrossRef Zhang L, Liu W, Liu D, et al. Epidemiological and clinical features of human metapneumovirus in hospitalised paediatric patients with acute respiratory illness: a cross-sectional study in Southern China, from 2013 to 2016. BMJ Open. 2018;8(2):e019308.PubMedPubMedCentralCrossRef
30.
go back to reference Weinberg GA, Schnabel KC, Erdman DD, et al. Field evaluation of TaqMan Array Card (TAC) for the simultaneous detection of multiple respiratory viruses in children with acute respiratory infection. J Clin Virol. 2013;57(3):254–60.PubMedPubMedCentralCrossRef Weinberg GA, Schnabel KC, Erdman DD, et al. Field evaluation of TaqMan Array Card (TAC) for the simultaneous detection of multiple respiratory viruses in children with acute respiratory infection. J Clin Virol. 2013;57(3):254–60.PubMedPubMedCentralCrossRef
31.
go back to reference Yao LH, Wang C, Wei TL, et al. Human adenovirus among hospitalized children with respiratory tract infections in Beijing, China, 2017–2018. Virol J. 2019;16(1):78.PubMedPubMedCentralCrossRef Yao LH, Wang C, Wei TL, et al. Human adenovirus among hospitalized children with respiratory tract infections in Beijing, China, 2017–2018. Virol J. 2019;16(1):78.PubMedPubMedCentralCrossRef
32.
go back to reference Hammitt LL, Kazungu S, Welch S, et al. Added value of an oropharyngeal swab in detection of viruses in children hospitalized with lower respiratory tract infection. J Clin Microbiol. 2011;49(6):2318–20.PubMedPubMedCentralCrossRef Hammitt LL, Kazungu S, Welch S, et al. Added value of an oropharyngeal swab in detection of viruses in children hospitalized with lower respiratory tract infection. J Clin Microbiol. 2011;49(6):2318–20.PubMedPubMedCentralCrossRef
33.
go back to reference Esposito S, Bosis S, Niesters HG, et al. Impact of human coronavirus infections in otherwise healthy children who attended an emergency department. J Med Virol. 2006;78(12):1609–15.PubMedPubMedCentralCrossRef Esposito S, Bosis S, Niesters HG, et al. Impact of human coronavirus infections in otherwise healthy children who attended an emergency department. J Med Virol. 2006;78(12):1609–15.PubMedPubMedCentralCrossRef
34.
go back to reference Kodani M, Yang G, Conklin LM, et al. Application of TaqMan low-density arrays for simultaneous detection of multiple respiratory pathogens. J Clin Microbiol. 2011;49(6):2175–82.PubMedPubMedCentralCrossRef Kodani M, Yang G, Conklin LM, et al. Application of TaqMan low-density arrays for simultaneous detection of multiple respiratory pathogens. J Clin Microbiol. 2011;49(6):2175–82.PubMedPubMedCentralCrossRef
35.
go back to reference Mcleish NJ, Witteveldt J, Clasper L, et al. Development and assay of RNA transcripts of enterovirus species A to D, rhinovirus species a to C, and human parechovirus: assessment of assay sensitivity and specificity of real-time screening and typing methods. J Clin Microbiol. 2012;50(9):2910–7.PubMedPubMedCentralCrossRef Mcleish NJ, Witteveldt J, Clasper L, et al. Development and assay of RNA transcripts of enterovirus species A to D, rhinovirus species a to C, and human parechovirus: assessment of assay sensitivity and specificity of real-time screening and typing methods. J Clin Microbiol. 2012;50(9):2910–7.PubMedPubMedCentralCrossRef
36.
go back to reference Ligozzi M, Diani E, Lissandrini F, et al. Assessment of NS1 gene-specific real time quantitative TaqMan PCR for the detection of human bocavirus in respiratory samples. Mol Cell Probes. 2017;34:53–5.PubMedCrossRef Ligozzi M, Diani E, Lissandrini F, et al. Assessment of NS1 gene-specific real time quantitative TaqMan PCR for the detection of human bocavirus in respiratory samples. Mol Cell Probes. 2017;34:53–5.PubMedCrossRef
37.
go back to reference Maertzdorf J, Wang CK, Brown JB, et al. Real-time reverse transcriptase PCR assay for detection of human metapneumoviruses from all known genetic lineages. J Clin Microbiol. 2004;42(3):981–6.PubMedPubMedCentralCrossRef Maertzdorf J, Wang CK, Brown JB, et al. Real-time reverse transcriptase PCR assay for detection of human metapneumoviruses from all known genetic lineages. J Clin Microbiol. 2004;42(3):981–6.PubMedPubMedCentralCrossRef
38.
go back to reference Lu QB, Tong YG, Wo Y, et al. Epidemiology of human adenovirus and molecular characterization of human adenovirus 55 in China, 2009–2012. Influenza Other Respir Viruses. 2014;8(3):302–8.PubMedPubMedCentralCrossRef Lu QB, Tong YG, Wo Y, et al. Epidemiology of human adenovirus and molecular characterization of human adenovirus 55 in China, 2009–2012. Influenza Other Respir Viruses. 2014;8(3):302–8.PubMedPubMedCentralCrossRef
39.
