Skip to main content
Top
Published in: Malaria Journal 1/2018

Open Access 01-12-2018 | Methodology

A set of microsatellite markers to differentiate Plasmodium falciparum progeny of four genetic crosses

Authors: Christine E. Figan, Juliana M. Sá, Jianbing Mu, Viviana A. Melendez-Muniz, Chia Hao Liu, Thomas E. Wellems

Published in: Malaria Journal | Issue 1/2018

Login to get access

Abstract

Background

Four Plasmodium falciparum genetic crosses (HB3×3D7, HB3×Dd2, 7G8×GB4, and 803×GB4) have produced sets of recombinant progeny that are widely used for malaria research, including investigations of anti-malarial drug resistance. It is critical to maintain the progeny free from cross-contamination. Microsatellite polymorphisms can be used to validate parasite identity.

Results

A set of 12 markers was developed that differentiates the parents of the four P. falciparum crosses. This typing set identified distinguishing patterns of inheritance (fingerprints) in segregant collections of 15 progeny clones from HB3×3D7, 32 from HB3×Dd2, 33 from 7G8×GB4, and 81 from 803×GB4. Stronger amplification was observed with shorter relative to longer alleles of individual microsatellites. In experiments with mixed parental DNAs, electropherograms showed that signals of cross-contamination can be missed when minor peaks less than 1/4 or 1/3 the height of the major peak are disregarded by threshold settings commonly used for population studies.

