Skip to main content
Top
Published in: Annals of Nuclear Medicine 2/2023

Open Access 06-01-2023 | Positron Emission Tomography | Invited Review Article

A review of harmonization strategies for quantitative PET

Authors: Go Akamatsu, Yuji Tsutsui, Hiromitsu Daisaki, Katsuhiko Mitsumoto, Shingo Baba, Masayuki Sasaki

Published in: Annals of Nuclear Medicine | Issue 2/2023

Login to get access

Abstract

PET can reveal in vivo biological processes at the molecular level. PET-derived quantitative values have been used as a surrogate marker for clinical decision-making in numerous clinical studies and trials. However, quantitative values in PET are variable depending on technical, biological, and physical factors. The variability may have a significant impact on a study outcome. Appropriate scanner calibration and quality control, standardization of imaging protocols, and any necessary harmonization strategies are essential to make use of PET as a biomarker with low bias and variability. This review summarizes benefits, limitations, and remaining challenges for harmonization of quantitative PET, including whole-body PET in oncology, brain PET in neurology, PET/MR, and non-18F PET imaging. This review is expected to facilitate harmonization of quantitative PET and to promote the contribution of PET-derived biomarkers to research and development in medicine.
Literature
1.
go back to reference Evangelista L, Zucchetta P, Moletta L, Serafini S, Cassarino G, Pegoraro N, et al. The role of FDG PET/CT or PET/MRI in assessing response to neoadjuvant therapy for patients with borderline or resectable pancreatic cancer: a systematic literature review. Ann Nucl Med. 2021;35:767–76.CrossRef Evangelista L, Zucchetta P, Moletta L, Serafini S, Cassarino G, Pegoraro N, et al. The role of FDG PET/CT or PET/MRI in assessing response to neoadjuvant therapy for patients with borderline or resectable pancreatic cancer: a systematic literature review. Ann Nucl Med. 2021;35:767–76.CrossRef
2.
go back to reference Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, et al. Quantitative PET in the 2020s: a roadmap. Phys Med Biol. 2021;66:06FRM01.CrossRef Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, et al. Quantitative PET in the 2020s: a roadmap. Phys Med Biol. 2021;66:06FRM01.CrossRef
3.
go back to reference Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson PL, Voyvodic JT, et al. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res. 2015;24:27–67.CrossRef Raunig DL, McShane LM, Pennello G, Gatsonis C, Carson PL, Voyvodic JT, et al. Quantitative imaging biomarkers: a review of statistical methods for technical performance assessment. Stat Methods Med Res. 2015;24:27–67.CrossRef
4.
go back to reference O’Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14:169–86.CrossRef O’Connor JPB, Aboagye EO, Adams JE, Aerts HJWL, Barrington SF, Beer AJ, et al. Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol. 2017;14:169–86.CrossRef
5.
go back to reference Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol. 2006;24:3282–92.CrossRef Weber WA. Positron emission tomography as an imaging biomarker. J Clin Oncol. 2006;24:3282–92.CrossRef
6.
go back to reference Han S, Kim Y, Woo S, Kim T-H, Ryu J-S. Prognostic and predictive values of interim 18F-FDG PET during neoadjuvant chemoradiotherapy for esophageal cancer: a systematic review and meta-analysis. Ann Nucl Med. 2021;35:447–57.CrossRef Han S, Kim Y, Woo S, Kim T-H, Ryu J-S. Prognostic and predictive values of interim 18F-FDG PET during neoadjuvant chemoradiotherapy for esophageal cancer: a systematic review and meta-analysis. Ann Nucl Med. 2021;35:447–57.CrossRef
7.
go back to reference Mankoff DA, Pryma DA, Clark AS. Molecular imaging biomarkers for oncology clinical trials. J Nucl Med. 2014;55:525–8.CrossRef Mankoff DA, Pryma DA, Clark AS. Molecular imaging biomarkers for oncology clinical trials. J Nucl Med. 2014;55:525–8.CrossRef
8.
go back to reference Xu J, Li Y, Xie L, Sun X, Cai Z, Wang S, et al. An evaluation of the response to neoadjuvant chemotherapy for osteosarcoma of extremities: PERCIST versus RECIST 1.1 criteria after long-term follow-up. Ann Nucl Med. 2022;36:553–61.CrossRef Xu J, Li Y, Xie L, Sun X, Cai Z, Wang S, et al. An evaluation of the response to neoadjuvant chemotherapy for osteosarcoma of extremities: PERCIST versus RECIST 1.1 criteria after long-term follow-up. Ann Nucl Med. 2022;36:553–61.CrossRef
9.
go back to reference Guo H, Xu K, Duan G, Wen L, He Y. Progress and future prospective of FDG-PET/CT imaging combined with optimized procedures in lung cancer: toward precision medicine. Ann Nucl Med. 2022;36:1–14.CrossRef Guo H, Xu K, Duan G, Wen L, He Y. Progress and future prospective of FDG-PET/CT imaging combined with optimized procedures in lung cancer: toward precision medicine. Ann Nucl Med. 2022;36:1–14.CrossRef
10.
go back to reference Fahey FH, Kinahan PE, Doot RK, Kocak M, Thurston H, Poussaint TY. Variability in PET quantitation within a multicenter consortium. Med Phys. 2010;37:3660–6.CrossRef Fahey FH, Kinahan PE, Doot RK, Kocak M, Thurston H, Poussaint TY. Variability in PET quantitation within a multicenter consortium. Med Phys. 2010;37:3660–6.CrossRef
11.
go back to reference Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11S-20S.CrossRef Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50(Suppl 1):11S-20S.CrossRef
12.
go back to reference Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010;195:310–20.CrossRef Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010;195:310–20.CrossRef
13.
go back to reference Quak E, le Roux P-Y, Lasnon C, Robin P, Hofman MS, Bourhis D, et al. Does PET SUV harmonization affect PERCIST response classification? J Nucl Med. 2016;57:1699–706.CrossRef Quak E, le Roux P-Y, Lasnon C, Robin P, Hofman MS, Bourhis D, et al. Does PET SUV harmonization affect PERCIST response classification? J Nucl Med. 2016;57:1699–706.CrossRef
14.
go back to reference Houdu B, Lasnon C, Licaj I, Thomas G, Do P, Guizard A-V, et al. Why harmonization is needed when using FDG PET/CT as a prognosticator: demonstration with EARL-compliant SUV as an independent prognostic factor in lung cancer. Eur J Nucl Med Mol Imaging. 2019;46:421–8.CrossRef Houdu B, Lasnon C, Licaj I, Thomas G, Do P, Guizard A-V, et al. Why harmonization is needed when using FDG PET/CT as a prognosticator: demonstration with EARL-compliant SUV as an independent prognostic factor in lung cancer. Eur J Nucl Med Mol Imaging. 2019;46:421–8.CrossRef
15.
go back to reference Doot RK, Kurland BF, Kinahan PE, Mankoff DA. Design considerations for using PET as a response measure in single site and multicenter clinical trials. Acad Radiol. 2012;19:184–90.CrossRef Doot RK, Kurland BF, Kinahan PE, Mankoff DA. Design considerations for using PET as a response measure in single site and multicenter clinical trials. Acad Radiol. 2012;19:184–90.CrossRef
16.
go back to reference Makris NE, Huisman MC, Kinahan PE, Lammertsma AA, Boellaard R. Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures. Eur J Nucl Med Mol Imaging. 2013;40:1507–15.CrossRef Makris NE, Huisman MC, Kinahan PE, Lammertsma AA, Boellaard R. Evaluation of strategies towards harmonization of FDG PET/CT studies in multicentre trials: comparison of scanner validation phantoms and data analysis procedures. Eur J Nucl Med Mol Imaging. 2013;40:1507–15.CrossRef
17.
