Skip to main content
Top
Published in: Malaria Journal 1/2017

Open Access 01-12-2017 | Research

Cerebral malaria induces electrophysiological and neurochemical impairment in mice retinal tissue: possible effect on glutathione and glutamatergic system

Authors: Karen R. H. M. Oliveira, Nayara Kauffmann, Luana K. R. Leão, Adelaide C. F. Passos, Fernando A. F. Rocha, Anderson M. Herculano, José L. M. do Nascimento

Published in: Malaria Journal | Issue 1/2017

Login to get access

Abstract

Background

Cerebral malaria (CM) is a severe complication resulting from Plasmodium falciparum infection. This condition has usually been associated with cognitive, behavioural and motor dysfunctions, being the retinopathy the most serious consequence resulting from the disease. The pathophysiological mechanisms underlying this complication remain incompletely understood. Several experimental models of CM have already been developed in order to clarify those mechanisms related to this syndrome. In this context, the present work has been performed to investigate which possible electrophysiological and neurochemistry alterations could be involved in the CM pathology.

Methods

Experimental CM was induced in Plasmodium berghei-infected male and female C57Bl/6 mice. The survival and neurological symptoms of CM were registered. Brains and retina were assayed for TNF levels and NOS2 expression. Electroretinography measurements were recorded to assessed a- and b-wave amplitudes and neurochemicals changes were evaluated by determination of glutamate and glutathione levels by HPLC.

Results

Susceptible C57Bl/6 mice infected with ≈ 106 parasitized red blood cells (P. berghei ANKA strain), showed a low parasitaemia, with evident clinical signs as: respiratory failure, ataxia, hemiplegia, and coma followed by animal death. In parallel to the clinical characterization of CM, the retinal electrophysiological analysis showed an intense decrease of a- and-b-wave amplitude associated to cone photoreceptor response only at the 7 days post-infection. Neurochemical results demonstrated that the disease led to a decrease in the glutathione levels with 2 days post inoculation. It was also demonstrated that the increase in the glutathione levels during the infection was followed by the increase in the 3H-glutamate uptake rate (4 and 7 days post-infection), suggesting that CM condition causes an up-regulation of the transporters systems. Furthermore, these findings also highlighted that the electrophysiological and neurochemical alterations occurs in a manner independent on the establishment of an inflammatory response, once tumour necrosis factor levels and inducible nitric oxide synthase expression were altered only in the cerebral tissue but not in the retina.

