Skip to main content
Top
Published in: Malaria Journal 1/2020

Open Access 01-12-2020 | Plasmodia | Methodology

Polymorphic markers for identification of parasite population in Plasmodium malariae

Authors: Vivek Bhakta Mathema, Supatchara Nakeesathit, Watcharee Pagornrat, Frank Smithuis, Nicholas J. White, Arjen M. Dondorp, Mallika Imwong

Published in: Malaria Journal | Issue 1/2020

Login to get access

Abstract

Background

Molecular genotyping in Plasmodium serves many aims including providing tools for studying parasite population genetics and distinguishing recrudescence from reinfection. Microsatellite typing, insertion-deletion (INDEL) and single nucleotide polymorphisms is used for genotyping, but only limited information is available for Plasmodium malariae, an important human malaria species. This study aimed to provide a set of genetic markers to facilitate the study of P. malariae population genetics.

Methods

Markers for microsatellite genotyping and pmmsp1 gene polymorphisms were developed and validated in symptomatic P. malariae field isolates from Myanmar (N = 37). Fragment analysis was used to determine allele sizes at each locus to calculate multiplicity of infections (MOI), linkage disequilibrium, heterozygosity and construct dendrograms. Nucleotide diversity (π), number of haplotypes, and genetic diversity (Hd) were assessed and a phylogenetic tree was constructed. Genome-wide microsatellite maps with annotated regions of newly identified markers were constructed.

Results

Six microsatellite markers were developed and tested in 37 P. malariae isolates which showed sufficient heterozygosity (0.530–0.922), and absence of linkage disequilibrium (I A S =0.03, p value > 0.05) (N = 37). In addition, a tandem repeat (VNTR)-based pmmsp1 INDEL polymorphisms marker was developed and assessed in 27 P. malariae isolates showing a nucleotide diversity of 0.0976, haplotype gene diversity of 0.698 and identified 14 unique variants. The size of VNTR consensus repeat unit adopted as allele was 27 base pairs. The markers Pm12_426 and pmmsp1 showed greatest diversity with heterozygosity scores of 0.920 and 0.835, respectively. Using six microsatellites markers, the likelihood that any two parasite strains would have the same microsatellite genotypes was 8.46 × 10−4 and was further reduced to 1.66 × 10−4 when pmmsp1 polymorphisms were included.