go back to reference Quak E, le Roux P-Y, Hofman MS, Robin P, Bourhis D, Callahan J, et al. Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients. Eur J Nucl Med Mol Imaging. 2015;42:2072–82.CrossRef Quak E, le Roux P-Y, Hofman MS, Robin P, Bourhis D, Callahan J, et al. Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients. Eur J Nucl Med Mol Imaging. 2015;42:2072–82.CrossRef
18.
go back to reference Lasnon C, Majdoub M, Lavigne B, Do P, Madelaine J, Visvikis D, et al. 18F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging. 2016;43:2324–35.CrossRef Lasnon C, Majdoub M, Lavigne B, Do P, Madelaine J, Visvikis D, et al. 18F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer. Eur J Nucl Med Mol Imaging. 2016;43:2324–35.CrossRef
19.
go back to reference Lasnon C, Quak E, le Roux P-Y, Robin P, Hofman MS, Bourhis D, et al. EORTC PET response criteria are more influenced by reconstruction inconsistencies than PERCIST but both benefit from the EARL harmonization program. EJNMMI Physics. 2017;4:17.CrossRef Lasnon C, Quak E, le Roux P-Y, Robin P, Hofman MS, Bourhis D, et al. EORTC PET response criteria are more influenced by reconstruction inconsistencies than PERCIST but both benefit from the EARL harmonization program. EJNMMI Physics. 2017;4:17.CrossRef
20.
go back to reference Panetta JV, Daube-Witherspoon ME, Karp JS. Validation of phantom-based harmonization for patient harmonization. Med Phys. 2017;44:3534–44.CrossRef Panetta JV, Daube-Witherspoon ME, Karp JS. Validation of phantom-based harmonization for patient harmonization. Med Phys. 2017;44:3534–44.CrossRef
21.
go back to reference Tsutsui Y, Daisaki H, Akamatsu G, Umeda T, Ogawa M, Kajiwara H, et al. Multicentre analysis of PET SUV using vendor-neutral software: the Japanese harmonization technology (J-Hart) study. EJNMMI Res. 2018;8:83.CrossRef Tsutsui Y, Daisaki H, Akamatsu G, Umeda T, Ogawa M, Kajiwara H, et al. Multicentre analysis of PET SUV using vendor-neutral software: the Japanese harmonization technology (J-Hart) study. EJNMMI Res. 2018;8:83.CrossRef
22.
go back to reference Kaalep A, Sera T, Rijnsdorp S, Yaqub M, Talsma A, Lodge MA, et al. Feasibility of state of the art PET/CT systems performance harmonization. Eur J Nucl Med Mol Imaging. 2018;45:1344–61.CrossRef Kaalep A, Sera T, Rijnsdorp S, Yaqub M, Talsma A, Lodge MA, et al. Feasibility of state of the art PET/CT systems performance harmonization. Eur J Nucl Med Mol Imaging. 2018;45:1344–61.CrossRef
23.
go back to reference Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59:1321–8.CrossRef Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A postreconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018;59:1321–8.CrossRef
24.
go back to reference Namías M, Bradshaw T, Menezes VO, Machado MAD, Jeraj R. A novel approach for quantitative harmonization in PET. Phys Med Biol. 2018;63:095019.CrossRef Namías M, Bradshaw T, Menezes VO, Machado MAD, Jeraj R. A novel approach for quantitative harmonization in PET. Phys Med Biol. 2018;63:095019.CrossRef
25.
go back to reference Rubello D, Colletti PM. SUV harmonization between different hybrid PET/CT systems. Clin Nucl Med. 2018;43:811–4.CrossRef Rubello D, Colletti PM. SUV harmonization between different hybrid PET/CT systems. Clin Nucl Med. 2018;43:811–4.CrossRef
26.
go back to reference Kaneta T, Daisaki H, Ogawa M, Liu E-T, Iizuka H, Arisawa T, et al. Use of count-based image reconstruction to evaluate the variability and repeatability of measured standardised uptake values. PLoS ONE. 2018;13:e0192549.CrossRef Kaneta T, Daisaki H, Ogawa M, Liu E-T, Iizuka H, Arisawa T, et al. Use of count-based image reconstruction to evaluate the variability and repeatability of measured standardised uptake values. PLoS ONE. 2018;13:e0192549.CrossRef
27.
go back to reference Kaalep A, Burggraaff CN, Pieplenbosch S, Verwer EE, Sera T, Zijlstra J, et al. Quantitative implications of the updated EARL 2019 PET–CT performance standards. EJNMMI Phys. 2019;6:1–16.CrossRef Kaalep A, Burggraaff CN, Pieplenbosch S, Verwer EE, Sera T, Zijlstra J, et al. Quantitative implications of the updated EARL 2019 PET–CT performance standards. EJNMMI Phys. 2019;6:1–16.CrossRef
28.
go back to reference Machado MAD, Menezes VO, Namías M, Vieira NS, Queiroz CC, Matheoud R, et al. Protocols for harmonized quantification and noise reduction in low-dose oncologic 18F-FDG PET/CT imaging. J Nucl Med Technol. 2019;47:47–54.CrossRef Machado MAD, Menezes VO, Namías M, Vieira NS, Queiroz CC, Matheoud R, et al. Protocols for harmonized quantification and noise reduction in low-dose oncologic 18F-FDG PET/CT imaging. J Nucl Med Technol. 2019;47:47–54.CrossRef
29.
go back to reference Daisaki H, Kitajima K, Nakajo M, Watabe T, Ito K, Sakamoto F, et al. Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies. Sci Rep. 2021;11:8517.CrossRef Daisaki H, Kitajima K, Nakajo M, Watabe T, Ito K, Sakamoto F, et al. Usefulness of semi-automatic harmonization strategy of standardized uptake values for multicenter PET studies. Sci Rep. 2021;11:8517.CrossRef
30.
go back to reference Prenosil GA, Hentschel M, Weitzel T, Sari H, Shi K, Afshar-Oromieh A, et al. EARL compliance measurements on the biograph vision Quadra PET/CT system with a long axial field of view. EJNMMI Physics. 2022;9:26.CrossRef Prenosil GA, Hentschel M, Weitzel T, Sari H, Shi K, Afshar-Oromieh A, et al. EARL compliance measurements on the biograph vision Quadra PET/CT system with a long axial field of view. EJNMMI Physics. 2022;9:26.CrossRef
31.
go back to reference Monsef A, Ay MR, Sheikhzadeh P, Geramifar P, Rahmim A, Ghafarian P. Harmonization based on quantitative analysis of standardized uptake value variations across PET/CT scanners: a multicenter phantom study. Nucl Med Commun. 2022;43:1004–14.CrossRef Monsef A, Ay MR, Sheikhzadeh P, Geramifar P, Rahmim A, Ghafarian P. Harmonization based on quantitative analysis of standardized uptake value variations across PET/CT scanners: a multicenter phantom study. Nucl Med Commun. 2022;43:1004–14.CrossRef
32.
go back to reference Jiménez-Ortega E, Agüera R, Ureba A, Balcerzyk M, Wals-Zurita A, García-Gómez FJ, et al. Implications of the Harmonization of [18F]FDG-PET/CT imaging for response assessment of treatment in radiotherapy planning. Tomography. 2022;8:1097–112.CrossRef Jiménez-Ortega E, Agüera R, Ureba A, Balcerzyk M, Wals-Zurita A, García-Gómez FJ, et al. Implications of the Harmonization of [18F]FDG-PET/CT imaging for response assessment of treatment in radiotherapy planning. Tomography. 2022;8:1097–112.CrossRef
33.