Conclusions

In summary, these findings indicate for the first time that CM induces neurochemical and electrophysiological impairment in the mice retinal tissue, in a TNF-independent manner.
Literature
2.
go back to reference Crawley J, Smith S, Muthinji P, Marsh K, Kirkham F. Electroencephalographic and clinical features of cerebral malaria. Arch Dis Child. 2001;84:247–53.CrossRefPubMedPubMedCentral Crawley J, Smith S, Muthinji P, Marsh K, Kirkham F. Electroencephalographic and clinical features of cerebral malaria. Arch Dis Child. 2001;84:247–53.CrossRefPubMedPubMedCentral
3.
4.
go back to reference Birbeck GL, Molyneux ME, Kaplan PW, Seydel KB, Chimalizeni YF, Kawaza K, et al. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study. Lancet Neurol. 2010;9:1173–81.CrossRefPubMedPubMedCentral Birbeck GL, Molyneux ME, Kaplan PW, Seydel KB, Chimalizeni YF, Kawaza K, et al. Blantyre Malaria Project Epilepsy Study (BMPES) of neurological outcomes in retinopathy-positive paediatric cerebral malaria survivors: a prospective cohort study. Lancet Neurol. 2010;9:1173–81.CrossRefPubMedPubMedCentral
5.
go back to reference Kariuki SM, Ikumi M, Ojal J, Sadarangani M, Idro R, Olotu A, et al. Acute seizures attributable to falciparum malaria in an endemic area on the Kenyan coast. Brain. 2011;134:1519–28.CrossRefPubMedPubMedCentral Kariuki SM, Ikumi M, Ojal J, Sadarangani M, Idro R, Olotu A, et al. Acute seizures attributable to falciparum malaria in an endemic area on the Kenyan coast. Brain. 2011;134:1519–28.CrossRefPubMedPubMedCentral
6.
go back to reference Waruiru CM, Newton CR, Forster D, New L, Winstanley P, Mwangi I, et al. Epileptic seizures and malaria in Kenyan children. Trans R Soc Trop Med Hyg. 1996;90:152–5.CrossRefPubMed Waruiru CM, Newton CR, Forster D, New L, Winstanley P, Mwangi I, et al. Epileptic seizures and malaria in Kenyan children. Trans R Soc Trop Med Hyg. 1996;90:152–5.CrossRefPubMed
7.
go back to reference Sumadhya DF, Chaturaka R, Senaka R. The ‘hidden’ burden of malaria: cognitive impairment following infection. Malar J. 2010;9:366.CrossRef Sumadhya DF, Chaturaka R, Senaka R. The ‘hidden’ burden of malaria: cognitive impairment following infection. Malar J. 2010;9:366.CrossRef
8.
go back to reference Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, et al. Evidence of blood–brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol. 1999;25:331–40.CrossRefPubMed Brown H, Hien TT, Day N, Mai NT, Chuong LV, Chau TT, et al. Evidence of blood–brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol. 1999;25:331–40.CrossRefPubMed
9.
go back to reference Adams S, Brown H, Turner G. Breaking down the blood–brain barrier: signaling a path to cerebral malaria? Trends Parasitol. 2002;18:360–6.CrossRefPubMed Adams S, Brown H, Turner G. Breaking down the blood–brain barrier: signaling a path to cerebral malaria? Trends Parasitol. 2002;18:360–6.CrossRefPubMed
10.
go back to reference Hunt NH, Grau GE. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003;24:491–9.CrossRefPubMed Hunt NH, Grau GE. Cytokines: accelerators and brakes in the pathogenesis of cerebral malaria. Trends Immunol. 2003;24:491–9.CrossRefPubMed
11.
go back to reference Medana IM, Chaudhri G, Chan-ling T, Hunt NH. Central nervous system in cerebral malaria: “innocent bystander” or active participant in the induction of immunopathology. Immunol Cell Biol. 2001;79:101–20.CrossRefPubMed Medana IM, Chaudhri G, Chan-ling T, Hunt NH. Central nervous system in cerebral malaria: “innocent bystander” or active participant in the induction of immunopathology. Immunol Cell Biol. 2001;79:101–20.CrossRefPubMed
12.
go back to reference Hunt NH, Golenser J, Chan-ling T, Parekh S, Rae C, Potter S, et al. Immunopathogenesis of cerebral malaria. Int J Parasitol. 2006;36:569–82.CrossRefPubMed Hunt NH, Golenser J, Chan-ling T, Parekh S, Rae C, Potter S, et al. Immunopathogenesis of cerebral malaria. Int J Parasitol. 2006;36:569–82.CrossRefPubMed
13.
go back to reference Van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE. A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol. 2006;22:503–8.CrossRefPubMed Van der Heyde HC, Nolan J, Combes V, Gramaglia I, Grau GE. A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitol. 2006;22:503–8.CrossRefPubMed