Conclusions

Six novel microsatellites genotyping markers and a set of pmmsp1 VNTR-based INDEL polymorphisms markers for P. malariae were developed and validated. Each marker could be independently or in combination employed to access genotyping of the parasite. The newly developed markers may serve as a useful tool for investigating parasite diversity, population genetics, molecular epidemiology and for distinguishing recrudescence from reinfection in drug efficacy studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lo E, Nguyen K, Nguyen J, Hemming-Schroeder E, Xu J, Etemesi H, et al. Plasmodium malariae prevalence and csp gene diversity, Kenya, 2014 and 2015. Emerg Infect Dis. 2017;23:601–10.PubMedPubMedCentralCrossRef Lo E, Nguyen K, Nguyen J, Hemming-Schroeder E, Xu J, Etemesi H, et al. Plasmodium malariae prevalence and csp gene diversity, Kenya, 2014 and 2015. Emerg Infect Dis. 2017;23:601–10.PubMedPubMedCentralCrossRef
2.
go back to reference Rutledge GG, Marr I, Huang GKL, Auburn S, Marfurt J, Sanders M, et al. Genomic characterization of recrudescent Plasmodium malariae after treatment with artemether/lumefantrine. Emerg Infect Dis. 2017;23:1300–7.PubMedPubMedCentralCrossRef Rutledge GG, Marr I, Huang GKL, Auburn S, Marfurt J, Sanders M, et al. Genomic characterization of recrudescent Plasmodium malariae after treatment with artemether/lumefantrine. Emerg Infect Dis. 2017;23:1300–7.PubMedPubMedCentralCrossRef
3.
go back to reference Zhou M, Liu Q, Wongsrichanalai C, Suwonkerd W, Panart K, Prajakwong S, et al. High prevalence of Plasmodium malariae and Plasmodium ovale in malaria patients along the thai-myanmar border, as revealed by acridine orange staining and PCR-based diagnoses. Trop Med Int Health. 1998;3:304–12.PubMedCrossRef Zhou M, Liu Q, Wongsrichanalai C, Suwonkerd W, Panart K, Prajakwong S, et al. High prevalence of Plasmodium malariae and Plasmodium ovale in malaria patients along the thai-myanmar border, as revealed by acridine orange staining and PCR-based diagnoses. Trop Med Int Health. 1998;3:304–12.PubMedCrossRef
4.
go back to reference Langford S, Douglas NM, Lampah DA, Simpson JA, Kenangalem E, Sugiarto P, et al. Plasmodium malariae infection associated with a high burden of anemia: a hospital-based surveillance study. PLoS Negl Trop Dis. 2015;9:e0004195.PubMedPubMedCentralCrossRef Langford S, Douglas NM, Lampah DA, Simpson JA, Kenangalem E, Sugiarto P, et al. Plasmodium malariae infection associated with a high burden of anemia: a hospital-based surveillance study. PLoS Negl Trop Dis. 2015;9:e0004195.PubMedPubMedCentralCrossRef
5.
go back to reference Yman V, Wandell G, Mutemi DD, Miglar A, Asghar M, Hammar U, et al. Persistent transmission of Plasmodium malariae and Plasmodium ovale species in an area of declining Plasmodium falciparum transmission in Eastern Tanzania. PLoS Negl Trop Dis. 2019;13:e0007414.PubMedPubMedCentralCrossRef Yman V, Wandell G, Mutemi DD, Miglar A, Asghar M, Hammar U, et al. Persistent transmission of Plasmodium malariae and Plasmodium ovale species in an area of declining Plasmodium falciparum transmission in Eastern Tanzania. PLoS Negl Trop Dis. 2019;13:e0007414.PubMedPubMedCentralCrossRef
6.
go back to reference Douglas NM, Lampah DA, Kenangalem E, Simpson JA, Poespoprodjo JR, Sugiarto P, et al. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med. 2013;10:e1001575.PubMedPubMedCentralCrossRef Douglas NM, Lampah DA, Kenangalem E, Simpson JA, Poespoprodjo JR, Sugiarto P, et al. Major burden of severe anemia from non-falciparum malaria species in Southern Papua: a hospital-based surveillance study. PLoS Med. 2013;10:e1001575.PubMedPubMedCentralCrossRef
7.
8.
go back to reference Nino CH, Cubides JR, Camargo-Ayala PA, Rodriguez-Celis CA, Quinones T, Cortes-Castillo MT, et al. Plasmodium malariae in the Colombian Amazon region: you don’t diagnose what you don’t suspect. Malar J. 2016;15:576.PubMedPubMedCentralCrossRef Nino CH, Cubides JR, Camargo-Ayala PA, Rodriguez-Celis CA, Quinones T, Cortes-Castillo MT, et al. Plasmodium malariae in the Colombian Amazon region: you don’t diagnose what you don’t suspect. Malar J. 2016;15:576.PubMedPubMedCentralCrossRef
9.
go back to reference Schindler T, Robaina T, Sax J, Bieri JR, Mpina M, Gondwe L, et al. Molecular monitoring of the diversity of human pathogenic malaria species in blood donations on Bioko island, Equatorial Guinea. Malar J. 2019;18:9.PubMedPubMedCentralCrossRef Schindler T, Robaina T, Sax J, Bieri JR, Mpina M, Gondwe L, et al. Molecular monitoring of the diversity of human pathogenic malaria species in blood donations on Bioko island, Equatorial Guinea. Malar J. 2019;18:9.PubMedPubMedCentralCrossRef
10.