go back to reference Akamatsu G, Shimada N, Matsumoto K, Daisaki H, Suzuki K, Watabe H, et al. New standards for phantom image quality and SUV harmonization range for multicenter oncology PET studies. Ann Nucl Med. 2022;36:144–61.CrossRef Akamatsu G, Shimada N, Matsumoto K, Daisaki H, Suzuki K, Watabe H, et al. New standards for phantom image quality and SUV harmonization range for multicenter oncology PET studies. Ann Nucl Med. 2022;36:144–61.CrossRef
34.
go back to reference DiFilippo FP, Patel M, Patel S. Automated quantitative analysis of american college of radiology PET phantom images. J Nucl Med Technol. 2019;47:249–54.CrossRef DiFilippo FP, Patel M, Patel S. Automated quantitative analysis of american college of radiology PET phantom images. J Nucl Med Technol. 2019;47:249–54.CrossRef
35.
go back to reference Scheuermann JS, Saffer JR, Karp JS, Levering AM, Siegel BA. Qualification of PET scanners for use in multicenter cancer clinical trials: the American college of radiology imaging network experience. J Nucl Med. 2009;50:1187–93.CrossRef Scheuermann JS, Saffer JR, Karp JS, Levering AM, Siegel BA. Qualification of PET scanners for use in multicenter cancer clinical trials: the American college of radiology imaging network experience. J Nucl Med. 2009;50:1187–93.CrossRef
36.
go back to reference Sunderland JJ, Christian PE. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom. J Nucl Med. 2015;56:145–52.CrossRef Sunderland JJ, Christian PE. Quantitative PET/CT scanner performance characterization based upon the society of nuclear medicine and molecular imaging clinical trials network oncology clinical simulator phantom. J Nucl Med. 2015;56:145–52.CrossRef
37.
go back to reference Ulrich EJ, Sunderland JJ, Smith BJ, Mohiuddin I, Parkhurst J, Plichta KA, et al. Automated model-based quantitative analysis of phantoms with spherical inserts in FDG PET scans. Med Phys. 2018;45:258–76.CrossRef Ulrich EJ, Sunderland JJ, Smith BJ, Mohiuddin I, Parkhurst J, Plichta KA, et al. Automated model-based quantitative analysis of phantoms with spherical inserts in FDG PET scans. Med Phys. 2018;45:258–76.CrossRef
38.
go back to reference Kaalep A, Sera T, Oyen W, Krause BJ, Chiti A, Liu Y, et al. EANM/EARL FDG-PET/CT accreditation-summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging. 2018;45:412–22.CrossRef Kaalep A, Sera T, Oyen W, Krause BJ, Chiti A, Liu Y, et al. EANM/EARL FDG-PET/CT accreditation-summary results from the first 200 accredited imaging systems. Eur J Nucl Med Mol Imaging. 2018;45:412–22.CrossRef
39.
go back to reference Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imag. 2015;42:328–54.CrossRef Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imag. 2015;42:328–54.CrossRef
40.
go back to reference FDG-PET/CT Technical Committee. FDG-PET/CT as an imaging biomarker measuring response to cancer therapy. Quantitative imaging biomarkers alliance, version 1.13, technically confirmed version. QIBA, Nov 18, 2016. Available from: RSNA.ORG/QIBA FDG-PET/CT Technical Committee. FDG-PET/CT as an imaging biomarker measuring response to cancer therapy. Quantitative imaging biomarkers alliance, version 1.13, technically confirmed version. QIBA, Nov 18, 2016. Available from: RSNA.ORG/QIBA
41.
go back to reference Kinahan PE, Perlman ES, Sunderland JJ, Subramaniam R, Wollenweber SD, Turkington TG, et al. The QIBA Profile for FDG PET/CT as an imaging biomarker measuring response to cancer therapy. Radiology. 2020;294:647–57.CrossRef Kinahan PE, Perlman ES, Sunderland JJ, Subramaniam R, Wollenweber SD, Turkington TG, et al. The QIBA Profile for FDG PET/CT as an imaging biomarker measuring response to cancer therapy. Radiology. 2020;294:647–57.CrossRef
43.
go back to reference Lasnon C, Desmonts C, Quak E, Gervais R, Do P, Dubos-Arvis C, et al. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2013;40:985–96.CrossRef Lasnon C, Desmonts C, Quak E, Gervais R, Do P, Dubos-Arvis C, et al. Harmonizing SUVs in multicentre trials when using different generation PET systems: prospective validation in non-small cell lung cancer patients. Eur J Nucl Med Mol Imaging. 2013;40:985–96.CrossRef
44.
go back to reference Kelly MD, Declerck JM. SUVref: reducing reconstruction-dependent variation in PET SUV. EJNMMI Res. 2011;1:16.CrossRef Kelly MD, Declerck JM. SUVref: reducing reconstruction-dependent variation in PET SUV. EJNMMI Res. 2011;1:16.CrossRef
45.
go back to reference Ito K, Kitajima K, Toriihara A, Ishibashi M, Nakahara T, Daisaki H, et al. 18F-FDG PET/CT for monitoring anti-PD-1 therapy in patients with non-small cell lung cancer using SUV harmonization of results obtained with various types of PET/CT scanners used at different centers. Ann Nucl Med. 2021;35:1253–63.CrossRef Ito K, Kitajima K, Toriihara A, Ishibashi M, Nakahara T, Daisaki H, et al. 18F-FDG PET/CT for monitoring anti-PD-1 therapy in patients with non-small cell lung cancer using SUV harmonization of results obtained with various types of PET/CT scanners used at different centers. Ann Nucl Med. 2021;35:1253–63.CrossRef
46.
go back to reference Kitajima K, Watabe T, Nakajo M, Ishibashi M, Daisaki H, Soeda F, et al. Tumor response evaluation in patients with malignant melanoma undergoing immune checkpoint inhibitor therapy and prognosis prediction using 18F-FDG PET/CT: multicenter study for comparison of EORTC, PERCIST, and imPERCIST. Jpn J Radiol. 2022;40:75–85.CrossRef Kitajima K, Watabe T, Nakajo M, Ishibashi M, Daisaki H, Soeda F, et al. Tumor response evaluation in patients with malignant melanoma undergoing immune checkpoint inhibitor therapy and prognosis prediction using 18F-FDG PET/CT: multicenter study for comparison of EORTC, PERCIST, and imPERCIST. Jpn J Radiol. 2022;40:75–85.CrossRef
47.
go back to reference Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41:661–81. Phelps ME. PET: the merging of biology and imaging into molecular imaging. J Nucl Med. 2000;41:661–81.
48.
go back to reference Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi-center PET studies. Neuroimage. 2009;46:154–9.CrossRef Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi-center PET studies. Neuroimage. 2009;46:154–9.CrossRef
49.
go back to reference Ikari Y, Akamatsu G, Nishio T, Ishii K, Ito K, Iwatsubo T, et al. Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Physics. 2016;3:23.CrossRef Ikari Y, Akamatsu G, Nishio T, Ishii K, Ito K, Iwatsubo T, et al. Phantom criteria for qualification of brain FDG and amyloid PET across different cameras. EJNMMI Physics. 2016;3:23.CrossRef
50.
go back to reference Ikari Y, Nishio T, Makishi Y, Miya Y, Ito K, Koeppe RA, et al. Head motion evaluation and correction for PET scans with 18F-FDG in the Japanese Alzheimer’s disease neuroimaging initiative (J-ADNI) multi-center study. Ann Nucl Med. 2012;26:535–44.CrossRef Ikari Y, Nishio T, Makishi Y, Miya Y, Ito K, Koeppe RA, et al. Head motion evaluation and correction for PET scans with 18F-FDG in the Japanese Alzheimer’s disease neuroimaging initiative (J-ADNI) multi-center study. Ann Nucl Med. 2012;26:535–44.CrossRef
51.
