Skip to main content
Top
Published in: EJNMMI Research 1/2018

Open Access 01-12-2018 | Original research

Centiloid scaling for quantification of brain amyloid with [18F]flutemetamol using multiple processing methods

Authors: Mark R. Battle, Lovena Chedumbarum Pillay, Val J. Lowe, David Knopman, Bradley Kemp, Christopher C. Rowe, Vincent Doré, Victor L. Villemagne, Christopher J. Buckley

Published in: EJNMMI Research | Issue 1/2018

Login to get access

Abstract

Introduction

A standardised method for quantifying β-amyloid PET tracers would allow comparison across different tracers and different sites. The development of the Centiloid scale has aimed to achieve this, applying a common scale to better aid the diagnosis and prognosis of Alzheimer’s disease (AD) and to monitor anti-amyloid therapeutic interventions. Here, we apply the Centiloid method to [18F]flutemetamol and [11C]PiB (PiB, Pittsburgh compound B) PET images and derive the scaling factor to express their binding in Centiloids.

Methods

Paired PiB and [18F]flutemetamol scans for 74 subjects, including 24 young healthy controls (37 ± 5 years), were analysed using the standard Centiloid method. The same subjects were also analysed using PMOD- and FSL-based pipelines as well as SPM8. Test-retest analysis of 10 AD subjects was also performed with each pipeline.

Results

The standard uptake value ratios (SUVR), determined using the standard SPM8 Centiloid process, showed a strong correlation between [18F]flutemetamol (Flute) and PiB binding (SUVR-Flute = 0.77 × SUVR-PiB + 0.22, R2 = 0.96). Application of the standard Centiloid process allowed the calculation of a direct conversion equation for SUVR-Flute to Centiloid units (CL) (CL = (121.42*SUVR-Flute) − 121.16). Analysis of the data via the two alternate Centiloid pipelines allowed us to derive standardised, SPM8-equivalent equations for both PMOD (CL = (115.24*SUVR-Flute) − 107.86) and FSL (CL = (120.32*SUVR-Flute) − 112.75) respectively. Test-retest analysis of 10 AD subjects showed an approximate 2% difference for each pipeline.