14.
go back to reference Maude RJ, Dondorp AM, Sayeed AA, Day NPJ, White NJ, Beare NAV. The eye in cerebral malaria: what can it teach us? Trans R Soc Trop Med Hyg. 2009;103:661–4.CrossRefPubMedPubMedCentral Maude RJ, Dondorp AM, Sayeed AA, Day NPJ, White NJ, Beare NAV. The eye in cerebral malaria: what can it teach us? Trans R Soc Trop Med Hyg. 2009;103:661–4.CrossRefPubMedPubMedCentral
15.
go back to reference Hora R, Kapoor P, Thind KK, Mishra PC. Cerebral malaria–clinical manifestations and pathogenesis. Metab Brain Dis. 2016;31:225–37.CrossRefPubMed Hora R, Kapoor P, Thind KK, Mishra PC. Cerebral malaria–clinical manifestations and pathogenesis. Metab Brain Dis. 2016;31:225–37.CrossRefPubMed
16.
go back to reference Beare NAV, Taylor TE, Harding SP, Lewallen S, Molyneux ME. Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg. 2006;75:790–7.PubMedPubMedCentral Beare NAV, Taylor TE, Harding SP, Lewallen S, Molyneux ME. Malarial retinopathy: a newly established diagnostic sign in severe malaria. Am J Trop Med Hyg. 2006;75:790–7.PubMedPubMedCentral
17.
go back to reference Medana IM, Turner GD. Human cerebral malaria and the blood-brain barrier. Int J Parasitol. 2006;36:555–68.CrossRefPubMed Medana IM, Turner GD. Human cerebral malaria and the blood-brain barrier. Int J Parasitol. 2006;36:555–68.CrossRefPubMed
18.
go back to reference Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990;11:462–8.CrossRefPubMed Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends Pharmacol Sci. 1990;11:462–8.CrossRefPubMed
19.
go back to reference Imasawa M, Kashiwagi K, Iizuka Y, Tanaka M, Tsukahara S. Different expression role among glutamate transporters in rat retinal glial cells under various culture conditions. Mol Brain Res. 2005;142:1–8.CrossRefPubMed Imasawa M, Kashiwagi K, Iizuka Y, Tanaka M, Tsukahara S. Different expression role among glutamate transporters in rat retinal glial cells under various culture conditions. Mol Brain Res. 2005;142:1–8.CrossRefPubMed
20.
go back to reference Benarroch EE. Glutamate transporters: diversity, function, and involvement in neurologic disease. Neurology. 2010;74:259–64.CrossRefPubMed Benarroch EE. Glutamate transporters: diversity, function, and involvement in neurologic disease. Neurology. 2010;74:259–64.CrossRefPubMed
21.
22.
go back to reference Rauen T. Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids. 2000;19:53–62.CrossRefPubMed Rauen T. Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids. 2000;19:53–62.CrossRefPubMed
23.
go back to reference Kanai Y, Hediger MA. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol. 2003;31:237–47.CrossRef Kanai Y, Hediger MA. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. Eur J Pharmacol. 2003;31:237–47.CrossRef
24.
go back to reference Beart PM, O’Shea RD. Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol. 2007;150:5–17.CrossRefPubMed Beart PM, O’Shea RD. Transporters for l-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol. 2007;150:5–17.CrossRefPubMed
25.
go back to reference Massieu L, García O. The role of excitotoxicity and metabolic failure in the pathogenesis of neurological disorders. Neurobiology (Bp). 1998;6:99–108. Massieu L, García O. The role of excitotoxicity and metabolic failure in the pathogenesis of neurological disorders. Neurobiology (Bp). 1998;6:99–108.
26.
go back to reference Oliveira KRM, Herculano AM, Crespo-lópez ME, do Nascimento JLM. Pharmacological characterization of glutamate Na+-independent transport in retinal cell cultures: implications in the glutathione metabolism. Neurochem Int. 2010;56:59–66.CrossRefPubMed Oliveira KRM, Herculano AM, Crespo-lópez ME, do Nascimento JLM. Pharmacological characterization of glutamate Na+-independent transport in retinal cell cultures: implications in the glutathione metabolism. Neurochem Int. 2010;56:59–66.CrossRefPubMed
27.