go back to reference Verwer EE, Golla SSV, Kaalep A, Lubberink M, van Velden FHP, Bettinardi V, et al. Harmonisation of PET/CT contrast recovery performance for brain studies. Eur J Nucl Med Mol Imaging. 2021;48:2856–70.CrossRef Verwer EE, Golla SSV, Kaalep A, Lubberink M, van Velden FHP, Bettinardi V, et al. Harmonisation of PET/CT contrast recovery performance for brain studies. Eur J Nucl Med Mol Imaging. 2021;48:2856–70.CrossRef
52.
go back to reference Akamatsu G, Ikari Y, Nishio T, Nishida H, Ohnishi A, Aita K, et al. Optimization of image reconstruction conditions with phantoms for brain FDG and amyloid PET imaging. Ann Nucl Med. 2016;30:18–28.CrossRef Akamatsu G, Ikari Y, Nishio T, Nishida H, Ohnishi A, Aita K, et al. Optimization of image reconstruction conditions with phantoms for brain FDG and amyloid PET imaging. Ann Nucl Med. 2016;30:18–28.CrossRef
53.
go back to reference Hoffman EJ, Cutler PD, Guerrero TM, Digby WM, Mazziotta JC. Assessment of accuracy of PET utilizing a 3-D phantom to simulate the activity distribution of [18F]fluorodeoxyglucose uptake in the human brain. J Cereb Blood Flow Metab. 1991;11:A17-25.CrossRef Hoffman EJ, Cutler PD, Guerrero TM, Digby WM, Mazziotta JC. Assessment of accuracy of PET utilizing a 3-D phantom to simulate the activity distribution of [18F]fluorodeoxyglucose uptake in the human brain. J Cereb Blood Flow Metab. 1991;11:A17-25.CrossRef
54.
go back to reference Hoye J, Toyonaga T, Zakiniaeiz Y, Stanley G, Hampson M, Morris ED. Harmonization of [11C]raclopride brain PET images from the HR+ and HRRT: method development and validation in human subjects. EJNMMI Physics. 2022;9:27.CrossRef Hoye J, Toyonaga T, Zakiniaeiz Y, Stanley G, Hampson M, Morris ED. Harmonization of [11C]raclopride brain PET images from the HR+ and HRRT: method development and validation in human subjects. EJNMMI Physics. 2022;9:27.CrossRef
55.
go back to reference Iida H, Hori Y, Ishida K, Imabayashi E, Matsuda H, Takahashi M, et al. Three-dimensional brain phantom containing bone and grey matter structures with a realistic head contour. Ann Nucl Med. 2013;27:25–36.CrossRef Iida H, Hori Y, Ishida K, Imabayashi E, Matsuda H, Takahashi M, et al. Three-dimensional brain phantom containing bone and grey matter structures with a realistic head contour. Ann Nucl Med. 2013;27:25–36.CrossRef
56.
go back to reference Fahey F, Christian P, Zukotynski K, Sexton-Stallone B, Kiss C, Clarke B, et al. Use of a qualification phantom for PET brain imaging in a multicenter consortium: a collaboration between the pediatric brain tumor consortium and the SNMMI clinical trials network. J Nucl Med. 2019;60:677–82.CrossRef Fahey F, Christian P, Zukotynski K, Sexton-Stallone B, Kiss C, Clarke B, et al. Use of a qualification phantom for PET brain imaging in a multicenter consortium: a collaboration between the pediatric brain tumor consortium and the SNMMI clinical trials network. J Nucl Med. 2019;60:677–82.CrossRef
57.
go back to reference Graham MS, Krebs S, Bale T, Domfe K, Lobaugh SM, Zhang Z, et al. Value of [18F]-FDG positron emission tomography in patients with recurrent glioblastoma receiving bevacizumab. Neurooncol Adv. 2020;2:1–9. Graham MS, Krebs S, Bale T, Domfe K, Lobaugh SM, Zhang Z, et al. Value of [18F]-FDG positron emission tomography in patients with recurrent glioblastoma receiving bevacizumab. Neurooncol Adv. 2020;2:1–9.
58.
go back to reference Azad N, Yu M, Davidson B, Choyke P, Chen CC, Wood BJ, et al. Translational predictive biomarker analysis of the phase 1b Sorafenib and Bevacizumab study expansion cohort. Mol Cell Proteomics. 2013;12:1621–31.CrossRef Azad N, Yu M, Davidson B, Choyke P, Chen CC, Wood BJ, et al. Translational predictive biomarker analysis of the phase 1b Sorafenib and Bevacizumab study expansion cohort. Mol Cell Proteomics. 2013;12:1621–31.CrossRef
59.
go back to reference Scott AM, Mitchell PL, O’Keefe G, Saunder T, Hicks RJ, Poon A, et al. Pharmacodynamic analysis of tumour perfusion assessed by 15O-water-PET imaging during treatment with sunitinib malate in patients with advanced malignancies. EJNMMI Res. 2012;2:31.CrossRef Scott AM, Mitchell PL, O’Keefe G, Saunder T, Hicks RJ, Poon A, et al. Pharmacodynamic analysis of tumour perfusion assessed by 15O-water-PET imaging during treatment with sunitinib malate in patients with advanced malignancies. EJNMMI Res. 2012;2:31.CrossRef
60.
go back to reference Hristova I, Boellaard R, Vogel W, Mottaghy F, Marreaud S, Collette S, et al. Retrospective quality control review of FDG scans in the imaging sub-study of PALETTE EORTC 62072/VEG110727: a randomized, double-blind, placebo-controlled phase III trial. Eur J Nucl Med Mol Imaging. 2015;42:848–57.CrossRef Hristova I, Boellaard R, Vogel W, Mottaghy F, Marreaud S, Collette S, et al. Retrospective quality control review of FDG scans in the imaging sub-study of PALETTE EORTC 62072/VEG110727: a randomized, double-blind, placebo-controlled phase III trial. Eur J Nucl Med Mol Imaging. 2015;42:848–57.CrossRef
61.
go back to reference Garrett CR, Siu LL, El-Khoueiry A, Buter J, Rocha-Lima CM, Marshall J, et al. Phase I dose-escalation study to determine the safety, pharmacokinetics and pharmacodynamics of brivanib alaninate in combination with full-dose cetuximab in patients with advanced gastrointestinal malignancies who have failed prior therapy. Br J Cancer. 2011;105:44–52.CrossRef Garrett CR, Siu LL, El-Khoueiry A, Buter J, Rocha-Lima CM, Marshall J, et al. Phase I dose-escalation study to determine the safety, pharmacokinetics and pharmacodynamics of brivanib alaninate in combination with full-dose cetuximab in patients with advanced gastrointestinal malignancies who have failed prior therapy. Br J Cancer. 2011;105:44–52.CrossRef
62.
go back to reference Haug AR, Auernhammer CJ, Wängler B, Schmidt GP, Uebleis C, Göke B, et al. 68Ga-DOTATATE PET/CT for the Early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2010;51:1349–56.CrossRef Haug AR, Auernhammer CJ, Wängler B, Schmidt GP, Uebleis C, Göke B, et al. 68Ga-DOTATATE PET/CT for the Early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2010;51:1349–56.CrossRef
63.
go back to reference Kitajima K, Miyoshi Y, Sekine T, Takei H, Ito K, Suto A, et al. Harmonized pretreatment quantitative volume-based FDG-PET/CT parameters for prognosis of stage I-III breast cancer: Multicenter study. Oncotarget. 2021;12:95–105.CrossRef Kitajima K, Miyoshi Y, Sekine T, Takei H, Ito K, Suto A, et al. Harmonized pretreatment quantitative volume-based FDG-PET/CT parameters for prognosis of stage I-III breast cancer: Multicenter study. Oncotarget. 2021;12:95–105.CrossRef
64.