go back to reference Roman DNR, Rosalie NNA, Kumar A, Luther KMM, Singh V, Albert MS. Asymptomatic Plasmodium malariae infections in children from suburban areas of Yaounde, Cameroon. Parasitol Int. 2018;67:29–33.PubMedCrossRef Roman DNR, Rosalie NNA, Kumar A, Luther KMM, Singh V, Albert MS. Asymptomatic Plasmodium malariae infections in children from suburban areas of Yaounde, Cameroon. Parasitol Int. 2018;67:29–33.PubMedCrossRef
11.
go back to reference Camargo M, Soto-De Leon SC, Del Rio-Ospina L, Paez AC, Gonzalez Z, Gonzalez E, et al. Micro-epidemiology of mixed-species malaria infections in a rural population living in the Colombian Amazon region. Sci Rep. 2018;8:5543.PubMedPubMedCentralCrossRef Camargo M, Soto-De Leon SC, Del Rio-Ospina L, Paez AC, Gonzalez Z, Gonzalez E, et al. Micro-epidemiology of mixed-species malaria infections in a rural population living in the Colombian Amazon region. Sci Rep. 2018;8:5543.PubMedPubMedCentralCrossRef
12.
go back to reference Roucher C, Rogier C, Sokhna C, Tall A, Trape JF. A 20-year longitudinal study of Plasmodium ovale and Plasmodium malariae prevalence and morbidity in a west African population. PLoS ONE. 2014;9:e87169.PubMedPubMedCentralCrossRef Roucher C, Rogier C, Sokhna C, Tall A, Trape JF. A 20-year longitudinal study of Plasmodium ovale and Plasmodium malariae prevalence and morbidity in a west African population. PLoS ONE. 2014;9:e87169.PubMedPubMedCentralCrossRef
13.
go back to reference Bruce MC, Macheso A, Galinski MR, Barnwell JW. Characterization and application of multiple genetic markers for Plasmodium malariae. Parasitology. 2007;134:637–50.PubMedCrossRef Bruce MC, Macheso A, Galinski MR, Barnwell JW. Characterization and application of multiple genetic markers for Plasmodium malariae. Parasitology. 2007;134:637–50.PubMedCrossRef
14.
go back to reference Bruce MC, Macheso A, McConnachie A, Molyneux ME. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi. Malar J. 2011;10:38.PubMedPubMedCentralCrossRef Bruce MC, Macheso A, McConnachie A, Molyneux ME. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi. Malar J. 2011;10:38.PubMedPubMedCentralCrossRef
15.
go back to reference Camargo-Ayala PA, Cubides JR, Nino CH, Camargo M, Rodriguez-Celis CA, Quinones T, et al. High Plasmodium malariae prevalence in an endemic area of the Colombian Amazon region. PLoS ONE. 2016;11:e0159968.PubMedPubMedCentralCrossRef Camargo-Ayala PA, Cubides JR, Nino CH, Camargo M, Rodriguez-Celis CA, Quinones T, et al. High Plasmodium malariae prevalence in an endemic area of the Colombian Amazon region. PLoS ONE. 2016;11:e0159968.PubMedPubMedCentralCrossRef
17.
go back to reference Rutledge GG, Bohme U, Sanders M, Reid AJ, Cotton JA, Maiga-Ascofare O, et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature. 2017;542:101–4.PubMedPubMedCentralCrossRef Rutledge GG, Bohme U, Sanders M, Reid AJ, Cotton JA, Maiga-Ascofare O, et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature. 2017;542:101–4.PubMedPubMedCentralCrossRef
18.
go back to reference Maguire JD, Sumawinata IW, Masbar S, Laksana B, Prodjodipuro P, Susanti I, et al. Chloroquine-resistant Pasmodium malariae in South Sumatra, Indonesia. Lancet. 2002;360:58–60.PubMedCrossRef Maguire JD, Sumawinata IW, Masbar S, Laksana B, Prodjodipuro P, Susanti I, et al. Chloroquine-resistant Pasmodium malariae in South Sumatra, Indonesia. Lancet. 2002;360:58–60.PubMedCrossRef
19.
go back to reference Wang B, Nyunt MH, Yun SG, Lu F, Cheng Y, Han JH, et al. Variable number of tandem repeats of 9 Plasmodium vivax genes among Southeast Asian isolates. Acta Trop. 2017;170:161–8.PubMedCrossRef Wang B, Nyunt MH, Yun SG, Lu F, Cheng Y, Han JH, et al. Variable number of tandem repeats of 9 Plasmodium vivax genes among Southeast Asian isolates. Acta Trop. 2017;170:161–8.PubMedCrossRef
20.
go back to reference Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, et al. Contrasting genetic structure in Plasmodium vivax populations from asia and South America. Int J Parasitol. 2007;37:1013–22.PubMedCrossRef Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, et al. Contrasting genetic structure in Plasmodium vivax populations from asia and South America. Int J Parasitol. 2007;37:1013–22.PubMedCrossRef
21.
go back to reference Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999;119:113–25.PubMedCrossRef Anderson TJ, Su XZ, Bockarie M, Lagog M, Day KP. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999;119:113–25.PubMedCrossRef
22.
go back to reference Jarne P, Lagoda PJ. Microsatellites, from molecules to populations and back. Trends Ecol Evol. 1996;11:424–9.PubMedCrossRef Jarne P, Lagoda PJ. Microsatellites, from molecules to populations and back. Trends Ecol Evol. 1996;11:424–9.PubMedCrossRef
23.
24.
go back to reference Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45.PubMedCrossRef Ellegren H. Microsatellites: simple sequences with complex evolution. Nat Rev Genet. 2004;5:435–45.PubMedCrossRef