go back to reference Zeng K, Xu H, Chen K, Zhu J, Zhou Y, Zhang Q, et al. Effects of taurine on glutamate uptake and degradation in Müller cells under diabetic conditions via antioxidant mechanism. Mol Cell Neurosci. 2010;45:192–9.CrossRefPubMed Zeng K, Xu H, Chen K, Zhu J, Zhou Y, Zhang Q, et al. Effects of taurine on glutamate uptake and degradation in Müller cells under diabetic conditions via antioxidant mechanism. Mol Cell Neurosci. 2010;45:192–9.CrossRefPubMed
28.
go back to reference Park CK, Cha J, Park SC, Lee PY, Kim JH, Kim HS, et al. Differential expression of two glutamate transporters, GLAST and GLT-1, in an experimental rat model of glaucoma. Exp Brain Res. 2009;197:101–9.CrossRefPubMed Park CK, Cha J, Park SC, Lee PY, Kim JH, Kim HS, et al. Differential expression of two glutamate transporters, GLAST and GLT-1, in an experimental rat model of glaucoma. Exp Brain Res. 2009;197:101–9.CrossRefPubMed
29.
go back to reference Cooper AJ, Kristal BS. Multiple roles of glutathione in the cental nervous system. Biol Chem. 1997;378:793–802.PubMed Cooper AJ, Kristal BS. Multiple roles of glutathione in the cental nervous system. Biol Chem. 1997;378:793–802.PubMed
30.
go back to reference Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain: metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267:4912–6.CrossRefPubMed Dringen R, Gutterer JM, Hirrlinger J. Glutathione metabolism in brain: metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem. 2000;267:4912–6.CrossRefPubMed
31.
go back to reference Freitas HR, Ferraz G, Ferreira GC, Ribeiro-Resende VT, Chiarini LB, Nascimento JLM, et al. Glutathione-induced calcium shifts in chick retinal glial cells. PLoS ONE. 2016;11:1–20. Freitas HR, Ferraz G, Ferreira GC, Ribeiro-Resende VT, Chiarini LB, Nascimento JLM, et al. Glutathione-induced calcium shifts in chick retinal glial cells. PLoS ONE. 2016;11:1–20.
32.
go back to reference Brigman JL, Powell EM, Mittleman G, Young JW. Examining the genetic and neural components of cognitive flexibility using mice. Physiol Behav. 2012;5(107):666–9.CrossRef Brigman JL, Powell EM, Mittleman G, Young JW. Examining the genetic and neural components of cognitive flexibility using mice. Physiol Behav. 2012;5(107):666–9.CrossRef
33.
go back to reference Toler SM. Oxidative stress plays an important role in the pathogenesis of drug-induced retinopathy. Exp Biol Med (Maywood). 2004;229:607–15.CrossRef Toler SM. Oxidative stress plays an important role in the pathogenesis of drug-induced retinopathy. Exp Biol Med (Maywood). 2004;229:607–15.CrossRef
34.
go back to reference McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130:1–12.CrossRefPubMed McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015;130:1–12.CrossRefPubMed
35.
go back to reference Langwińska-Wośko E, Szulborski K, Zaleska-Żmijewska A, Szaflik J. Electrophysiological testing as a method of cone-rod and cone dystrophy diagnoses and prediction of disease progression. Doc Ophthalmol. 2015;130:103–9.CrossRefPubMed Langwińska-Wośko E, Szulborski K, Zaleska-Żmijewska A, Szaflik J. Electrophysiological testing as a method of cone-rod and cone dystrophy diagnoses and prediction of disease progression. Doc Ophthalmol. 2015;130:103–9.CrossRefPubMed
36.
go back to reference Pescosolido N, Barbato A, Stefanucci A, Buomprisco G. Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabetes Res. 2015;2015:319692.CrossRefPubMedPubMedCentral Pescosolido N, Barbato A, Stefanucci A, Buomprisco G. Role of electrophysiology in the early diagnosis and follow-up of diabetic retinopathy. J Diabetes Res. 2015;2015:319692.CrossRefPubMedPubMedCentral
37.
go back to reference Harazny J, Scholz M, Buder T, Lausen B, Kremers J. Electrophysiological deficits in the retina of the DBA/2J mouse. Doc Ophthalmol. 2009;119:181–97.CrossRefPubMed Harazny J, Scholz M, Buder T, Lausen B, Kremers J. Electrophysiological deficits in the retina of the DBA/2J mouse. Doc Ophthalmol. 2009;119:181–97.CrossRefPubMed
38.
go back to reference Anderson M. Determination of glutathione and glutathione disulfide in biological sample. Methods Enzymol. 1969;113:548–55.CrossRef Anderson M. Determination of glutathione and glutathione disulfide in biological sample. Methods Enzymol. 1969;113:548–55.CrossRef
39.
