Skip to main content
Top
Published in: EJNMMI Research 1/2020

Open Access 01-12-2020 | Positron Emission Tomography | Original research

Evaluation of image quality with four positron emitters and three preclinical PET/CT systems

Authors: Jarmo Teuho, Leon Riehakainen, Aake Honkaniemi, Olli Moisio, Chunlei Han, Marko Tirri, Shihao Liu, Tove J. Grönroos, Jie Liu, Lin Wan, Xiao Liang, Yiqing Ling, Yuexuan Hua, Anne Roivainen, Juhani Knuuti, Qingguo Xie, Mika Teräs, Nicola D’Ascenzo, Riku Klén

Published in: EJNMMI Research | Issue 1/2020

Login to get access

Abstract

Background

We investigated the image quality of 11C, 68Ga, 18F and 89Zr, which have different positron fractions, physical half-lifes and positron ranges. Three small animal positron emission tomography/computed tomography (PET/CT) systems were used in the evaluation, including the Siemens Inveon, RAYCAN X5 and Molecubes β-cube. The evaluation was performed on a single scanner level using the national electrical manufacturers association (NEMA) image quality phantom and analysis protocol. Acquisitions were performed with the standard NEMA protocol for 18F and using a radionuclide-specific acquisition time for 11C, 68Ga and 89Zr. Images were assessed using percent recovery coefficient (%RC), percentage standard deviation (%STD), image uniformity (%SD), spill-over ratio (SOR) and evaluation of image quantification.

Results

68Ga had the lowest %RC (< 62%) across all systems. 18F had the highest maximum %RC (> 85%) and lowest %STD for the 5 mm rod across all systems. For 11C and 89Zr, the maximum %RC was close (> 76%) to the %RC with 18F. A larger SOR were measured in water with 11C and 68Ga compared to 18F on all systems. SOR in air reflected image reconstruction and data correction performance. Large variation in image quantification was observed, with maximal errors of 22.73% (89Zr, Inveon), 17.54% (89Zr, RAYCAN) and − 14.87% (68Ga, Molecubes).