25.
go back to reference Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, et al. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011;11:591–611.PubMedCrossRef Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, et al. Current trends in microsatellite genotyping. Mol Ecol Resour. 2011;11:591–611.PubMedCrossRef
26.
go back to reference Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, et al. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi. Infect Genet Evol. 2016;40:243–52.PubMedPubMedCentralCrossRef Sutton PL, Luo Z, Divis PCS, Friedrich VK, Conway DJ, Singh B, et al. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi. Infect Genet Evol. 2016;40:243–52.PubMedPubMedCentralCrossRef
27.
go back to reference Figan CE, Sa JM, Mu J, Melendez-Muniz VA, Liu CH, Wellems TE. A set of microsatellite markers to differentiate Plasmodium falciparum progeny of four genetic crosses. Malar J. 2018;17:60.PubMedPubMedCentralCrossRef Figan CE, Sa JM, Mu J, Melendez-Muniz VA, Liu CH, Wellems TE. A set of microsatellite markers to differentiate Plasmodium falciparum progeny of four genetic crosses. Malar J. 2018;17:60.PubMedPubMedCentralCrossRef
28.
go back to reference Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–82.PubMedCrossRef Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–82.PubMedCrossRef
29.
go back to reference Greenhouse B, Myrick A, Dokomajilar C, Woo JM, Carlson EJ, Rosenthal PJ, et al. Validation of microsatellite markers for use in genotyping polyclonal Plasmodium falciparum infections. Am J Trop Med Hyg. 2006;75:836–42.PubMedCrossRef Greenhouse B, Myrick A, Dokomajilar C, Woo JM, Carlson EJ, Rosenthal PJ, et al. Validation of microsatellite markers for use in genotyping polyclonal Plasmodium falciparum infections. Am J Trop Med Hyg. 2006;75:836–42.PubMedCrossRef
30.
go back to reference Menegon M, Bardaji A, Martinez-Espinosa F, Botto-Menezes C, Ome-Kaius M, Mueller I, et al. Microsatellite genotyping of Plasmodium vivax isolates from pregnant women in four malaria endemic countries. PLoS ONE. 2016;11:e0152447.PubMedPubMedCentralCrossRef Menegon M, Bardaji A, Martinez-Espinosa F, Botto-Menezes C, Ome-Kaius M, Mueller I, et al. Microsatellite genotyping of Plasmodium vivax isolates from pregnant women in four malaria endemic countries. PLoS ONE. 2016;11:e0152447.PubMedPubMedCentralCrossRef
31.
go back to reference Gomez JC, McNamara DT, Bockarie MJ, Baird JK, Carlton JM, Zimmerman PA. Identification of a polymorphic Plasmodium vivax microsatellite marker. Am J Trop Med Hyg. 2003;69:377–9.PubMedCrossRef Gomez JC, McNamara DT, Bockarie MJ, Baird JK, Carlton JM, Zimmerman PA. Identification of a polymorphic Plasmodium vivax microsatellite marker. Am J Trop Med Hyg. 2003;69:377–9.PubMedCrossRef
32.
go back to reference Soontarawirat I, Andolina C, Paul R, Day NPJ, Nosten F, Woodrow CJ, et al. Plasmodium vivax genetic diversity and heterozygosity in blood samples and resulting oocysts at the Thai–Myanmar border. Malar J. 2017;16:355.PubMedPubMedCentralCrossRef Soontarawirat I, Andolina C, Paul R, Day NPJ, Nosten F, Woodrow CJ, et al. Plasmodium vivax genetic diversity and heterozygosity in blood samples and resulting oocysts at the Thai–Myanmar border. Malar J. 2017;16:355.PubMedPubMedCentralCrossRef
33.
go back to reference Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, et al. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res. 2016;26:1288–99.PubMedPubMedCentralCrossRef Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, et al. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res. 2016;26:1288–99.PubMedPubMedCentralCrossRef
34.
go back to reference Escalante AA, Grebert HM, Chaiyaroj SC, Riggione F, Biswas S, Nahlen BL, et al. Polymorphism in the gene encoding the pfs48/45 antigen of Plasmodium falciparum. Xi. Asembo bay cohort project. Mol Biochem Parasitol. 2002;119:17–22.PubMedCrossRef Escalante AA, Grebert HM, Chaiyaroj SC, Riggione F, Biswas S, Nahlen BL, et al. Polymorphism in the gene encoding the pfs48/45 antigen of Plasmodium falciparum. Xi. Asembo bay cohort project. Mol Biochem Parasitol. 2002;119:17–22.PubMedCrossRef
35.
go back to reference Nateghpour M, Haghi AM, Naderi B, Sepehrizadeh Z. Genetic polymorphism of Plasmodium vivax duffy binding protein in malarious areas in Southeastern of Iran. J Parasit Dis. 2017;41:1132–8.PubMedPubMedCentralCrossRef Nateghpour M, Haghi AM, Naderi B, Sepehrizadeh Z. Genetic polymorphism of Plasmodium vivax duffy binding protein in malarious areas in Southeastern of Iran. J Parasit Dis. 2017;41:1132–8.PubMedPubMedCentralCrossRef
36.