go back to reference Combes V, Coltel N, Alibert M, Van Eck M, Raymond C, Juhan-Vague I, et al. ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol. 2005;166:295–302.CrossRefPubMedPubMedCentral Combes V, Coltel N, Alibert M, Van Eck M, Raymond C, Juhan-Vague I, et al. ABCA1 gene deletion protects against cerebral malaria: potential pathogenic role of microparticles in neuropathology. Am J Pathol. 2005;166:295–302.CrossRefPubMedPubMedCentral
40.
go back to reference Haldar K, Murphy SC, Milner DA, Taylor TE. Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu Rev Pathol. 2007;2:217–49.CrossRefPubMed Haldar K, Murphy SC, Milner DA, Taylor TE. Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu Rev Pathol. 2007;2:217–49.CrossRefPubMed
41.
go back to reference Neill AL, Chan-Ling T, Hunt NH. Comparisons between microvascular changes in cerebral and non-cerebral malaria in mice, using the retinal whole-mount technique. Parasitology. 1993;107:477–87.CrossRefPubMed Neill AL, Chan-Ling T, Hunt NH. Comparisons between microvascular changes in cerebral and non-cerebral malaria in mice, using the retinal whole-mount technique. Parasitology. 1993;107:477–87.CrossRefPubMed
42.
go back to reference Chang-Ling T, Neill AL, Hunt NH. Early microvascular changes in murine cerebral malaria detected in retinal wholemounts. Am J Pathol. 1992;140:1121–30.PubMedPubMedCentral Chang-Ling T, Neill AL, Hunt NH. Early microvascular changes in murine cerebral malaria detected in retinal wholemounts. Am J Pathol. 1992;140:1121–30.PubMedPubMedCentral
43.
go back to reference Medana IM, Chan-Ling T, Hunt NH. Reactive changes of retinal microglia during fatal murine cerebral malaria: effects of dexamethasone and experimental permeabilization of the blood–brain barrier. Am J Pathol. 2000;156:1055–65.CrossRefPubMedPubMedCentral Medana IM, Chan-Ling T, Hunt NH. Reactive changes of retinal microglia during fatal murine cerebral malaria: effects of dexamethasone and experimental permeabilization of the blood–brain barrier. Am J Pathol. 2000;156:1055–65.CrossRefPubMedPubMedCentral
44.
go back to reference Ma N, Madigan MC, Chan-Ling T, Hunt NH. Compromised blood-nerve barrier, astrogliosis, and myelin disruption in optic nerves during fatal murine cerebral malaria. Glia. 1997;19:135–51.CrossRefPubMed Ma N, Madigan MC, Chan-Ling T, Hunt NH. Compromised blood-nerve barrier, astrogliosis, and myelin disruption in optic nerves during fatal murine cerebral malaria. Glia. 1997;19:135–51.CrossRefPubMed
45.
go back to reference Medana IM, Chan-ling T, Hunt NH. Redistribution and degeneration of retinal astrocytes in experimental murine cerebral malaria: relationship to disruption of the blood–brain barrier. Glia. 1996;16:51–64.CrossRefPubMed Medana IM, Chan-ling T, Hunt NH. Redistribution and degeneration of retinal astrocytes in experimental murine cerebral malaria: relationship to disruption of the blood–brain barrier. Glia. 1996;16:51–64.CrossRefPubMed
46.
go back to reference Lewallen S, Bronzan RN, Beare NA, Harding SP, Molyneux ME, Taylor TE. Using malarial retinopathy to improve the classification of children with cerebral malaria. Trans R Soc Trop Med Hyg. 2008;102:1089–94.CrossRefPubMedPubMedCentral Lewallen S, Bronzan RN, Beare NA, Harding SP, Molyneux ME, Taylor TE. Using malarial retinopathy to improve the classification of children with cerebral malaria. Trans R Soc Trop Med Hyg. 2008;102:1089–94.CrossRefPubMedPubMedCentral
47.
go back to reference Lochhead J, Movaffaghy A, Falsini B, Harding S, Riva C, Molyneux M. The effects of hypoxia on the ERG in paediatric cerebral malaria. Eye. 2010;24:259–64.CrossRefPubMed Lochhead J, Movaffaghy A, Falsini B, Harding S, Riva C, Molyneux M. The effects of hypoxia on the ERG in paediatric cerebral malaria. Eye. 2010;24:259–64.CrossRefPubMed
49.
go back to reference Schatz A, Willmann G, Fischer MD, Schommer K, Messias A, Zrenner E, et al. Electroretinographic assessment of retinal function at high altitude. J Appl Physiol. 2013;115:365–72.CrossRefPubMed Schatz A, Willmann G, Fischer MD, Schommer K, Messias A, Zrenner E, et al. Electroretinographic assessment of retinal function at high altitude. J Appl Physiol. 2013;115:365–72.CrossRefPubMed
50.