Conclusions

Microsatellite typing is an effective method to check the identity of P. falciparum lines and detect parasite cross-contamination in cultures; however, care must be taken not to ignore minor peaks that can be overlooked. The 12 microsatellite markers presented here provide a rapid and efficient means to distinguish the segregants of laboratory crosses. Fingerprint patterns from these markers are useful to maintain the integrity of diverse parasite lines in and between research laboratories.
Appendix
Available only for authorised users
Literature
1.
go back to reference Su X-z, Hayton K, Wellems TE. Genetic linkage and association analyses for trait mapping in Plasmodium falciparum. Nat Rev Genet. 2007;8:497–506.CrossRefPubMed Su X-z, Hayton K, Wellems TE. Genetic linkage and association analyses for trait mapping in Plasmodium falciparum. Nat Rev Genet. 2007;8:497–506.CrossRefPubMed
2.
go back to reference Walliker D, Quakyi IA, Wellems TE, McCutchan TF, Szarfman A, London WT, et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science. 1987;236:1661–6.CrossRefPubMed Walliker D, Quakyi IA, Wellems TE, McCutchan TF, Szarfman A, London WT, et al. Genetic analysis of the human malaria parasite Plasmodium falciparum. Science. 1987;236:1661–6.CrossRefPubMed
3.
go back to reference Wellems TE, Panton LJ, Gluzman IY, do Rosario VE, Gwadz RW, Walker-Jonah A, et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature. 1990;345:253–5.CrossRefPubMed Wellems TE, Panton LJ, Gluzman IY, do Rosario VE, Gwadz RW, Walker-Jonah A, et al. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature. 1990;345:253–5.CrossRefPubMed
4.
go back to reference Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe. 2008;4:40–51.CrossRefPubMedPubMedCentral Hayton K, Gaur D, Liu A, Takahashi J, Henschen B, Singh S, et al. Erythrocyte binding protein PfRH5 polymorphisms determine species-specific pathways of Plasmodium falciparum invasion. Cell Host Microbe. 2008;4:40–51.CrossRefPubMedPubMedCentral
5.
go back to reference Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M, Checkley LA, et al. Plasmodium falciparum genetic crosses in a humanized mouse model. Nat Methods. 2015;12:631–3.CrossRefPubMedPubMedCentral Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M, Checkley LA, et al. Plasmodium falciparum genetic crosses in a humanized mouse model. Nat Methods. 2015;12:631–3.CrossRefPubMedPubMedCentral
6.
go back to reference Robson KJH, Walliker D, Creasey A, Mcbride J, Beale G, Wilson RJM. Cross-contamination of Plasmodium cultures. Parasitol Today. 1992;8:38–9.CrossRef Robson KJH, Walliker D, Creasey A, Mcbride J, Beale G, Wilson RJM. Cross-contamination of Plasmodium cultures. Parasitol Today. 1992;8:38–9.CrossRef
7.
go back to reference Dolan SA, Herrfeldt JA, Wellems TE. Restriction polymorphisms and fingerprint patterns from an interspersed repetitive element of Plasmodium falciparum DNA. Mol Biochem Parasitol. 1993;61:137–42.CrossRefPubMed Dolan SA, Herrfeldt JA, Wellems TE. Restriction polymorphisms and fingerprint patterns from an interspersed repetitive element of Plasmodium falciparum DNA. Mol Biochem Parasitol. 1993;61:137–42.CrossRefPubMed
8.
go back to reference Wellems TE, Walliker D, Smith CL, do Rosario VE, Maloy WL, Howard RJ, et al. A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell. 1987;49:633–42.CrossRefPubMed Wellems TE, Walliker D, Smith CL, do Rosario VE, Maloy WL, Howard RJ, et al. A histidine-rich protein gene marks a linkage group favored strongly in a genetic cross of Plasmodium falciparum. Cell. 1987;49:633–42.CrossRefPubMed
9.
go back to reference Peterson DS, Walliker D, Wellems TE. Evidence that a point mutation in dihydrofolate-reductase thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA. 1988;85:9114–8.CrossRefPubMedPubMedCentral Peterson DS, Walliker D, Wellems TE. Evidence that a point mutation in dihydrofolate-reductase thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA. 1988;85:9114–8.CrossRefPubMedPubMedCentral
10.
go back to reference Walker-Jonah A, Dolan SA, Gwadz RW, Panton LJ, Wellems TE. An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. Mol Biochem Parasitol. 1992;51:313–20.CrossRefPubMed Walker-Jonah A, Dolan SA, Gwadz RW, Panton LJ, Wellems TE. An RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic cross. Mol Biochem Parasitol. 1992;51:313–20.CrossRefPubMed
11.
go back to reference Su X-z, Ferdig MT, Huang Y, Huynh CQ, Liu A, You J, et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science. 1999;286:1351–3.CrossRefPubMed Su X-z, Ferdig MT, Huang Y, Huynh CQ, Liu A, You J, et al. A genetic map and recombination parameters of the human malaria parasite Plasmodium falciparum. Science. 1999;286:1351–3.CrossRefPubMed
12.
go back to reference Ferdig MT, Su X-z. Microsatellite markers and genetic mapping in Plasmodium falciparum. Parasitol Today. 2000;16:307–12.CrossRefPubMed Ferdig MT, Su X-z. Microsatellite markers and genetic mapping in Plasmodium falciparum. Parasitol Today. 2000;16:307–12.CrossRefPubMed