go back to reference Zakeri S, Barjesteh H, Djadid ND. Merozoite surface protein-3alpha is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J. 2006;5:53.PubMedPubMedCentralCrossRef Zakeri S, Barjesteh H, Djadid ND. Merozoite surface protein-3alpha is a reliable marker for population genetic analysis of Plasmodium vivax. Malar J. 2006;5:53.PubMedPubMedCentralCrossRef
37.
go back to reference Le HG, Kang JM, Moe M, Jun H, Thai TL, Lee J, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar. Malar J. 2018;17:361.PubMedPubMedCentralCrossRef Le HG, Kang JM, Moe M, Jun H, Thai TL, Lee J, et al. Genetic polymorphism and natural selection of circumsporozoite surface protein in Plasmodium falciparum field isolates from Myanmar. Malar J. 2018;17:361.PubMedPubMedCentralCrossRef
38.
go back to reference Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S, Brown KN, et al. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg. 1999;93:369–74.PubMedCrossRef Snounou G, Zhu X, Siripoon N, Jarra W, Thaithong S, Brown KN, et al. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans R Soc Trop Med Hyg. 1999;93:369–74.PubMedCrossRef
39.
go back to reference Saralamba N, Mayxay M, Newton PN, Smithuis F, Nosten F, Archasuksan L, et al. Genetic polymorphisms in the circumsporozoite protein of Plasmodium malariae show a geographical bias. Malar J. 2018;17:269.PubMedPubMedCentralCrossRef Saralamba N, Mayxay M, Newton PN, Smithuis F, Nosten F, Archasuksan L, et al. Genetic polymorphisms in the circumsporozoite protein of Plasmodium malariae show a geographical bias. Malar J. 2018;17:269.PubMedPubMedCentralCrossRef
40.
go back to reference del Portillo HA, Longacre S, Khouri E, David PH. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc Natl Acad Sci USA. 1991;88:4030–4.PubMedCrossRefPubMedCentral del Portillo HA, Longacre S, Khouri E, David PH. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc Natl Acad Sci USA. 1991;88:4030–4.PubMedCrossRefPubMedCentral
41.
go back to reference Rice BL, Acosta MM, Pacheco MA, Carlton JM, Barnwell JW, Escalante AA. The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Mol Phylogenet Evol. 2014;78:172–84.PubMedPubMedCentralCrossRef Rice BL, Acosta MM, Pacheco MA, Carlton JM, Barnwell JW, Escalante AA. The origin and diversification of the merozoite surface protein 3 (msp3) multi-gene family in Plasmodium vivax and related parasites. Mol Phylogenet Evol. 2014;78:172–84.PubMedPubMedCentralCrossRef
42.
go back to reference Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40:343–72.PubMedPubMedCentralCrossRef Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JS. Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev. 2016;40:343–72.PubMedPubMedCentralCrossRef
43.
go back to reference Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, et al. Naturally acquired antibody responses to Plasmodium vivax and Plasmodium falciparum merozoite surface protein 1 (msp1) c-terminal 19 kDa domains in an area of unstable malaria transmission in Southeast Asia. PLoS ONE. 2016;11:e0151900.PubMedPubMedCentralCrossRef Wang Q, Zhao Z, Zhang X, Li X, Zhu M, Li P, et al. Naturally acquired antibody responses to Plasmodium vivax and Plasmodium falciparum merozoite surface protein 1 (msp1) c-terminal 19 kDa domains in an area of unstable malaria transmission in Southeast Asia. PLoS ONE. 2016;11:e0151900.PubMedPubMedCentralCrossRef
44.
go back to reference Ockenhouse CF, Angov E, Kester KE, Diggs C, Soisson L, Cummings JF, et al. Phase i safety and immunogenicity trial of fmp1/as02a, a Plasmodium falciparum msp-1 asexual blood stage vaccine. Vaccine. 2006;24:3009–17.PubMedCrossRef Ockenhouse CF, Angov E, Kester KE, Diggs C, Soisson L, Cummings JF, et al. Phase i safety and immunogenicity trial of fmp1/as02a, a Plasmodium falciparum msp-1 asexual blood stage vaccine. Vaccine. 2006;24:3009–17.PubMedCrossRef
45.
go back to reference Pattaradilokrat S, Sawaswong V, Simpalipan P, Kaewthamasorn M, Siripoon N, Harnyuttanakorn P. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand. Malar J. 2016;15:517.PubMedPubMedCentralCrossRef Pattaradilokrat S, Sawaswong V, Simpalipan P, Kaewthamasorn M, Siripoon N, Harnyuttanakorn P. Genetic diversity of the merozoite surface protein-3 gene in Plasmodium falciparum populations in Thailand. Malar J. 2016;15:517.PubMedPubMedCentralCrossRef
46.
go back to reference Cochrane AH, Collins WE, Nussenzweig RS. Monoclonal antibody identifies circumsporozoite protein of Plasmodium malariae and detects a common epitope on Plasmodium brasilianum sporozoites. Infect Immun. 1984;45:592–5.PubMedPubMedCentralCrossRef Cochrane AH, Collins WE, Nussenzweig RS. Monoclonal antibody identifies circumsporozoite protein of Plasmodium malariae and detects a common epitope on Plasmodium brasilianum sporozoites. Infect Immun. 1984;45:592–5.PubMedPubMedCentralCrossRef
47.