go back to reference Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.CrossRef Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature. 2016;537:50–6.CrossRef
65.
go back to reference Sevigny J, Suhy J, Chiao P, Chen T, Klein G, Purcell D, et al. Amyloid PET screening for enrichment of early-stage alzheimer disease clinical trials. Alzheimer Dis Assoc Disord. 2016;30:1–7.CrossRef Sevigny J, Suhy J, Chiao P, Chen T, Klein G, Purcell D, et al. Amyloid PET screening for enrichment of early-stage alzheimer disease clinical trials. Alzheimer Dis Assoc Disord. 2016;30:1–7.CrossRef
66.
go back to reference Senda M, Ishii K, Ito K, Ikeuchi T, Matsuda H, Iwatsubo T, et al. A Japanese multicenter study on PET and other biomarkers for subjects with potential preclinical and prodromal Alzheimer’s disease. J Prev Alzheimers Dis. 2021;8:1–8. Senda M, Ishii K, Ito K, Ikeuchi T, Matsuda H, Iwatsubo T, et al. A Japanese multicenter study on PET and other biomarkers for subjects with potential preclinical and prodromal Alzheimer’s disease. J Prev Alzheimers Dis. 2021;8:1–8.
67.
go back to reference Da-Ano R, Visvikis D, Hatt M. Harmonization strategies for multicenter radiomics investigations. Phys Med Biol. 2020;65:24TR02.CrossRef Da-Ano R, Visvikis D, Hatt M. Harmonization strategies for multicenter radiomics investigations. Phys Med Biol. 2020;65:24TR02.CrossRef
68.
go back to reference Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD, Jagust WJ, et al. The centiloid project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer Dement. 2015;11:1–15.CrossRef Klunk WE, Koeppe RA, Price JC, Benzinger TL, Devous MD, Jagust WJ, et al. The centiloid project: standardizing quantitative amyloid plaque estimation by PET. Alzheimer Dement. 2015;11:1–15.CrossRef
69.
go back to reference Navitsky M, Joshi AD, Kennedy I, Klunk WE, Rowe CC, Wong DF, et al. Standardization of amyloid quantitation with florbetapir standardized uptake value ratios to the Centiloid scale. Alzheimer Dement. 2018;14:1565–71.CrossRef Navitsky M, Joshi AD, Kennedy I, Klunk WE, Rowe CC, Wong DF, et al. Standardization of amyloid quantitation with florbetapir standardized uptake value ratios to the Centiloid scale. Alzheimer Dement. 2018;14:1565–71.CrossRef
70.
go back to reference Battle MR, Pillay LC, Lowe VJ, Knopman D, Kemp B, Rowe CC, et al. Centiloid scaling for quantification of brain amyloid with [18F] flutemetamol using multiple processing methods. EJNMMI Res. 2018;8:107.CrossRef Battle MR, Pillay LC, Lowe VJ, Knopman D, Kemp B, Rowe CC, et al. Centiloid scaling for quantification of brain amyloid with [18F] flutemetamol using multiple processing methods. EJNMMI Res. 2018;8:107.CrossRef
71.
go back to reference Rowe CC, Doré V, Jones G, Baxendale D, Mulligan RS, Bullich S, et al. 18F-Florbetaben PET beta-amyloid binding expressed in Centiloids. Eur J Nucl Med Mol Imaging. 2017;44:2053–9.CrossRef Rowe CC, Doré V, Jones G, Baxendale D, Mulligan RS, Bullich S, et al. 18F-Florbetaben PET beta-amyloid binding expressed in Centiloids. Eur J Nucl Med Mol Imaging. 2017;44:2053–9.CrossRef
72.
go back to reference Yamao T, Miwa K, Wagatsuma K, Shigemoto Y, Sato N, Akamatsu G, et al. Centiloid scale analysis for 18F-THK5351 PET imaging in Alzheimer’s disease. Phys Med. 2021;82:249–54.CrossRef Yamao T, Miwa K, Wagatsuma K, Shigemoto Y, Sato N, Akamatsu G, et al. Centiloid scale analysis for 18F-THK5351 PET imaging in Alzheimer’s disease. Phys Med. 2021;82:249–54.CrossRef
73.
go back to reference Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.CrossRef Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.CrossRef
74.
go back to reference Orlhac F, Eertink JJ, Cottereau A-S, Zijlstra JM, Thieblemont C, Meignan M, et al. A guide to combat harmonization of imaging biomarkers in multicenter studies. J Nucl Med. 2022;63:172–9.CrossRef Orlhac F, Eertink JJ, Cottereau A-S, Zijlstra JM, Thieblemont C, Meignan M, et al. A guide to combat harmonization of imaging biomarkers in multicenter studies. J Nucl Med. 2022;63:172–9.CrossRef
75.
go back to reference Dissaux G, Visvikis D, Da-ano R, Pradier O, Chajon E, Barillot I, et al. Pretreatment 18 F-FDG PET/CT radiomics predict local recurrence in patients treated with stereotactic body radiotherapy for early-stage non-small cell lung cancer: a multicentric study. J Nucl Med. 2020;61:814–20.CrossRef Dissaux G, Visvikis D, Da-ano R, Pradier O, Chajon E, Barillot I, et al. Pretreatment 18 F-FDG PET/CT radiomics predict local recurrence in patients treated with stereotactic body radiotherapy for early-stage non-small cell lung cancer: a multicentric study. J Nucl Med. 2020;61:814–20.CrossRef
76.
go back to reference Hotta M, Minamimoto R, Gohda Y, Miwa K, Otani K, Kiyomatsu T, et al. Prognostic value of 18F-FDG PET/CT with texture analysis in patients with rectal cancer treated by surgery. Ann Nucl Med. 2021;35:843–52.CrossRef Hotta M, Minamimoto R, Gohda Y, Miwa K, Otani K, Kiyomatsu T, et al. Prognostic value of 18F-FDG PET/CT with texture analysis in patients with rectal cancer treated by surgery. Ann Nucl Med. 2021;35:843–52.CrossRef
77.
go back to reference Nakamoto Y, Kitajima K, Toriihara A, Nakajo M, Hirata K. Recent topics of the clinical utility of PET/MRI in oncology and neuroscience. Ann Nucl Med. 2022;36:798–803.CrossRef Nakamoto Y, Kitajima K, Toriihara A, Nakajo M, Hirata K. Recent topics of the clinical utility of PET/MRI in oncology and neuroscience. Ann Nucl Med. 2022;36:798–803.CrossRef
78.
go back to reference Ito H, Kubo H, Takahashi K, Nishijima K-I, Ukon N, Nemoto A, et al. Integrated PET/MRI scanner with oxygen-15 labeled gases for quantification of cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen. Ann Nucl Med. 2021;35:421–8.CrossRef Ito H, Kubo H, Takahashi K, Nishijima K-I, Ukon N, Nemoto A, et al. Integrated PET/MRI scanner with oxygen-15 labeled gases for quantification of cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen. Ann Nucl Med. 2021;35:421–8.CrossRef
79.
go back to reference Ratib O, Nkoulou R. Potential applications of PET/MR imaging in cardiology. J Nucl Med. 2014;55:40S-46S.CrossRef Ratib O, Nkoulou R. Potential applications of PET/MR imaging in cardiology. J Nucl Med. 2014;55:40S-46S.CrossRef
80.
go back to reference Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.CrossRef Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106.CrossRef
81.
go back to reference Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.CrossRef Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.CrossRef
82.
go back to reference Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2–2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys. 2016;43:2334–43.CrossRef Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2–2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Med Phys. 2016;43:2334–43.CrossRef
83.
go back to reference Chen S, Gu Y, Yu H, Chen X, Cao T, Hu L, et al. NEMA NU2-2012 performance measurements of the United Imaging uPMR790: an integrated PET/MR system. Eur J Nucl Med Mol Imaging. 2021;48:1726–35.CrossRef Chen S, Gu Y, Yu H, Chen X, Cao T, Hu L, et al. NEMA NU2-2012 performance measurements of the United Imaging uPMR790: an integrated PET/MR system. Eur J Nucl Med Mol Imaging. 2021;48:1726–35.CrossRef
84.
go back to reference Wollenweber SD, Ambwani S, Lonn AHR, Shanbhag DD, Thiruvenkadam S, Kaushik S, et al. Comparison of 4-class and continuous fat/water methods for whole-body, MR-based PET attenuation correction. IEEE NSS/MIC Conf Rec. 2012;2012:3019–25. Wollenweber SD, Ambwani S, Lonn AHR, Shanbhag DD, Thiruvenkadam S, Kaushik S, et al. Comparison of 4-class and continuous fat/water methods for whole-body, MR-based PET attenuation correction. IEEE NSS/MIC Conf Rec. 2012;2012:3019–25.