13.
go back to reference Kidgell C, Winzeler EA. Elucidating genetic diversity with oligonucleotide arrays. Chromosome Res. 2005;13:225–35.CrossRefPubMed Kidgell C, Winzeler EA. Elucidating genetic diversity with oligonucleotide arrays. Chromosome Res. 2005;13:225–35.CrossRefPubMed
14.
go back to reference Jiang H, Li N, Gopalan V, Zilversmit MM, Varma S, Nagarajan V, et al. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol. 2011;12:R33.CrossRefPubMedPubMedCentral Jiang H, Li N, Gopalan V, Zilversmit MM, Varma S, Nagarajan V, et al. High recombination rates and hotspots in a Plasmodium falciparum genetic cross. Genome Biol. 2011;12:R33.CrossRefPubMedPubMedCentral
15.
go back to reference Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, et al. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res. 2016;26:1288–99.CrossRefPubMedPubMedCentral Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, et al. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum. Genome Res. 2016;26:1288–99.CrossRefPubMedPubMedCentral
16.
go back to reference Sambrook J, Russell DW. Commonly used techniques in molecular cloning. In: Molecular Cloning: A Laboratory Manual. Volume 3. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001: pp. A8.1-54. Sambrook J, Russell DW. Commonly used techniques in molecular cloning. In: Molecular Cloning: A Laboratory Manual. Volume 3. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001: pp. A8.1-54.
17.
go back to reference Juliano JJ, Kwiek JJ, Cappell K, Mwapasa V, Meshnick SR. Minority-variant Pfcrt K76T mutations and chloroquine resistance, Malawi. Emerg Infect Dis. 2007;13:872–7.CrossRefPubMed Juliano JJ, Kwiek JJ, Cappell K, Mwapasa V, Meshnick SR. Minority-variant Pfcrt K76T mutations and chloroquine resistance, Malawi. Emerg Infect Dis. 2007;13:872–7.CrossRefPubMed
18.
go back to reference Liu S, Mu J, Jiang H, Su X-z. Effects of Plasmodium falciparum mixed infections on in vitro antimalarial drug tests and genotyping. Am J Trop Med Hyg. 2008;79:178–84.PubMedPubMedCentral Liu S, Mu J, Jiang H, Su X-z. Effects of Plasmodium falciparum mixed infections on in vitro antimalarial drug tests and genotyping. Am J Trop Med Hyg. 2008;79:178–84.PubMedPubMedCentral
19.
go back to reference Anderson TJ, Su X-z, Bockarie M, Lagog M, Day KP. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999;119(Pt 2):113–25.CrossRefPubMed Anderson TJ, Su X-z, Bockarie M, Lagog M, Day KP. Twelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology. 1999;119(Pt 2):113–25.CrossRefPubMed
20.
go back to reference Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–82.CrossRefPubMed Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, et al. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol. 2000;17:1467–82.CrossRefPubMed
21.
go back to reference Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, et al. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol. 2007;37:1013–22.CrossRefPubMed Imwong M, Nair S, Pukrittayakamee S, Sudimack D, Williams JT, Mayxay M, et al. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol. 2007;37:1013–22.CrossRefPubMed
22.
go back to reference Noviyanti R, Coutrier F, Utami RA, Trimarsanto H, Tirta YK, Trianty L, et al. Contrasting transmission dynamics of co-endemic Plasmodium vivax and P. falciparum: implications for malaria control and elimination. PLoS Negl Trop Dis. 2015;9:e0003739.CrossRefPubMedPubMedCentral Noviyanti R, Coutrier F, Utami RA, Trimarsanto H, Tirta YK, Trianty L, et al. Contrasting transmission dynamics of co-endemic Plasmodium vivax and P. falciparum: implications for malaria control and elimination. PLoS Negl Trop Dis. 2015;9:e0003739.CrossRefPubMedPubMedCentral
23.
go back to reference Su X-z, Wellems TE. Toward a high-resolution Plasmodium falciparum linkage map: polymorphic markers from hundreds of simple sequence repeats. Genomics. 1996;33:430–44.CrossRefPubMed Su X-z, Wellems TE. Toward a high-resolution Plasmodium falciparum linkage map: polymorphic markers from hundreds of simple sequence repeats. Genomics. 1996;33:430–44.CrossRefPubMed
24.
go back to reference Su X-z, Wootton JC. Genetic mapping in the human malaria parasite Plasmodium falciparum. Mol Microbiol. 2004;53:1573–82.CrossRefPubMed Su X-z, Wootton JC. Genetic mapping in the human malaria parasite Plasmodium falciparum. Mol Microbiol. 2004;53:1573–82.CrossRefPubMed
Metadata
Title
A set of microsatellite markers to differentiate Plasmodium falciparum progeny of four genetic crosses
Authors
Christine E. Figan
Juliana M. Sá
Jianbing Mu
Viviana A. Melendez-Muniz
Chia Hao Liu
Thomas E. Wellems
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Malaria Journal / Issue 1/2018
Electronic ISSN: 1475-2875
DOI
https://doi.org/10.1186/s12936-018-2210-z

Other articles of this Issue 1/2018

Malaria Journal 1/2018 Go to the issue