go back to reference Liu Y, Zhou RM, Zhang YL, Wang DQ, Li SH, Yang CY, et al. Analysis of polymorphisms in the circumsporozoite protein gene of Plasmodium vivax isolates from Henan province, China. Malar J. 2018;17:103.PubMedPubMedCentralCrossRef Liu Y, Zhou RM, Zhang YL, Wang DQ, Li SH, Yang CY, et al. Analysis of polymorphisms in the circumsporozoite protein gene of Plasmodium vivax isolates from Henan province, China. Malar J. 2018;17:103.PubMedPubMedCentralCrossRef
48.
go back to reference Rayner JC, Huber CS, Feldman D, Ingravallo P, Galinski MR, Barnwell JW. Plasmodium vivax merozoite surface protein PvMSP-3β is radically polymorphic through mutation and large insertions and deletions. Infect Genet Evol. 2004;4:309–19.PubMedCrossRef Rayner JC, Huber CS, Feldman D, Ingravallo P, Galinski MR, Barnwell JW. Plasmodium vivax merozoite surface protein PvMSP-3β is radically polymorphic through mutation and large insertions and deletions. Infect Genet Evol. 2004;4:309–19.PubMedCrossRef
49.
go back to reference Zilversmit MM, Volkman SK, DePristo MA, Wirth DF, Awadalla P, Hartl DL. Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. Mol Biol Evol. 2010;27:2198–209.PubMedPubMedCentralCrossRef Zilversmit MM, Volkman SK, DePristo MA, Wirth DF, Awadalla P, Hartl DL. Low-complexity regions in Plasmodium falciparum: missing links in the evolution of an extreme genome. Mol Biol Evol. 2010;27:2198–209.PubMedPubMedCentralCrossRef
50.
go back to reference Ord R, Polley S, Tami A, Sutherland CJ. High sequence diversity and evidence of balancing selection in the pvmsp3alpha gene of Plasmodium vivax in the Venezuelan Amazon. Mol Biochem Parasitol. 2005;144:86–93.PubMedCrossRef Ord R, Polley S, Tami A, Sutherland CJ. High sequence diversity and evidence of balancing selection in the pvmsp3alpha gene of Plasmodium vivax in the Venezuelan Amazon. Mol Biochem Parasitol. 2005;144:86–93.PubMedCrossRef
51.
go back to reference Ndong Ngomo JM, M’Bondoukwe NP, Yavo W, Bongho Mavoungou LC, Bouyou-Akotet MK, Mawili-Mboumba DP. Spatial and temporal distribution of pfmsp1 and pfmsp2 alleles and genetic profile change of Plasmodium falciparum populations in Gabon. Acta Trop. 2018;178:27–33.PubMedCrossRef Ndong Ngomo JM, M’Bondoukwe NP, Yavo W, Bongho Mavoungou LC, Bouyou-Akotet MK, Mawili-Mboumba DP. Spatial and temporal distribution of pfmsp1 and pfmsp2 alleles and genetic profile change of Plasmodium falciparum populations in Gabon. Acta Trop. 2018;178:27–33.PubMedCrossRef
52.
go back to reference Brito CF, Ferreira MU. Molecular markers and genetic diversity of Plasmodium vivax. Mem Inst Oswaldo Cruz. 2011;106(Suppl 1):12–26.PubMedCrossRef Brito CF, Ferreira MU. Molecular markers and genetic diversity of Plasmodium vivax. Mem Inst Oswaldo Cruz. 2011;106(Suppl 1):12–26.PubMedCrossRef
53.
go back to reference Kadekoppala M, Holder AA. Merozoite surface proteins of the malaria parasite: the msp1 complex and the msp7 family. Int J Parasitol. 2010;40:1155–61.PubMedCrossRef Kadekoppala M, Holder AA. Merozoite surface proteins of the malaria parasite: the msp1 complex and the msp7 family. Int J Parasitol. 2010;40:1155–61.PubMedCrossRef
54.
go back to reference Babiker HA, Lines J, Hill WG, Walliker D. Population structure of Plasmodium falciparum in villages with different malaria endemicity in East Africa. Am J Trop Med Hyg. 1997;56:141–7.PubMedCrossRef Babiker HA, Lines J, Hill WG, Walliker D. Population structure of Plasmodium falciparum in villages with different malaria endemicity in East Africa. Am J Trop Med Hyg. 1997;56:141–7.PubMedCrossRef
55.
go back to reference Some AF, Bazie T, Zongo I, Yerbanga RS, Nikiema F, Neya C, et al. Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso. Parasit Vectors. 2018;11:323.PubMedPubMedCentralCrossRef Some AF, Bazie T, Zongo I, Yerbanga RS, Nikiema F, Neya C, et al. Plasmodium falciparum msp1 and msp2 genetic diversity and allele frequencies in parasites isolated from symptomatic malaria patients in Bobo-Dioulasso, Burkina Faso. Parasit Vectors. 2018;11:323.PubMedPubMedCentralCrossRef
56.
go back to reference Guimaraes LO, Wunderlich G, Alves JM, Bueno MG, Rohe F, Catao-Dias JL, et al. Merozoite surface protein-1 genetic diversity in Plasmodium malariae and Plasmodium brasilianum from Brazil. BMC Infect Dis. 2015;15:529.PubMedPubMedCentralCrossRef Guimaraes LO, Wunderlich G, Alves JM, Bueno MG, Rohe F, Catao-Dias JL, et al. Merozoite surface protein-1 genetic diversity in Plasmodium malariae and Plasmodium brasilianum from Brazil. BMC Infect Dis. 2015;15:529.PubMedPubMedCentralCrossRef
57.
go back to reference Araujo MS, Messias MR, Figueiro MR, Gil LH, Probst CM, Vidal NM, et al. Natural Plasmodium infection in monkeys in the state of Rondonia (Brazilian Western Amazon). Malar J. 2013;12:180.PubMedPubMedCentralCrossRef Araujo MS, Messias MR, Figueiro MR, Gil LH, Probst CM, Vidal NM, et al. Natural Plasmodium infection in monkeys in the state of Rondonia (Brazilian Western Amazon). Malar J. 2013;12:180.PubMedPubMedCentralCrossRef