go back to reference Huang WY, Weng WC, Peng TI, Chien YY, Wu CL, Lee M, et al. Association of hyponatremia in acute stroke stage with three-year mortality in patients with first-ever ischemic stroke. Cerebrovasc Dis. 2012;34:55–62.CrossRefPubMed Huang WY, Weng WC, Peng TI, Chien YY, Wu CL, Lee M, et al. Association of hyponatremia in acute stroke stage with three-year mortality in patients with first-ever ischemic stroke. Cerebrovasc Dis. 2012;34:55–62.CrossRefPubMed
51.
52.
go back to reference Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res. 2004;23:91–147.CrossRefPubMed Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J. Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res. 2004;23:91–147.CrossRefPubMed
53.
go back to reference Lin YB, Liu JH, Chang Y. Hypoxia reduces the effect of photoreceptor bleaching. J Physiol Sci. 2012;62:309–15.CrossRefPubMed Lin YB, Liu JH, Chang Y. Hypoxia reduces the effect of photoreceptor bleaching. J Physiol Sci. 2012;62:309–15.CrossRefPubMed
54.
go back to reference Bourque SL, Kuny S, Reyes LM, Davidge ST, Sauvé Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;16:e61861.CrossRef Bourque SL, Kuny S, Reyes LM, Davidge ST, Sauvé Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;16:e61861.CrossRef
55.
go back to reference Lou J, Lucas R, Grau GE. Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev. 2001;14:810–20.CrossRefPubMedPubMedCentral Lou J, Lucas R, Grau GE. Pathogenesis of cerebral malaria: recent experimental data and possible applications for humans. Clin Microbiol Rev. 2001;14:810–20.CrossRefPubMedPubMedCentral
57.
go back to reference Armah H, Dodoo AK, Wiredu EK, Stiles JK, Adjei AA, Gyasi RK, et al. High-level cerebellar expression of cytokines and adhesion molecules in fatal, paediatric, cerebral malaria. Ann Trop Med Parasitol. 2005;99:629–47.CrossRefPubMed Armah H, Dodoo AK, Wiredu EK, Stiles JK, Adjei AA, Gyasi RK, et al. High-level cerebellar expression of cytokines and adhesion molecules in fatal, paediatric, cerebral malaria. Ann Trop Med Parasitol. 2005;99:629–47.CrossRefPubMed
58.
go back to reference Henninger DD, Panés J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, et al. Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol. 1997;158:1825–32.PubMed Henninger DD, Panés J, Eppihimer M, Russell J, Gerritsen M, Anderson DC, et al. Cytokine-induced VCAM-1 and ICAM-1 expression in different organs of the mouse. J Immunol. 1997;158:1825–32.PubMed
59.
go back to reference Favre N, Da Laperousaz C, Ryffel B, Weiss NA, Imhof BA, Rudin W, et al. Role of ICAM-1 (CD54) in the development of murine cerebral malaria. Microbes Infect. 1999;1:961–8.CrossRefPubMed Favre N, Da Laperousaz C, Ryffel B, Weiss NA, Imhof BA, Rudin W, et al. Role of ICAM-1 (CD54) in the development of murine cerebral malaria. Microbes Infect. 1999;1:961–8.CrossRefPubMed
60.
go back to reference Ong PK, Melchior B, Martins YC, Hofer A, Orjuela-Sánchez P, Cabrales P, et al. Nitric oxide synthase dysfunction contributes to impaired cerebroarteriolar reactivity in experimental cerebral malaria. PLoS Pathog. 2013;9:e1003444.CrossRefPubMedPubMedCentral Ong PK, Melchior B, Martins YC, Hofer A, Orjuela-Sánchez P, Cabrales P, et al. Nitric oxide synthase dysfunction contributes to impaired cerebroarteriolar reactivity in experimental cerebral malaria. PLoS Pathog. 2013;9:e1003444.CrossRefPubMedPubMedCentral
61.
go back to reference Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med. 2006;12:1417–22.CrossRefPubMed Gramaglia I, Sobolewski P, Meays D, Contreras R, Nolan JP, Frangos JA, et al. Low nitric oxide bioavailability contributes to the genesis of experimental cerebral malaria. Nat Med. 2006;12:1417–22.CrossRefPubMed
62.
go back to reference Maneerat Y, Viriyavejakul P, Punpoowong B, Jones M, Wilairatana P, Pongponratn E, et al. Inducible nitric oxide synthase expression is increased in the brain in fatal cerebral malaria. Histopathology. 2000;37:269–77.CrossRefPubMed Maneerat Y, Viriyavejakul P, Punpoowong B, Jones M, Wilairatana P, Pongponratn E, et al. Inducible nitric oxide synthase expression is increased in the brain in fatal cerebral malaria. Histopathology. 2000;37:269–77.CrossRefPubMed
63.