85.
go back to reference Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. PET/MR imaging of bone lesions – implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.CrossRef Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, et al. PET/MR imaging of bone lesions – implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging. 2012;39:1154–60.CrossRef
86.
go back to reference Aznar MC, Sersar R, Saabye J, Ladefoged CN, Andersen FL, Rasmussen JH, et al. Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol. 2014;83:1177–83.CrossRef Aznar MC, Sersar R, Saabye J, Ladefoged CN, Andersen FL, Rasmussen JH, et al. Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol. 2014;83:1177–83.CrossRef
87.
go back to reference Chen Y, An H. Attenuation correction of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25:245–55.CrossRef Chen Y, An H. Attenuation correction of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25:245–55.CrossRef
88.
go back to reference Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: A 4-class tissue segmentation technique using a combined ultrashort-echo-time/dixon MRI sequence. J Nucl Med. 2012;53:796–804.CrossRef Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, et al. MRI-based attenuation correction for hybrid PET/MRI systems: A 4-class tissue segmentation technique using a combined ultrashort-echo-time/dixon MRI sequence. J Nucl Med. 2012;53:796–804.CrossRef
89.
go back to reference Sekine T, ter Voert EEGW, Warnock G, Buck A, Huellner M, Veit-Haibach P, et al. Clinical evaluation of zero-echo-time attenuation correction for brain 18F-FDG PET/MRI: Comparison with atlas attenuation correction. J Nucl Med. 2016;57:1927–32.CrossRef Sekine T, ter Voert EEGW, Warnock G, Buck A, Huellner M, Veit-Haibach P, et al. Clinical evaluation of zero-echo-time attenuation correction for brain 18F-FDG PET/MRI: Comparison with atlas attenuation correction. J Nucl Med. 2016;57:1927–32.CrossRef
90.
go back to reference Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep Learning MR imaging–based attenuation correction for PET/MR imaging. Radiology. 2018;286:676–84.CrossRef Liu F, Jang H, Kijowski R, Bradshaw T, McMillan AB. Deep Learning MR imaging–based attenuation correction for PET/MR imaging. Radiology. 2018;286:676–84.CrossRef
91.
go back to reference Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-echo-time and dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59:852–8.CrossRef Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-echo-time and dixon deep pseudo-CT (ZeDD CT): direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59:852–8.CrossRef
92.
go back to reference Hashimoto F, Ito M, Ote K, Isobe T, Okada H, Ouchi Y. Deep-learning-based attenuation correction for brain PET with various radiotracers. Ann Nucl Med. 2021;35:691–701.CrossRef Hashimoto F, Ito M, Ote K, Isobe T, Okada H, Ouchi Y. Deep-learning-based attenuation correction for brain PET with various radiotracers. Ann Nucl Med. 2021;35:691–701.CrossRef
93.
go back to reference Ziegler S, Braun H, Ritt P, Hocke C, Kuwert T, Quick HH. Systematic evaluation of phantom fluids for simultaneous PET/MR hybrid imaging. J Nucl Med. 2013;54:1464–71.CrossRef Ziegler S, Braun H, Ritt P, Hocke C, Kuwert T, Quick HH. Systematic evaluation of phantom fluids for simultaneous PET/MR hybrid imaging. J Nucl Med. 2013;54:1464–71.CrossRef
94.
go back to reference Boellaard R, Rausch I, Beyer T, Delso G, Yaqub M, Quick HH, et al. Quality control for quantitative multicenter whole-body PET/MR studies: a NEMA image quality phantom study with three current PET/MR systems. Med Phys. 2015;42:5961–9.CrossRef Boellaard R, Rausch I, Beyer T, Delso G, Yaqub M, Quick HH, et al. Quality control for quantitative multicenter whole-body PET/MR studies: a NEMA image quality phantom study with three current PET/MR systems. Med Phys. 2015;42:5961–9.CrossRef
95.
go back to reference Ziegler S, Jakoby BW, Braun H, Paulus DH, Quick HH. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging. EJNMMI Physics. 2015;2:181–214.CrossRef Ziegler S, Jakoby BW, Braun H, Paulus DH, Quick HH. NEMA image quality phantom measurements and attenuation correction in integrated PET/MR hybrid imaging. EJNMMI Physics. 2015;2:181–214.CrossRef
96.
go back to reference Laforest R, Khalighi M, Natsuaki Y, Rajagopal A, Chandramohan D, Byrd D, et al. Harmonization of PET image reconstruction parameters in simultaneous PET/MRI. EJNMMI Physics. 2021;8:75.CrossRef Laforest R, Khalighi M, Natsuaki Y, Rajagopal A, Chandramohan D, Byrd D, et al. Harmonization of PET image reconstruction parameters in simultaneous PET/MRI. EJNMMI Physics. 2021;8:75.CrossRef
97.
go back to reference Jentzen W, Phaosricharoen J, Gomez B, Hetkamp P, Stebner V, Binse I, et al. Quantitative performance of 124I PET/MR of neck lesions in thyroid cancer patients using 124I PET/CT as reference. EJNMMI Physics. 2018;5:13.CrossRef Jentzen W, Phaosricharoen J, Gomez B, Hetkamp P, Stebner V, Binse I, et al. Quantitative performance of 124I PET/MR of neck lesions in thyroid cancer patients using 124I PET/CT as reference. EJNMMI Physics. 2018;5:13.CrossRef
98.
go back to reference Ribeiro D, Hallett W, Tavares AAS. Performance evaluation of the Q.Clear reconstruction framework versus conventional reconstruction algorithms for quantitative brain PET-MR studies. EJNMMI Phys. 2021;8:41.CrossRef Ribeiro D, Hallett W, Tavares AAS. Performance evaluation of the Q.Clear reconstruction framework versus conventional reconstruction algorithms for quantitative brain PET-MR studies. EJNMMI Phys. 2021;8:41.CrossRef
99.
go back to reference Teuho J, Johansson J, Linden J, Hansen AE, Holm S, Keller SH, et al. Effect of attenuation correction on regional quantification between PET/MR and PET/CT: a multicenter study using a 3-dimensional brain phantom. J Nucl Med. 2016;57:818–24.CrossRef Teuho J, Johansson J, Linden J, Hansen AE, Holm S, Keller SH, et al. Effect of attenuation correction on regional quantification between PET/MR and PET/CT: a multicenter study using a 3-dimensional brain phantom. J Nucl Med. 2016;57:818–24.CrossRef
100.
go back to reference Lennie E, Tsoumpas C, Sourbron S. Multimodal phantoms for clinical PET/MRI. EJNMMI Physics. 2021;8:62.CrossRef Lennie E, Tsoumpas C, Sourbron S. Multimodal phantoms for clinical PET/MRI. EJNMMI Physics. 2021;8:62.CrossRef
101.