58.
go back to reference Fandeur T, Volney B, Peneau C, de Thoisy B. Monkeys of the rainforest in French Guiana are natural reservoirs for P. brasilianum/P. malariae malaria. Parasitology. 2000;120:11–21.PubMedCrossRef Fandeur T, Volney B, Peneau C, de Thoisy B. Monkeys of the rainforest in French Guiana are natural reservoirs for P. brasilianum/P. malariae malaria. Parasitology. 2000;120:11–21.PubMedCrossRef
59.
go back to reference Smithuis F, Kyaw MK, Phe O, Win T, Aung PP, Oo AP, et al. Effectiveness of five artemisinin combination regimens with or without primaquine in uncomplicated falciparum malaria: an open-label randomised trial. Lancet Infect Dis. 2010;10:673–81.PubMedPubMedCentralCrossRef Smithuis F, Kyaw MK, Phe O, Win T, Aung PP, Oo AP, et al. Effectiveness of five artemisinin combination regimens with or without primaquine in uncomplicated falciparum malaria: an open-label randomised trial. Lancet Infect Dis. 2010;10:673–81.PubMedPubMedCentralCrossRef
60.
go back to reference Srisutham S, Saralamba N, Malleret B, Renia L, Dondorp AM, Imwong M. Four human Plasmodium species quantification using droplet digital PCR. PLoS ONE. 2017;12:e0175771.PubMedPubMedCentralCrossRef Srisutham S, Saralamba N, Malleret B, Renia L, Dondorp AM, Imwong M. Four human Plasmodium species quantification using droplet digital PCR. PLoS ONE. 2017;12:e0175771.PubMedPubMedCentralCrossRef
61.
go back to reference Snounou G, Singh B. Nested pcr analysis of Plasmodium parasites. Methods Mol Med. 2002;72:189–203.PubMed Snounou G, Singh B. Nested pcr analysis of Plasmodium parasites. Methods Mol Med. 2002;72:189–203.PubMed
62.
go back to reference Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993;61:315–20.PubMedCrossRef Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993;61:315–20.PubMedCrossRef
63.
go back to reference Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. Stard 2015: an updated list of essential items for reporting diagnostic accuracy studies. Clin Chem. 2015;61:1446–52.PubMedCrossRef Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. Stard 2015: an updated list of essential items for reporting diagnostic accuracy studies. Clin Chem. 2015;61:1446–52.PubMedCrossRef
64.
go back to reference Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. Plasmodb: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.PubMedCrossRef Aurrecoechea C, Brestelli J, Brunk BP, Dommer J, Fischer S, Gajria B, et al. Plasmodb: a functional genomic database for malaria parasites. Nucleic Acids Res. 2009;37:D539–43.PubMedCrossRef
65.
go back to reference Simbaqueba J, Sanchez P, Sanchez E, Nunez Zarantes VM, Chacon MI, Barrero LS, et al. Development and characterization of microsatellite markers for the Cape Gooseberry Physalis peruviana. PLoS ONE. 2011;6:e26719.PubMedPubMedCentralCrossRef Simbaqueba J, Sanchez P, Sanchez E, Nunez Zarantes VM, Chacon MI, Barrero LS, et al. Development and characterization of microsatellite markers for the Cape Gooseberry Physalis peruviana. PLoS ONE. 2011;6:e26719.PubMedPubMedCentralCrossRef
67.
go back to reference Gunawardena S, Karunaweera ND, Ferreira MU, Phone-Kyaw M, Pollack RJ, Alifrangis M, et al. Geographic structure of Plasmodium vivax: microsatellite analysis of parasite populations from Sri Lanka, Myanmar, and Ethiopia. Am J Trop Med Hyg. 2010;82:235–42.PubMedPubMedCentralCrossRef Gunawardena S, Karunaweera ND, Ferreira MU, Phone-Kyaw M, Pollack RJ, Alifrangis M, et al. Geographic structure of Plasmodium vivax: microsatellite analysis of parasite populations from Sri Lanka, Myanmar, and Ethiopia. Am J Trop Med Hyg. 2010;82:235–42.PubMedPubMedCentralCrossRef
68.
go back to reference Haubold B, Hudson RR. Lian 3.0: Detecting linkage disequilibrium in multilocus data. Linkage analysis. Bioinformatics. 2000;16:847–8.PubMedCrossRef Haubold B, Hudson RR. Lian 3.0: Detecting linkage disequilibrium in multilocus data. Linkage analysis. Bioinformatics. 2000;16:847–8.PubMedCrossRef
69.
go back to reference Metsalu T, Vilo J. Clustvis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43:W566–70.PubMedPubMedCentralCrossRef Metsalu T, Vilo J. Clustvis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43:W566–70.PubMedPubMedCentralCrossRef
71.
72.
go back to reference Koepfli C, Mueller I, Marfurt J, Goroti M, Sie A, Oa O, et al. Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. J Infect Dis. 2009;199:1074–80.PubMedCrossRef Koepfli C, Mueller I, Marfurt J, Goroti M, Sie A, Oa O, et al. Evaluation of Plasmodium vivax genotyping markers for molecular monitoring in clinical trials. J Infect Dis. 2009;199:1074–80.PubMedCrossRef
73.