go back to reference Clark IA, Rockett KA, Burgner D. Genes, nitric oxide and malaria in African children. Trends Parasitol. 2003;19:335–7.CrossRefPubMed Clark IA, Rockett KA, Burgner D. Genes, nitric oxide and malaria in African children. Trends Parasitol. 2003;19:335–7.CrossRefPubMed
64.
go back to reference Sobolewski P, Gramaglia I, Frangos J, Intaglietta M, van der Heyde HC. Nitric oxide bioavailability in malaria. Trends Parasitol. 2005;21:415–22.CrossRefPubMed Sobolewski P, Gramaglia I, Frangos J, Intaglietta M, van der Heyde HC. Nitric oxide bioavailability in malaria. Trends Parasitol. 2005;21:415–22.CrossRefPubMed
65.
go back to reference Reis PA, Comim CM, Hermani F, Silva B, Barichello T, Portella AC, et al. Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathog. 2010;6:e1000963.CrossRefPubMedPubMedCentral Reis PA, Comim CM, Hermani F, Silva B, Barichello T, Portella AC, et al. Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathog. 2010;6:e1000963.CrossRefPubMedPubMedCentral
66.
go back to reference Isah MB, Ibrahim MA. The role of antioxidants treatment on the pathogenesis of malarial infections: a review. Parasitol Res. 2014;113:801–9.CrossRefPubMed Isah MB, Ibrahim MA. The role of antioxidants treatment on the pathogenesis of malarial infections: a review. Parasitol Res. 2014;113:801–9.CrossRefPubMed
67.
go back to reference Frey T, Antonetti DA. Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Antioxid Redox Signal. 2011;15:1271–84.CrossRefPubMed Frey T, Antonetti DA. Alterations to the blood-retinal barrier in diabetes: cytokines and reactive oxygen species. Antioxid Redox Signal. 2011;15:1271–84.CrossRefPubMed
68.
go back to reference Wang W, Shen H, Xie JJ, Ling J, Lu H. Neuroprotective effect of ginseng against spinal cord injury induced oxidative stress and inflammatory responses. Int J Clin Exp Med. 2015;8:3514–21.PubMedPubMedCentral Wang W, Shen H, Xie JJ, Ling J, Lu H. Neuroprotective effect of ginseng against spinal cord injury induced oxidative stress and inflammatory responses. Int J Clin Exp Med. 2015;8:3514–21.PubMedPubMedCentral
69.
go back to reference Ha Y, Saul A, Tawfik A, Zorrilla EP, Ganapathy V, Smith SB. Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1. Mol Vis. 2012;18:2860–70.PubMedPubMedCentral Ha Y, Saul A, Tawfik A, Zorrilla EP, Ganapathy V, Smith SB. Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1. Mol Vis. 2012;18:2860–70.PubMedPubMedCentral
70.
go back to reference Mavlyutov TA, Nickells RW, Guo LW. Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor. Mol Vis. 2011;17:1034–43.PubMedPubMedCentral Mavlyutov TA, Nickells RW, Guo LW. Accelerated retinal ganglion cell death in mice deficient in the Sigma-1 receptor. Mol Vis. 2011;17:1034–43.PubMedPubMedCentral
71.
go back to reference Wright WS, McElhatten RM, Busu C, Amit SY, Leskova W, Aw TY, et al. Influence of glutathione on the electroretinogram in diabetic and non-diabetic rats. Curr Eye Res. 2011;36:831–7.CrossRefPubMed Wright WS, McElhatten RM, Busu C, Amit SY, Leskova W, Aw TY, et al. Influence of glutathione on the electroretinogram in diabetic and non-diabetic rats. Curr Eye Res. 2011;36:831–7.CrossRefPubMed
72.
go back to reference Celesia GG. Anatomy and physiology of visual evoked potentials and electroretinograms. Neurol Clin. 1988;6:657–79.PubMed Celesia GG. Anatomy and physiology of visual evoked potentials and electroretinograms. Neurol Clin. 1988;6:657–79.PubMed
73.
go back to reference Roh YJ, Moon C, Kim SY, Park MH, Bae YC, Chun MH, et al. Glutathione depletion induces differential apoptosis in cells of mouse retina, in vivo. Neurosci Lett. 2007;7(417):266–70.CrossRef Roh YJ, Moon C, Kim SY, Park MH, Bae YC, Chun MH, et al. Glutathione depletion induces differential apoptosis in cells of mouse retina, in vivo. Neurosci Lett. 2007;7(417):266–70.CrossRef
74.
go back to reference Izumi Y, Kirby CO, Benz AM, Olney JW, Zorumski CF. Müller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. Glia. 1999;25:379–89.CrossRefPubMed Izumi Y, Kirby CO, Benz AM, Olney JW, Zorumski CF. Müller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. Glia. 1999;25:379–89.CrossRefPubMed
75.
