Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Population-level estimates of the proportion of Plasmodium vivax blood-stage infections attributable to relapses among febrile patients attending Adama Malaria Diagnostic Centre, East Shoa Zone, Oromia, Ethiopia

Authors: Lemu Golassa, Michael T. White

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Malaria is ranked as the leading communicable disease in Ethiopia, where Plasmodium falciparum and Plasmodium vivax are co-endemic. The incidence of P. vivax is usually considered to be less seasonal than P. falciparum. Clinical cases of symptomatic P. falciparum exhibit notable seasonal variation, driven by rainfall-dependent variation in the abundance of Anopheles mosquitoes. A similar peak of clinical cases of P. vivax is usually observed during the rainy season. However, the ability of P. vivax to relapse causing new blood-stage infections weeks to months after an infectious mosquito bite can lead to substantial differences in seasonal patterns of clinical cases. These cannot be detected with currently available diagnostic tools and are not cleared upon treatment with routinely administered anti-malarial drugs.

Methods

A health- facility based cross-sectional study was conducted in Adama malaria diagnostic centre from May 2015 to April 2016. Finger-prick blood samples were collected for thin and thick blood film preparation from participants seeking treatment for suspected cases of febrile malaria. Informed consent was obtained from each study participant or their guardians. Seasonal patterns in malaria cases were analysed using statistical models, identifying the peaks in cases, and the seasonally varying proportion of P. vivax cases attributable to relapses.

Results

The proportion of patients with malaria detectable by light microscopy was 36.1% (1141/3161) of which P. vivax, P. falciparum, and mixed infections accounted for 71.4, 25.8 and 2.8%, respectively. Of the febrile patients diagnosed, 2134 (67.5%) were males and 1919 (60.7%) were urban residents. The model identified a primary peak in P. falciparum and P. vivax cases from August to October, as well as a secondary peak of P. vivax cases from February to April attributable to cases arising from relapses. During the secondary peak of P. vivax cases approximately 77% (95% CrI 68, 84%) of cases are estimated to be attributable to relapses. During the primary peak from August to October, approximately 40% (95% CrI 29, 57%) of cases are estimated to be attributable to relapses.