Conclusions

The systems performed most optimal in terms of NEMA image quality parameters when using 18F, where 11C and 89Zr performed slightly worse than 18F. The performance was least optimal when using 68Ga, due to large positron range. The large quantification differences prompt optimization not only by terms of image quality but also quantification. Further investigation should be performed to find an appropriate calibration and harmonization protocol and the evaluation should be conducted on a multi-scanner and multi-center level.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mannheim JG, Schmid AM, Pichler BJ. Influence of Co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol. 2017;19:825–36.CrossRef Mannheim JG, Schmid AM, Pichler BJ. Influence of Co-57 and CT transmission measurements on the quantification accuracy and partial volume effect of a small animal PET scanner. Mol Imaging Biol. 2017;19:825–36.CrossRef
2.
go back to reference Mannheim JG, Kara F, Doorduin J, et al. Standardization of small animal imaging-current status and future prospects. Mol Imaging Biol. 2018;20:716–31.CrossRef Mannheim JG, Kara F, Doorduin J, et al. Standardization of small animal imaging-current status and future prospects. Mol Imaging Biol. 2018;20:716–31.CrossRef
4.
go back to reference Mannheim JG, Mamach M, Reder S, et al. Reproducibility and comparability of preclinical PET imaging data: a multi-center small animal PET study. J Nucl Med. 2019;60:1483–91.CrossRef Mannheim JG, Mamach M, Reder S, et al. Reproducibility and comparability of preclinical PET imaging data: a multi-center small animal PET study. J Nucl Med. 2019;60:1483–91.CrossRef
5.
go back to reference Goertzen AL, Bao Q, Bergeron M, et al. NEMA NU 4–2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53:1300–9.CrossRef Goertzen AL, Bao Q, Bergeron M, et al. NEMA NU 4–2008 comparison of preclinical PET imaging systems. J Nucl Med. 2012;53:1300–9.CrossRef
6.
go back to reference National Electrical Manufacturers Association 2008 NEMA standards publication NU 4–2008 Performance Measurements of Small Animal Positron Emission Tomographs. Rosslyn, VA: National Electrical Manufacturers Association National Electrical Manufacturers Association 2008 NEMA standards publication NU 4–2008 Performance Measurements of Small Animal Positron Emission Tomographs. Rosslyn, VA: National Electrical Manufacturers Association
7.
go back to reference Osborne DR, Kuntner C, Berr S, Stout D. Guidance for efficient small animal imaging quality control. Mol Imaging Biol. 2017;19:485–98.CrossRef Osborne DR, Kuntner C, Berr S, Stout D. Guidance for efficient small animal imaging quality control. Mol Imaging Biol. 2017;19:485–98.CrossRef
8.
go back to reference Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:8.CrossRef Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3:8.CrossRef
9.
go back to reference Disselhorst JA, Brom M, Laverman P, et al. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 Standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7.CrossRef Disselhorst JA, Brom M, Laverman P, et al. Image-quality assessment for several positron emitters using the NEMA NU 4–2008 Standards in the Siemens Inveon small-animal PET scanner. J Nucl Med. 2010;51:610–7.CrossRef
10.
go back to reference Liu X, Laforest R. Quantitative small animal PET imaging with nonconventional nuclides. Nucl Med Biol. 2009;36:551–9.CrossRef Liu X, Laforest R. Quantitative small animal PET imaging with nonconventional nuclides. Nucl Med Biol. 2009;36:551–9.CrossRef
11.
go back to reference Attarwala AA, Karanja YW, Hardiansyah D, et al. Untersuchung der bildgebenden Eigenschaften des ALBIRA II Kleintier-PET-Systems für 18F, 68Ga und 64Cu. Z Med Phys. 2017;27:132–44.CrossRef Attarwala AA, Karanja YW, Hardiansyah D, et al. Untersuchung der bildgebenden Eigenschaften des ALBIRA II Kleintier-PET-Systems für 18F, 68Ga und 64Cu. Z Med Phys. 2017;27:132–44.CrossRef
12.
go back to reference Cañadas M, Sanz ER, Vives MO, et al. Performance evaluation for 68Ga and 18F of the ARGUS small-animal PET scanner based on the NEMA NU-4 standard. In: Nuclear science symposium conference record 2010; 3454–7 Cañadas M, Sanz ER, Vives MO, et al. Performance evaluation for 68Ga and 18F of the ARGUS small-animal PET scanner based on the NEMA NU-4 standard. In: Nuclear science symposium conference record 2010; 3454–7
13.
go back to reference Gaitanis A, Kastis GA, Vlastou E, Bouziotis P, Verginis P, Anagnostopoulos CD. Investigation of image reconstruction parameters of the Mediso nanoScan PC small-animal PET/CT scanner for two different positron emitters under NEMA NU 4–2008 Standards. Mol Imaging Biol. 2017;19:550–9.CrossRef Gaitanis A, Kastis GA, Vlastou E, Bouziotis P, Verginis P, Anagnostopoulos CD. Investigation of image reconstruction parameters of the Mediso nanoScan PC small-animal PET/CT scanner for two different positron emitters under NEMA NU 4–2008 Standards. Mol Imaging Biol. 2017;19:550–9.CrossRef
14.