go back to reference Mysona B, Dun Y, Duplantier J, Ganapathy V, Smith SB. Effects of hyperglycemia and oxidative stress on the glutamate transporters GLAST and system xc—in mouse retinal Müller glial cells. Cell Tissue Res. 2009;335:477–88.CrossRefPubMedPubMedCentral Mysona B, Dun Y, Duplantier J, Ganapathy V, Smith SB. Effects of hyperglycemia and oxidative stress on the glutamate transporters GLAST and system xc—in mouse retinal Müller glial cells. Cell Tissue Res. 2009;335:477–88.CrossRefPubMedPubMedCentral
76.
go back to reference Rego AC, Santos MS, Oliveira CR. Glutamate-mediated inhibition of oxidative phosphorylation in cultured retinal cells. Neurochem Int. 2000;36:159–66.CrossRefPubMed Rego AC, Santos MS, Oliveira CR. Glutamate-mediated inhibition of oxidative phosphorylation in cultured retinal cells. Neurochem Int. 2000;36:159–66.CrossRefPubMed
77.
go back to reference Hazell AS. Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochem Int. 2009;55:129–35.CrossRefPubMed Hazell AS. Astrocytes are a major target in thiamine deficiency and Wernicke’s encephalopathy. Neurochem Int. 2009;55:129–35.CrossRefPubMed
78.
go back to reference Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int. 2007;2007(51):333–55.CrossRef Sheldon AL, Robinson MB. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int. 2007;2007(51):333–55.CrossRef
79.
go back to reference Suemori S, Shimazawa M, Kawase K, Satoh M, Nagase H, Yamamoto T, et al. Metallothionein, an endogenous antioxidant, protects against retinal neuron damage in mice. Investig Ophthalmol Vis Sci. 2006;47:3975–82.CrossRef Suemori S, Shimazawa M, Kawase K, Satoh M, Nagase H, Yamamoto T, et al. Metallothionein, an endogenous antioxidant, protects against retinal neuron damage in mice. Investig Ophthalmol Vis Sci. 2006;47:3975–82.CrossRef
81.
go back to reference Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters EAATs and VGLUTs. Brain Res Rev. 2004;45:250–65.CrossRefPubMed Shigeri Y, Seal RP, Shimamoto K. Molecular pharmacology of glutamate transporters EAATs and VGLUTs. Brain Res Rev. 2004;45:250–65.CrossRefPubMed
82.
go back to reference Xiong-li Yang. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol. 2004;73:127–50.CrossRef Xiong-li Yang. Characterization of receptors for glutamate and GABA in retinal neurons. Prog Neurobiol. 2004;73:127–50.CrossRef
83.
go back to reference Sun D, Bui BV, Vingrys AJ, Kalloniatis M. Alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion in the rat retina. J Comp Neurol. 2007;1(505):131–46.CrossRef Sun D, Bui BV, Vingrys AJ, Kalloniatis M. Alterations in photoreceptor-bipolar cell signaling following ischemia/reperfusion in the rat retina. J Comp Neurol. 2007;1(505):131–46.CrossRef
84.
go back to reference Gibson R, Fletcher EL, Vingrys AJ, Zhu Y, Vessey KA, Kalloniatis M. Functional and neurochemical development in the normal and degenerating mouse retina. J Comp Neurol. 2013;15(521):1251–67.CrossRef Gibson R, Fletcher EL, Vingrys AJ, Zhu Y, Vessey KA, Kalloniatis M. Functional and neurochemical development in the normal and degenerating mouse retina. J Comp Neurol. 2013;15(521):1251–67.CrossRef
85.
go back to reference Miranda AS, Vieira LB, Lacerda-Queiroz N, Souza AH, Rodrigues DH, Vilela MC, et al. Increased levels of glutamate in the central nervous system are associated with behavioral symptoms in experimental malaria. Braz J Med Biol Res. 2010;43:1173–7.CrossRefPubMed Miranda AS, Vieira LB, Lacerda-Queiroz N, Souza AH, Rodrigues DH, Vilela MC, et al. Increased levels of glutamate in the central nervous system are associated with behavioral symptoms in experimental malaria. Braz J Med Biol Res. 2010;43:1173–7.CrossRefPubMed
Metadata
Title
Cerebral malaria induces electrophysiological and neurochemical impairment in mice retinal tissue: possible effect on glutathione and glutamatergic system
Authors
Karen R. H. M. Oliveira
Nayara Kauffmann
Luana K. R. Leão
Adelaide C. F. Passos
Fernando A. F. Rocha
Anderson M. Herculano
José L. M. do Nascimento
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2017
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-017-2083-6

Other articles of this Issue 1/2017

Malaria Journal 1/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.