go back to reference Okonechnikov K, Golosova O, Fursov M, team U. Unipro ugene: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7.PubMedCrossRef Okonechnikov K, Golosova O, Fursov M, team U. Unipro ugene: a unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–7.PubMedCrossRef
74.
go back to reference Trimarsanto H, Benavente ED, Noviyanti R, Utami RA, Trianty L, Pava Z, et al. Vivaxgen: an open access platform for comparative analysis of short tandem repeat genotyping data in Plasmodium vivax populations. PLoS Negl Trop Dis. 2017;11:e0005465.PubMedPubMedCentralCrossRef Trimarsanto H, Benavente ED, Noviyanti R, Utami RA, Trianty L, Pava Z, et al. Vivaxgen: an open access platform for comparative analysis of short tandem repeat genotyping data in Plasmodium vivax populations. PLoS Negl Trop Dis. 2017;11:e0005465.PubMedPubMedCentralCrossRef
75.
go back to reference Orjuela-Sanchez P, Sa JM, Brandi MC, Rodrigues PT, Bastos MS, Amaratunga C, et al. Higher microsatellite diversity in Plasmodium vivax than in sympatric Plasmodium falciparum populations in Pursat, Western Cambodia. Exp Parasitol. 2013;134:318–26.PubMedPubMedCentralCrossRef Orjuela-Sanchez P, Sa JM, Brandi MC, Rodrigues PT, Bastos MS, Amaratunga C, et al. Higher microsatellite diversity in Plasmodium vivax than in sympatric Plasmodium falciparum populations in Pursat, Western Cambodia. Exp Parasitol. 2013;134:318–26.PubMedPubMedCentralCrossRef
76.
go back to reference Abukari Z, Okonu R, Nyarko SB, Lo AC, Dieng CC, Salifu SP, et al. The diversity, multiplicity of infection and population structure of P. falciparum parasites circulating in asymptomatic carriers living in high and low malaria transmission settings of Ghana. Genes (Basel). 2019. https://doi.org/10.3390/genes10060434.CrossRef Abukari Z, Okonu R, Nyarko SB, Lo AC, Dieng CC, Salifu SP, et al. The diversity, multiplicity of infection and population structure of P. falciparum parasites circulating in asymptomatic carriers living in high and low malaria transmission settings of Ghana. Genes (Basel). 2019. https://​doi.​org/​10.​3390/​genes10060434.CrossRef
77.
go back to reference Ball AD, Stapley J, Dawson DA, Birkhead TR, Burke T, Slate J. A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics. 2010;11:218.PubMedPubMedCentralCrossRef Ball AD, Stapley J, Dawson DA, Birkhead TR, Burke T, Slate J. A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics. 2010;11:218.PubMedPubMedCentralCrossRef
78.
go back to reference Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, et al. Extreme mutation bias and high at content in Plasmodium falciparum. Nucleic Acids Res. 2017;45:1889–901.PubMed Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, et al. Extreme mutation bias and high at content in Plasmodium falciparum. Nucleic Acids Res. 2017;45:1889–901.PubMed
79.
80.
go back to reference Castagnone-Sereno P, Danchin EG, Deleury E, Guillemaud T, Malausa T, Abad P. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics. 2010;11:598.PubMedPubMedCentralCrossRef Castagnone-Sereno P, Danchin EG, Deleury E, Guillemaud T, Malausa T, Abad P. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics. 2010;11:598.PubMedPubMedCentralCrossRef
81.
go back to reference Miller LH, Roberts T, Shahabuddin M, McCutchan TF. Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol Biochem Parasitol. 1993;59:1–14.PubMedCrossRef Miller LH, Roberts T, Shahabuddin M, McCutchan TF. Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). Mol Biochem Parasitol. 1993;59:1–14.PubMedCrossRef
82.
go back to reference Tanabe K, Mackay M, Goman M, Scaife JG. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol. 1987;195:273–87.PubMedCrossRef Tanabe K, Mackay M, Goman M, Scaife JG. Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. J Mol Biol. 1987;195:273–87.PubMedCrossRef
83.
go back to reference Takeuchi F, Yanai K, Morii T, Ishinaga Y, Taniguchi-Yanai K, Nagano S, et al. Linkage disequilibrium grouping of single nucleotide polymorphisms (SNPs) reflecting haplotype phylogeny for efficient selection of tag SNPs. Genetics. 2005;170:291–304.PubMedPubMedCentralCrossRef Takeuchi F, Yanai K, Morii T, Ishinaga Y, Taniguchi-Yanai K, Nagano S, et al. Linkage disequilibrium grouping of single nucleotide polymorphisms (SNPs) reflecting haplotype phylogeny for efficient selection of tag SNPs. Genetics. 2005;170:291–304.PubMedPubMedCentralCrossRef
Metadata
Title
Polymorphic markers for identification of parasite population in Plasmodium malariae
Authors
Vivek Bhakta Mathema
Supatchara Nakeesathit
Watcharee Pagornrat
Frank Smithuis
Nicholas J. White
Arjen M. Dondorp
Mallika Imwong
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2020
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-020-3122-2

Other articles of this Issue 1/2020

Malaria Journal 1/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.