Conclusions

[18F]flutemetamol data can now be expressed in Centiloid units, enhancing its utility in clinical and research applications for β-amyloid imaging. The standard Centiloid method also demonstrates that [18F]flutemetamol has favourable performance compared with PiB and other β-amyloid tracers. Test-retest difference averaged 2%, with no difference between image processing pipelines. Centiloid scaling is robust and can be implemented on a number of platforms.
Literature
1.
go back to reference Mirra S, Heyman A, McKeel D, Sumi S, Crain B, Brownlee L, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;41:479–86.CrossRefPubMed Mirra S, Heyman A, McKeel D, Sumi S, Crain B, Brownlee L, et al. The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology. 1991;41:479–86.CrossRefPubMed
3.
go back to reference Mathis C, Wang Y, Holt D, Huang G, Debnath M, Klunk W. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46:2740–54.CrossRefPubMed Mathis C, Wang Y, Holt D, Huang G, Debnath M, Klunk W. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem. 2003;46:2740–54.CrossRefPubMed
4.
go back to reference Klunk W, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt D, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.CrossRefPubMed Klunk W, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt D, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55:306–19.CrossRefPubMed
5.
go back to reference Blennow K, Mattsson N, Scholl M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci. 2015;36:297–309.CrossRefPubMed Blennow K, Mattsson N, Scholl M, Hansson O, Zetterberg H. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci. 2015;36:297–309.CrossRefPubMed
10.
go back to reference Klunk W, Koeppe R, Price J, Benzinger T, Devous M Sr, Jagust W, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1–15 e1–4.CrossRefPubMed Klunk W, Koeppe R, Price J, Benzinger T, Devous M Sr, Jagust W, et al. The Centiloid Project: standardizing quantitative amyloid plaque estimation by PET. Alzheimers Dement. 2015;11:1–15 e1–4.CrossRefPubMed
11.
go back to reference Rowe C, Dore V, Jones G, Baxendale D, Mulligan R, Bullich S, et al. (18)F-Florbetaben PET beta-amyloid binding expressed in Centiloids. Eur J Nucl Med Mol Imaging. 2017;44:2053–9.CrossRefPubMedPubMedCentral Rowe C, Dore V, Jones G, Baxendale D, Mulligan R, Bullich S, et al. (18)F-Florbetaben PET beta-amyloid binding expressed in Centiloids. Eur J Nucl Med Mol Imaging. 2017;44:2053–9.CrossRefPubMedPubMedCentral
12.
go back to reference Rowe C, Jones G, Dore V. Standardized expression of 18F-NAV4694 and 11C-PiB Beta-amyloid PET results with the Centiloid scale. J Nucl Med. 2016;57:1233–7.CrossRefPubMed Rowe C, Jones G, Dore V. Standardized expression of 18F-NAV4694 and 11C-PiB Beta-amyloid PET results with the Centiloid scale. J Nucl Med. 2016;57:1233–7.CrossRefPubMed
13.
go back to reference Navitsky M, Joshi A, Devous M Sr, Pontecorvo M, Lu M, Klunk W, et al. Conversion of amyloid quantitation with Florbetapir SUVR to the Centiloid scale. Alzheimers Dement. 2016;12:25–6.CrossRef Navitsky M, Joshi A, Devous M Sr, Pontecorvo M, Lu M, Klunk W, et al. Conversion of amyloid quantitation with Florbetapir SUVR to the Centiloid scale. Alzheimers Dement. 2016;12:25–6.CrossRef
14.
go back to reference Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.CrossRefPubMed Vandenberghe R, Van Laere K, Ivanoiu A, Salmon E, Bastin C, Triau E, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial. Ann Neurol. 2010;68:319–29.CrossRefPubMed
15.
go back to reference Lowe VJ, Lundt E, Knopman D, Senjem ML, Gunter JL, Schwarz CG, et al. Comparison of [(18)F]Flutemetamol and [(11)C]Pittsburgh compound-B in cognitively normal young, cognitively normal elderly, and Alzheimer’s disease dementia individuals. Neuroimage Clin. 2017;16:295–302.CrossRefPubMedPubMedCentral Lowe VJ, Lundt E, Knopman D, Senjem ML, Gunter JL, Schwarz CG, et al. Comparison of [(18)F]Flutemetamol and [(11)C]Pittsburgh compound-B in cognitively normal young, cognitively normal elderly, and Alzheimer’s disease dementia individuals. Neuroimage Clin. 2017;16:295–302.CrossRefPubMedPubMedCentral
16.
go back to reference Miki T, Shimada H, Kim JS, Yamamoto Y, Sugino M, Kowa H, et al. Brain uptake and safety of Flutemetamol F 18 injection in Japanese subjects with probable Alzheimer’s disease, subjects with amnestic mild cognitive impairment and healthy volunteers. Ann Nucl Med. 2017;31:260–72.CrossRefPubMedPubMedCentral Miki T, Shimada H, Kim JS, Yamamoto Y, Sugino M, Kowa H, et al. Brain uptake and safety of Flutemetamol F 18 injection in Japanese subjects with probable Alzheimer’s disease, subjects with amnestic mild cognitive impairment and healthy volunteers. Ann Nucl Med. 2017;31:260–72.CrossRefPubMedPubMedCentral
17.
go back to reference Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.CrossRefPubMed Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5:143–56.CrossRefPubMed
18.
go back to reference Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–41.CrossRefPubMed Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage. 2002;17:825–41.CrossRefPubMed
20.
go back to reference Andersson J, Jenkinson M, Smith S. Non-linear registration. FMRIB Technial Report TR07JA2. 2007. Andersson J, Jenkinson M, Smith S. Non-linear registration. FMRIB Technial Report TR07JA2. 2007.
22.
go back to reference McNamee R, Yee S, Price J, Klunk W, Rosario B, Weissfeld L, et al. Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. J Nucl Med. 2009;50:348–55.CrossRefPubMed McNamee R, Yee S, Price J, Klunk W, Rosario B, Weissfeld L, et al. Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. J Nucl Med. 2009;50:348–55.CrossRefPubMed
23.
go back to reference Klumpers U, Boellaard R, Veltman D, Kloet R, Hoogendijk W, Lammertsma A. Parametric [11C]flumazenil images. Nucl Med Commun. 2012;33:422–30.CrossRefPubMed Klumpers U, Boellaard R, Veltman D, Kloet R, Hoogendijk W, Lammertsma A. Parametric [11C]flumazenil images. Nucl Med Commun. 2012;33:422–30.CrossRefPubMed
Metadata
Title
Centiloid scaling for quantification of brain amyloid with [18F]flutemetamol using multiple processing methods
Authors
Mark R. Battle
Lovena Chedumbarum Pillay
Val J. Lowe
David Knopman
Bradley Kemp
Christopher C. Rowe
Vincent Doré
Victor L. Villemagne
Christopher J. Buckley
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
EJNMMI Research / Issue 1/2018
Electronic ISSN: 2191-219X
DOI
https://doi.org/10.1186/s13550-018-0456-7

Other articles of this Issue 1/2018

EJNMMI Research 1/2018 Go to the issue