go back to reference Xie L, Zhang B, Xiao N, et al. Epidemiology of human adenovirus infection in children hospitalized with lower respiratory tract infections in Hunan. China J Med Virol. 2019;91(3):392–400.PubMedCrossRef Xie L, Zhang B, Xiao N, et al. Epidemiology of human adenovirus infection in children hospitalized with lower respiratory tract infections in Hunan. China J Med Virol. 2019;91(3):392–400.PubMedCrossRef
40.
go back to reference Zhao M, Guo Y, Qiu F, et al. Molecular and clinical characterization of human adenovirus associated with acute respiratory tract infection in hospitalized children. J Clin Virol. 2020;123:104254.PubMedCrossRef Zhao M, Guo Y, Qiu F, et al. Molecular and clinical characterization of human adenovirus associated with acute respiratory tract infection in hospitalized children. J Clin Virol. 2020;123:104254.PubMedCrossRef
41.
go back to reference De Conto F, Conversano F, Medici MC, et al. Epidemiology of human respiratory viruses in children with acute respiratory tract infection in a 3-year hospital-based survey in Northern Italy. Diagn Microbiol Infect Dis. 2019;94(3):260–7.PubMedPubMedCentralCrossRef De Conto F, Conversano F, Medici MC, et al. Epidemiology of human respiratory viruses in children with acute respiratory tract infection in a 3-year hospital-based survey in Northern Italy. Diagn Microbiol Infect Dis. 2019;94(3):260–7.PubMedPubMedCentralCrossRef
42.
go back to reference Shafiei-Jandaghi N, Yavarian J, Malekshahi SS, et al. Identification of adenovirus species in Iranian pediatric population with severe acute respiratory infections. Future Virol. 2019;14(9):577–83.CrossRef Shafiei-Jandaghi N, Yavarian J, Malekshahi SS, et al. Identification of adenovirus species in Iranian pediatric population with severe acute respiratory infections. Future Virol. 2019;14(9):577–83.CrossRef
43.
go back to reference Duan YL, Zhu Y, Xu BP, et al. Multicenter study of human adenovirus infection in pediatric community-acquired pneumonia in China. Zhonghua Er Ke Za Zhi 2019;57(1):27–32 (in Chinese). Duan YL, Zhu Y, Xu BP, et al. Multicenter study of human adenovirus infection in pediatric community-acquired pneumonia in China. Zhonghua Er Ke Za Zhi 2019;57(1):27–32 (in Chinese).
45.
go back to reference Ezazul H, Urmila B, Tahmina M, Leela A, Kumar AA. Worldwide increased prevalence of human adenovirus type 3 (HAdV-3) respiratory infections is well correlated with heterogeneous hypervariable regions (HVRs) of hexon. PLoS ONE. 2018;13(3):e0194516.CrossRef Ezazul H, Urmila B, Tahmina M, Leela A, Kumar AA. Worldwide increased prevalence of human adenovirus type 3 (HAdV-3) respiratory infections is well correlated with heterogeneous hypervariable regions (HVRs) of hexon. PLoS ONE. 2018;13(3):e0194516.CrossRef
46.
go back to reference Siew JX, Seah XFV, Chew YR, et al. Epidemiology of adenovirus infections and outcomes of cidofovir treatment in severely Ill children. Pediatr Infect Dis J. 2020;39(10):907–13.PubMedCrossRef Siew JX, Seah XFV, Chew YR, et al. Epidemiology of adenovirus infections and outcomes of cidofovir treatment in severely Ill children. Pediatr Infect Dis J. 2020;39(10):907–13.PubMedCrossRef
47.
go back to reference Torres S, Chodosh J, Seto D, Jones MS. The revolution in viral genomics as exemplified by the bioinformatic analysis of human adenoviruses. Viruses. 2010;2(7):1367–81.PubMedPubMedCentralCrossRef Torres S, Chodosh J, Seto D, Jones MS. The revolution in viral genomics as exemplified by the bioinformatic analysis of human adenoviruses. Viruses. 2010;2(7):1367–81.PubMedPubMedCentralCrossRef
48.
go back to reference Hui D, Hongli X, Li H, et al. Molecular epidemiology and clinical features analysis of respiratory adenovirus infections reveals correlations between genotype, inflammatory biomarkers, and disease severity. Biomed Res Int. 2020;66:4357910. Hui D, Hongli X, Li H, et al. Molecular epidemiology and clinical features analysis of respiratory adenovirus infections reveals correlations between genotype, inflammatory biomarkers, and disease severity. Biomed Res Int. 2020;66:4357910.
49.
go back to reference Gu-Lung L, Chun-Yi L, Jong-Min C, et al. Molecular epidemiology and clinical features of adenovirus infection in Taiwanese children, 2014. J Microbiol Immunol Infect. 2019;52(2):215–24.CrossRef Gu-Lung L, Chun-Yi L, Jong-Min C, et al. Molecular epidemiology and clinical features of adenovirus infection in Taiwanese children, 2014. J Microbiol Immunol Infect. 2019;52(2):215–24.CrossRef
Metadata
Title
Human adenoviruses in paediatric patients with respiratory tract infections in Beijing, China
Authors
Yiman Huang
Chao Wang
Fenlian Ma
Qiong Guo
Lihong Yao
Aijun Chen
Xiaoyi Luo
Lishu Zheng
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Adenovirus
Published in
Virology Journal / Issue 1/2021
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-021-01661-6

Other articles of this Issue 1/2021

Virology Journal 1/2021 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.