go back to reference Presotto L, Spangler-Bickell M, Belloli S, et al. 3D Spatial resolution proprieties of Molecubes β-Cube: characterization with different isotopes. In: 2019 IEEE nuclear science symposium and medical imaging conference NSS/MIC 2019. 2019;2019–20. Presotto L, Spangler-Bickell M, Belloli S, et al. 3D Spatial resolution proprieties of Molecubes β-Cube: characterization with different isotopes. In: 2019 IEEE nuclear science symposium and medical imaging conference NSS/MIC 2019. 2019;2019–20.
15.
go back to reference Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance Evaluation of the Inveon Dedicated PET Preclinical Tomograph Based on the NEMA NU-4 Standards. J Nucl Med. 2009;50:401–8.CrossRef Bao Q, Newport D, Chen M, Stout DB, Chatziioannou AF. Performance Evaluation of the Inveon Dedicated PET Preclinical Tomograph Based on the NEMA NU-4 Standards. J Nucl Med. 2009;50:401–8.CrossRef
16.
go back to reference Krishnamoorthy S, Blankemeyer E, Mollet P, Surti S, Holen RV, Karp JS. Performance evaluation of the MOLECUBES β -CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys Med Biol. 2018;63:155013.CrossRef Krishnamoorthy S, Blankemeyer E, Mollet P, Surti S, Holen RV, Karp JS. Performance evaluation of the MOLECUBES β -CUBE—a high spatial resolution and high sensitivity small animal PET scanner utilizing monolithic LYSO scintillation detectors. Phys Med Biol. 2018;63:155013.CrossRef
17.
go back to reference Teuho J, Han C, Riehakainen L, et al. NEMA NU 4–2008 and in vivo imaging performance of RAYCAN trans-PET/CT X5 small animal imaging system. Phys Med Biol. 2019;64:115014.CrossRef Teuho J, Han C, Riehakainen L, et al. NEMA NU 4–2008 and in vivo imaging performance of RAYCAN trans-PET/CT X5 small animal imaging system. Phys Med Biol. 2019;64:115014.CrossRef
18.
go back to reference Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Springer; 1996. p. 255–68. Watson CC, Newport D, Casey ME. A single scatter simulation technique for scatter correction in 3D PET. Three-dimensional image reconstruction in radiology and nuclear medicine. Dordrecht: Springer; 1996. p. 255–68.
19.
go back to reference Brasse D, Kinahan PE, Lartizien C, Comtat C, Casey M, Michel C. Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. J Nucl Med. 2005;46:859–67.PubMed Brasse D, Kinahan PE, Lartizien C, Comtat C, Casey M, Michel C. Correction methods for random coincidences in fully 3D whole-body PET: impact on data and image quality. J Nucl Med. 2005;46:859–67.PubMed
20.
go back to reference Liu J, Kao C-M, Gu S, Xiao P, Xie Q. A PET system design by using mixed detectors: resolution properties. Phys Med Biol. 2014;59:3517.CrossRef Liu J, Kao C-M, Gu S, Xiao P, Xie Q. A PET system design by using mixed detectors: resolution properties. Phys Med Biol. 2014;59:3517.CrossRef
21.
go back to reference Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol. 1998;43:1001–13.CrossRef Qi J, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol. 1998;43:1001–13.CrossRef
22.
go back to reference Hallen P, Schug D, Schulz V. Comments on the NEMA NU 4–2008 Standard on performance measurement of small animal positron emission tomographs. In: EJNMMI Phys 2020;7. Hallen P, Schug D, Schulz V. Comments on the NEMA NU 4–2008 Standard on performance measurement of small animal positron emission tomographs. In: EJNMMI Phys 2020;7.
23.
go back to reference Gong K, Cherry SR, Qi J. On the assessment of spatial resolution of PET systems with iterative image reconstruction. Phys Med Biol. 2016;61:193–202.CrossRef Gong K, Cherry SR, Qi J. On the assessment of spatial resolution of PET systems with iterative image reconstruction. Phys Med Biol. 2016;61:193–202.CrossRef
24.
go back to reference Cal-González J, Pérez-Liva M, Herraiz JL, Vaquero JJ, Desco M, Udías JM. Tissue-dependent and spatially-variant positron range correction in 3D PET. IEEE Trans Med Imaging. 2015;34:2394–403.CrossRef Cal-González J, Pérez-Liva M, Herraiz JL, Vaquero JJ, Desco M, Udías JM. Tissue-dependent and spatially-variant positron range correction in 3D PET. IEEE Trans Med Imaging. 2015;34:2394–403.CrossRef
25.
go back to reference Emond EC, Groves AM, Hutton BF, Thielemans K. Effect of positron range on PET quantification in diseased and normal lungs. Phys Med Biol. 2019;64. Emond EC, Groves AM, Hutton BF, Thielemans K. Effect of positron range on PET quantification in diseased and normal lungs. Phys Med Biol. 2019;64.
26.
go back to reference Cal-Gonzalez J, Vaquero JJ, Herraiz JL, et al. Improving PET quantification of small animal [68Ga]DOTA-Labeled PET/CT studies by using a CT-based positron range correction. Mol Imaging Biol. 2018;20:584–93.CrossRef Cal-Gonzalez J, Vaquero JJ, Herraiz JL, et al. Improving PET quantification of small animal [68Ga]DOTA-Labeled PET/CT studies by using a CT-based positron range correction. Mol Imaging Biol. 2018;20:584–93.CrossRef
Metadata
Title
Evaluation of image quality with four positron emitters and three preclinical PET/CT systems
Authors
Jarmo Teuho
Leon Riehakainen
Aake Honkaniemi
Olli Moisio
Chunlei Han
Marko Tirri
Shihao Liu
Tove J. Grönroos
Jie Liu
Lin Wan
Xiao Liang
Yiqing Ling
Yuexuan Hua
Anne Roivainen
Juhani Knuuti
Qingguo Xie
Mika Teräs
Nicola D’Ascenzo
Riku Klén
Publication date
01-12-2020
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2020
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-020-00724-z

Other articles of this Issue 1/2020

EJNMMI Research 1/2020 Go to the issue