Discussion

It is not possible to diagnose whether a P. vivax case has been caused by blood-stage infection from a mosquito bite or a relapse. However, differences in seasonal patterns of P. falciparum and P. vivax cases can be used to estimate the population-level proportion of P. vivax cases attributable to relapses. These observations have important implications for the epidemiological assessment of vivax malaria, and initiating therapy that is effective against both blood stages and relapses.
Appendix
Available only for authorised users
Literature
1.
go back to reference World Health Organization. Control and elimination of Plasmodium vivax malaria: a technical brief. Geneva: World Health Organization; 2015. World Health Organization. Control and elimination of Plasmodium vivax malaria: a technical brief. Geneva: World Health Organization; 2015.
2.
go back to reference Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J. 2012;11:14.CrossRefPubMedPubMedCentral Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J. 2012;11:14.CrossRefPubMedPubMedCentral
3.
go back to reference World Health Organization. World malaria report. Geneva: World Health Organization; 2013. World Health Organization. World malaria report. Geneva: World Health Organization; 2013.
4.
go back to reference Deressa W, Ali A, Enqusellassie F. Self-treatment of malaria in rural communities, Butajira, southern Ethiopia. Bull World Health Organ. 2003;81:261–8.PubMedPubMedCentral Deressa W, Ali A, Enqusellassie F. Self-treatment of malaria in rural communities, Butajira, southern Ethiopia. Bull World Health Organ. 2003;81:261–8.PubMedPubMedCentral
6.
go back to reference Abose T, Ye-Ebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Reorientation and definition of the role of malaria vector control in Ethiopia; the epidemiology and control of malaria with special emphasis to the distribution, behavior and susceptibility to insecticides of anopheline vectors and chloroquine resistance in Ziway, Central Ethiopia and other areas. Addis Ababa; 1998. Abose T, Ye-Ebiyo Y, Olana D, Alamirew D, Beyene Y, Regassa L, et al. Reorientation and definition of the role of malaria vector control in Ethiopia; the epidemiology and control of malaria with special emphasis to the distribution, behavior and susceptibility to insecticides of anopheline vectors and chloroquine resistance in Ziway, Central Ethiopia and other areas. Addis Ababa; 1998.
7.
go back to reference Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9:555–66.CrossRefPubMed Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009;9:555–66.CrossRefPubMed
8.
go back to reference Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, et al. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis. 2007;195:927–33.CrossRefPubMed Imwong M, Snounou G, Pukrittayakamee S, Tanomsing N, Kim JR, Nandy A, et al. Relapses of Plasmodium vivax infection usually result from activation of heterologous hypnozoites. J Infect Dis. 2007;195:927–33.CrossRefPubMed
9.
go back to reference Koepfli C, Schoepflin S, Bretscher M, Lin E, Kiniboro B, Zimmerman PA, et al. How much remains undetected? Probability of molecular detection of human plasmodia in the field. PLoS ONE. 2011;6:e19010.CrossRefPubMedPubMedCentral Koepfli C, Schoepflin S, Bretscher M, Lin E, Kiniboro B, Zimmerman PA, et al. How much remains undetected? Probability of molecular detection of human plasmodia in the field. PLoS ONE. 2011;6:e19010.CrossRefPubMedPubMedCentral
10.
go back to reference Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Li Wai Suen CS, et al. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean Children: a randomised placebo-controlled trial and mathematical model. Plos Med. 2015;12:e1001891.CrossRefPubMedPubMedCentral Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Li Wai Suen CS, et al. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean Children: a randomised placebo-controlled trial and mathematical model. Plos Med. 2015;12:e1001891.CrossRefPubMedPubMedCentral
11.
go back to reference Baird JK. Malaria caused by Plasmodium vivax: recurrent, difficult to treat, disabling, and threatening to life- averting the infectious bite preempts these hazards. Pathog Glob Health. 2013;107:475–9.CrossRef Baird JK. Malaria caused by Plasmodium vivax: recurrent, difficult to treat, disabling, and threatening to life- averting the infectious bite preempts these hazards. Pathog Glob Health. 2013;107:475–9.CrossRef
12.
go back to reference Schwartz E, Sidi Y. New Aspects of Malaria Imported from Ethiopia. Clin Infect Dis. 1998;26:1089–91.CrossRefPubMed Schwartz E, Sidi Y. New Aspects of Malaria Imported from Ethiopia. Clin Infect Dis. 1998;26:1089–91.CrossRefPubMed
14.
go back to reference White MT, Shirreff G, Karl S, Ghani AC, Mueller I. Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria. Proc Biol Sci. 2016;283:20160048.CrossRefPubMedPubMedCentral White MT, Shirreff G, Karl S, Ghani AC, Mueller I. Variation in relapse frequency and the transmission potential of Plasmodium vivax malaria. Proc Biol Sci. 2016;283:20160048.CrossRefPubMedPubMedCentral
15.
go back to reference Price RN, Auburn S, Marfurt J, Cheng Q. Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends Parasitol. 2012;28:522–9.CrossRefPubMedPubMedCentral Price RN, Auburn S, Marfurt J, Cheng Q. Phenotypic and genotypic characterisation of drug-resistant Plasmodium vivax. Trends Parasitol. 2012;28:522–9.CrossRefPubMedPubMedCentral
16.
go back to reference Howes RE, Dewi M, Piel FB, Monteiro WM, Battle KE, Messina JP, et al. Spatial distribution of G6PD deficiency variants across malaria-endemic regions. Malar J. 2013;12:418.CrossRefPubMedPubMedCentral Howes RE, Dewi M, Piel FB, Monteiro WM, Battle KE, Messina JP, et al. Spatial distribution of G6PD deficiency variants across malaria-endemic regions. Malar J. 2013;12:418.CrossRefPubMedPubMedCentral