go back to reference Harries J, Jochimsen TH, Scholz T, Schlender T, Barthel H, Sabri O, et al. A realistic phantom of the human head for PET-MRI. EJNMMI Physics. 2020;7:52.CrossRef Harries J, Jochimsen TH, Scholz T, Schlender T, Barthel H, Sabri O, et al. A realistic phantom of the human head for PET-MRI. EJNMMI Physics. 2020;7:52.CrossRef
102.
go back to reference Rausch I, Valladares A, Sundar LKS, Beyer T, Hacker M, Meyerspeer M, et al. Standard MRI-based attenuation correction for PET/MRI phantoms: a novel concept using MRI-visible polymer. EJNMMI Physics. 2021;8:18.CrossRef Rausch I, Valladares A, Sundar LKS, Beyer T, Hacker M, Meyerspeer M, et al. Standard MRI-based attenuation correction for PET/MRI phantoms: a novel concept using MRI-visible polymer. EJNMMI Physics. 2021;8:18.CrossRef
103.
go back to reference Catana C, Laforest R, An H, Boada F, Cao T, Faul D, et al. A path to qualification of PET/MRI scanners for multicenter brain imaging studies: evaluation of MRI-based attenuation correction methods using a patient phantom. J Nucl Med. 2022;63:615–21.CrossRef Catana C, Laforest R, An H, Boada F, Cao T, Faul D, et al. A path to qualification of PET/MRI scanners for multicenter brain imaging studies: evaluation of MRI-based attenuation correction methods using a patient phantom. J Nucl Med. 2022;63:615–21.CrossRef
104.
go back to reference Kato A, Nakamoto Y, Ishimori T, Hayakawa N, Ueda M, Temma T, et al. Diagnostic performance of 68Ga-DOTATOC PET/CT in tumor-induced osteomalacia. Ann Nucl Med. 2021;35:397–405.CrossRef Kato A, Nakamoto Y, Ishimori T, Hayakawa N, Ueda M, Temma T, et al. Diagnostic performance of 68Ga-DOTATOC PET/CT in tumor-induced osteomalacia. Ann Nucl Med. 2021;35:397–405.CrossRef
105.
go back to reference Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60:13S-19S.CrossRef Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60:13S-19S.CrossRef
106.
go back to reference Kömek H, Can C, Güzel Y, Oruç Z, Gündoğan C, Yildirim ÖA, et al. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the 18F-FDG PET/CT. Ann Nucl Med. 2021;35:744–52.CrossRef Kömek H, Can C, Güzel Y, Oruç Z, Gündoğan C, Yildirim ÖA, et al. 68Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the 18F-FDG PET/CT. Ann Nucl Med. 2021;35:744–52.CrossRef
107.
go back to reference Donin NM, Reiter RE. Why targeting PSMA is a game changer in the management of prostate cancer. J Nucl Med. 2018;59:177–82.CrossRef Donin NM, Reiter RE. Why targeting PSMA is a game changer in the management of prostate cancer. J Nucl Med. 2018;59:177–82.CrossRef
108.
go back to reference Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4.CrossRef Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57:1941–4.CrossRef
109.
go back to reference Plyku D, Hobbs RF, Wu D, Garcia C, Sgouros G, van Nostrand D. I-124 PET/CT image-based dosimetry in patients with differentiated thyroid cancer treated with I-131: correlation of patient-specific lesional dosimetry to treatment response. Ann Nucl Med. 2022;36:213–23.CrossRef Plyku D, Hobbs RF, Wu D, Garcia C, Sgouros G, van Nostrand D. I-124 PET/CT image-based dosimetry in patients with differentiated thyroid cancer treated with I-131: correlation of patient-specific lesional dosimetry to treatment response. Ann Nucl Med. 2022;36:213–23.CrossRef
110.
go back to reference Jauw YWS, O’Donoghue JA, Zijlstra JM, Hoekstra OS, der Houven M-V, van Oordt CW, Morschhauser F, et al. 89Zr-immuno-PET: toward a noninvasive clinical tool to measure target engagement of therapeutic antibodies in vivo. J Nucl Med. 2019;60:1825–32.CrossRef Jauw YWS, O’Donoghue JA, Zijlstra JM, Hoekstra OS, der Houven M-V, van Oordt CW, Morschhauser F, et al. 89Zr-immuno-PET: toward a noninvasive clinical tool to measure target engagement of therapeutic antibodies in vivo. J Nucl Med. 2019;60:1825–32.CrossRef
111.
go back to reference Wu AM. Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med. 2009;50:2–5.CrossRef Wu AM. Antibodies and antimatter: the resurgence of immuno-PET. J Nucl Med. 2009;50:2–5.CrossRef
112.
go back to reference Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Physics. 2016;3:8.CrossRef Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Physics. 2016;3:8.CrossRef
113.
go back to reference Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: CHARACTERIZATION of PET/CT and PET/MR scanners for a comprehensive set of positron emitters of growing application—18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nucl Med. 2015;56:1285–91.CrossRef Soderlund AT, Chaal J, Tjio G, Totman JJ, Conti M, Townsend DW. Beyond 18F-FDG: CHARACTERIZATION of PET/CT and PET/MR scanners for a comprehensive set of positron emitters of growing application—18F, 11C, 89Zr, 124I, 68Ga, and 90Y. J Nucl Med. 2015;56:1285–91.CrossRef
114.
go back to reference Meng X, Liu H, Li H, Wang S, Sun H, Wang F, et al. Evaluating the impact of different positron emitters on the performance of a clinical PET/MR system. Med Phys. 2022;49:2642–51.CrossRef Meng X, Liu H, Li H, Wang S, Sun H, Wang F, et al. Evaluating the impact of different positron emitters on the performance of a clinical PET/MR system. Med Phys. 2022;49:2642–51.CrossRef
115.
go back to reference Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: The development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot. 2007;65:318–27.CrossRef Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: The development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot. 2007;65:318–27.CrossRef
116.
go back to reference Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A. 2011;648:S236–40.CrossRef Moses WW. Fundamental limits of spatial resolution in PET. Nucl Instrum Methods Phys Res A. 2011;648:S236–40.CrossRef
117.
go back to reference Carter LM, Kesner AL, Pratt EC, Sanders VA, Massicano AVF, Cutler CS, et al. The impact of positron range on PET resolution, evaluated with phantoms and PHITS monte carlo simulations for conventional and non-conventional radionuclides. Mol Imaging Biol. 2020;22:73–84.CrossRef Carter LM, Kesner AL, Pratt EC, Sanders VA, Massicano AVF, Cutler CS, et al. The impact of positron range on PET resolution, evaluated with phantoms and PHITS monte carlo simulations for conventional and non-conventional radionuclides. Mol Imaging Biol. 2020;22:73–84.CrossRef
118.
go back to reference Braune A, Oehme L, Freudenberg R, Hofheinz F, van den Hoff J, Kotzerke J, et al. Comparison of image quality and spatial resolution between 18F, 68Ga, and 64Cu phantom measurements using a digital Biograph Vision PET/CT. EJNMMI Physics. 2022;9:58.CrossRef Braune A, Oehme L, Freudenberg R, Hofheinz F, van den Hoff J, Kotzerke J, et al. Comparison of image quality and spatial resolution between 18F, 68Ga, and 64Cu phantom measurements using a digital Biograph Vision PET/CT. EJNMMI Physics. 2022;9:58.CrossRef
119.
go back to reference Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJG, et al. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 standards in the siemens inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7.CrossRef Disselhorst JA, Brom M, Laverman P, Slump CH, Boerman OC, Oyen WJG, et al. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 standards in the siemens inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7.CrossRef
120.