17.
go back to reference Ross A, Koepfli C, Schoepflin S, Timinao L, Siba P, Smith T, et al. The incidence and differential seasonal patterns of Plasmodium vivax primary infections and relapses in a cohort of children in Papua New Guinea. PLoS Negl Trop Dis. 2016;10:e0004582.CrossRefPubMedPubMedCentral Ross A, Koepfli C, Schoepflin S, Timinao L, Siba P, Smith T, et al. The incidence and differential seasonal patterns of Plasmodium vivax primary infections and relapses in a cohort of children in Papua New Guinea. PLoS Negl Trop Dis. 2016;10:e0004582.CrossRefPubMedPubMedCentral
18.
19.
go back to reference Griffin JT. The interaction between seasonality and pulsed interventions against malaria in their effects on the reproduction number. PLoS Comput Biol. 2015;11:e1004057.CrossRefPubMedPubMedCentral Griffin JT. The interaction between seasonality and pulsed interventions against malaria in their effects on the reproduction number. PLoS Comput Biol. 2015;11:e1004057.CrossRefPubMedPubMedCentral
20.
go back to reference Nigatu W, Abebe M, Dejene A. Plasmodium vivax and P. falciparum epidemiology in Gambella, south-west Ethiopia. Trop Med Parasitol. 1992;43:181–5.PubMed Nigatu W, Abebe M, Dejene A. Plasmodium vivax and P. falciparum epidemiology in Gambella, south-west Ethiopia. Trop Med Parasitol. 1992;43:181–5.PubMed
21.
go back to reference Olana D, Chibsa S, Teshome D, Mekasha A, Graves PM, Reithinger R. Malaria, Oromia regional state, Ethiopia, 2001–2006. Emerg Infect Dis. 2011;17:1336–7.CrossRefPubMedPubMedCentral Olana D, Chibsa S, Teshome D, Mekasha A, Graves PM, Reithinger R. Malaria, Oromia regional state, Ethiopia, 2001–2006. Emerg Infect Dis. 2011;17:1336–7.CrossRefPubMedPubMedCentral
22.
go back to reference Ramos JM, Reyes F, Tesfamariam A. Change in epidemiology of malaria infections in a rural area in Ethiopia. J Travel Med. 2005;12:155–6.CrossRef Ramos JM, Reyes F, Tesfamariam A. Change in epidemiology of malaria infections in a rural area in Ethiopia. J Travel Med. 2005;12:155–6.CrossRef
23.
go back to reference White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10(297):23. White NJ. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J. 2011;10(297):23.
24.
go back to reference Roy M, Bouma MJ, Ionides EL, Dhiman RC, Pascual M. The potential elimination of Plasmodium vivax malaria by relapse treatment: insights from a transmission model and surveillance data from NW India. PLoS Neg Trop Dis. 2013;7:e1979.CrossRef Roy M, Bouma MJ, Ionides EL, Dhiman RC, Pascual M. The potential elimination of Plasmodium vivax malaria by relapse treatment: insights from a transmission model and surveillance data from NW India. PLoS Neg Trop Dis. 2013;7:e1979.CrossRef
25.
26.
27.
go back to reference Collins WE, Jeffery GM, Roberts JM. A retrospective examination of reinfection of humans with Plasmodium vivax. Am J Trop Med Hyg. 2004;70:642–4.PubMed Collins WE, Jeffery GM, Roberts JM. A retrospective examination of reinfection of humans with Plasmodium vivax. Am J Trop Med Hyg. 2004;70:642–4.PubMed
28.
go back to reference Cole-Tobian JL, Michon P, Biasor M, Richards JS, Beeson JG, Mueller I, et al. Strain-specific Duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous Plasmodium vivax strains in Papua New Guinean children. Infect Immun. 2009;77:4009–17.CrossRefPubMedPubMedCentral Cole-Tobian JL, Michon P, Biasor M, Richards JS, Beeson JG, Mueller I, et al. Strain-specific Duffy binding protein antibodies correlate with protection against infection with homologous compared to heterologous Plasmodium vivax strains in Papua New Guinean children. Infect Immun. 2009;77:4009–17.CrossRefPubMedPubMedCentral
29.
go back to reference Longley RJ, Reyes-Sandoval A, Montoya-Díaz E, Dunachie S, Kumpitak C, Nguitragool W, et al. Acquisition and longevity of antibodies to Plasmodium vivax preerythrocytic antigens in Western Thailand. Clin Vaccine Immunol. 2016;23:117–24.CrossRefPubMedCentral Longley RJ, Reyes-Sandoval A, Montoya-Díaz E, Dunachie S, Kumpitak C, Nguitragool W, et al. Acquisition and longevity of antibodies to Plasmodium vivax preerythrocytic antigens in Western Thailand. Clin Vaccine Immunol. 2016;23:117–24.CrossRefPubMedCentral
30.
go back to reference Bright AT, Manary MJ, Tewhey R, Arango EM, Wang T, Schork NJ, et al. A high resolution case study of a patient with recurrent Plasmodium vivax infections shows that relapses were caused by meiotic siblings. PLoS Negl Trop Dis. 2014;8:e2882.CrossRefPubMedPubMedCentral Bright AT, Manary MJ, Tewhey R, Arango EM, Wang T, Schork NJ, et al. A high resolution case study of a patient with recurrent Plasmodium vivax infections shows that relapses were caused by meiotic siblings. PLoS Negl Trop Dis. 2014;8:e2882.CrossRefPubMedPubMedCentral
32.
go back to reference Tsegaye A, Golassa L, Mamo H, Erko B. Glucose-6-phosphate dehydrogenase deficiency among malaria suspects attending Gambella hospital, southwest Ethiopia. Malar J. 2014;13:438.CrossRefPubMedPubMedCentral Tsegaye A, Golassa L, Mamo H, Erko B. Glucose-6-phosphate dehydrogenase deficiency among malaria suspects attending Gambella hospital, southwest Ethiopia. Malar J. 2014;13:438.CrossRefPubMedPubMedCentral
Metadata
Title
Population-level estimates of the proportion of Plasmodium vivax blood-stage infections attributable to relapses among febrile patients attending Adama Malaria Diagnostic Centre, East Shoa Zone, Oromia, Ethiopia
Authors
Lemu Golassa
Michael T. White
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-1944-3

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.