go back to reference Teuho J, Riehakainen L, Honkaniemi A, Moisio O, Han C, Tirri M, et al. Evaluation of image quality with four positron emitters and three preclinical PET/CT systems. EJNMMI Res. 2020;10:155.CrossRef Teuho J, Riehakainen L, Honkaniemi A, Moisio O, Han C, Tirri M, et al. Evaluation of image quality with four positron emitters and three preclinical PET/CT systems. EJNMMI Res. 2020;10:155.CrossRef
121.
go back to reference Huizing DMV, Koopman D, van Dalen JA, Gotthardt M, Boellaard R, Sera T, et al. Multicentre quantitative 68Ga PET/CT performance harmonisation. EJNMMI Physics. 2019;6:19.CrossRef Huizing DMV, Koopman D, van Dalen JA, Gotthardt M, Boellaard R, Sera T, et al. Multicentre quantitative 68Ga PET/CT performance harmonisation. EJNMMI Physics. 2019;6:19.CrossRef
122.
go back to reference Makris NE, Boellaard R, Visser EP, de Jong JR, Vanderlinden B, Wierts R, et al. Multicenter harmonization of 89Zr PET/CT performance. J Nucl Med. 2014;55:264–7.CrossRef Makris NE, Boellaard R, Visser EP, de Jong JR, Vanderlinden B, Wierts R, et al. Multicenter harmonization of 89Zr PET/CT performance. J Nucl Med. 2014;55:264–7.CrossRef
123.
go back to reference Kaalep A, Huisman M, Sera T, Vugts D, Boellaard R. Feasibility of PET/CT system performance harmonisation for quantitative multicentre 89Zr studies. EJNMMI Physics. 2018;5:26.CrossRef Kaalep A, Huisman M, Sera T, Vugts D, Boellaard R. Feasibility of PET/CT system performance harmonisation for quantitative multicentre 89Zr studies. EJNMMI Physics. 2018;5:26.CrossRef
124.
go back to reference Christian PE, Williams S-P, Burrell L, Castaneda P, Albiani J, Sandella N, et al. Optimization of 89Zr PET imaging for improved multisite quantification and lesion detection using an anthropomorphic phantom. J Nucl Med Technol. 2020;48:54–7.CrossRef Christian PE, Williams S-P, Burrell L, Castaneda P, Albiani J, Sandella N, et al. Optimization of 89Zr PET imaging for improved multisite quantification and lesion detection using an anthropomorphic phantom. J Nucl Med Technol. 2020;48:54–7.CrossRef
125.
go back to reference Bailey DL, Hofman MS, Forwood NJ, O’Keefe GJ, Scott AM, van Wyngaardt WM, et al. Accuracy of dose calibrators for 68Ga PET imaging: unexpected findings in a multicenter clinical pretrial assessment. J Nucl Med. 2018;59:636–8.CrossRef Bailey DL, Hofman MS, Forwood NJ, O’Keefe GJ, Scott AM, van Wyngaardt WM, et al. Accuracy of dose calibrators for 68Ga PET imaging: unexpected findings in a multicenter clinical pretrial assessment. J Nucl Med. 2018;59:636–8.CrossRef
126.
go back to reference Sanderson T, Solomon J, Nottage C, Dickson J. Underestimation of 68Ga PET/CT SUV caused by activity overestimation using default calibrator settings. Phys Med. 2019;59:158–62.CrossRef Sanderson T, Solomon J, Nottage C, Dickson J. Underestimation of 68Ga PET/CT SUV caused by activity overestimation using default calibrator settings. Phys Med. 2019;59:158–62.CrossRef
127.
go back to reference Beattie BJ, Pentlow KS, O’Donoghue J, Humm JL. A Recommendation for revised dose calibrator measurement procedures for 89Zr and 124I. PLoS ONE. 2014;9:e106868.CrossRef Beattie BJ, Pentlow KS, O’Donoghue J, Humm JL. A Recommendation for revised dose calibrator measurement procedures for 89Zr and 124I. PLoS ONE. 2014;9:e106868.CrossRef
128.
go back to reference Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, et al. New PET technologies–embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging. 2021;48:2711–26.CrossRef Aide N, Lasnon C, Kesner A, Levin CS, Buvat I, Iagaru A, et al. New PET technologies–embracing progress and pushing the limits. Eur J Nucl Med Mol Imaging. 2021;48:2711–26.CrossRef
129.
go back to reference de Jong TL, Koopman D, van Dalen JA, Tegelaar A, van Dijk JD, Stevens H, et al. Performance of digital PET/CT compared with conventional PET/CT in oncologic patients: a prospective comparison study. Ann Nucl Med. 2022;36:756–64.CrossRef de Jong TL, Koopman D, van Dalen JA, Tegelaar A, van Dijk JD, Stevens H, et al. Performance of digital PET/CT compared with conventional PET/CT in oncologic patients: a prospective comparison study. Ann Nucl Med. 2022;36:756–64.CrossRef
130.
go back to reference Alberts I, Sachpekidis C, Prenosil G, Viscione M, Bohn KP, Mingels C, et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [18F]-FDG PET/CT. Ann Nucl Med. 2021;35:485–92.CrossRef Alberts I, Sachpekidis C, Prenosil G, Viscione M, Bohn KP, Mingels C, et al. Digital PET/CT allows for shorter acquisition protocols or reduced radiopharmaceutical dose in [18F]-FDG PET/CT. Ann Nucl Med. 2021;35:485–92.CrossRef
131.
go back to reference Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance evaluation of the uEXPLORER Total-Body PET/CT scanner based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med. 2021;62:861–70.CrossRef Spencer BA, Berg E, Schmall JP, Omidvari N, Leung EK, Abdelhafez YG, et al. Performance evaluation of the uEXPLORER Total-Body PET/CT scanner based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view. J Nucl Med. 2021;62:861–70.CrossRef
132.
go back to reference Prenosil GA, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, et al. Performance characteristics of the biograph vision quadra PET/CT system with a long axial field of view using the NEMA NU 2–2018 standard. J Nucl Med. 2022;63:476–84.CrossRef Prenosil GA, Sari H, Fürstner M, Afshar-Oromieh A, Shi K, Rominger A, et al. Performance characteristics of the biograph vision quadra PET/CT system with a long axial field of view using the NEMA NU 2–2018 standard. J Nucl Med. 2022;63:476–84.CrossRef
133.
go back to reference Akamatsu G, Takahashi M, Tashima H, Iwao Y, Yoshida E, Wakizaka H, et al. Performance evaluation of VRAIN: a brain-dedicated PET with a hemispherical detector arrangement. Phys Med Biol. 2022;67:225011.CrossRef Akamatsu G, Takahashi M, Tashima H, Iwao Y, Yoshida E, Wakizaka H, et al. Performance evaluation of VRAIN: a brain-dedicated PET with a hemispherical detector arrangement. Phys Med Biol. 2022;67:225011.CrossRef
134.
go back to reference Onishi Y, Isobe T, Ito M, Hashimoto F, Omura T, Yoshikawa E. Performance evaluation of dedicated brain PET scanner with motion correction system. Ann Nucl Med. 2022;36:746–55.CrossRef Onishi Y, Isobe T, Ito M, Hashimoto F, Omura T, Yoshikawa E. Performance evaluation of dedicated brain PET scanner with motion correction system. Ann Nucl Med. 2022;36:746–55.CrossRef
Metadata
Title
A review of harmonization strategies for quantitative PET
Authors
Go Akamatsu
Yuji Tsutsui
Hiromitsu Daisaki
Katsuhiko Mitsumoto
Shingo Baba
Masayuki Sasaki
Publication date
06-01-2023
Publisher
Springer Nature Singapore
Published in
Annals of Nuclear Medicine / Issue 2/2023
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01820-x

Other articles of this Issue 2/2023

Annals of Nuclear Medicine 2/2023 Go to the issue