Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 1/2022

01-02-2022 | PCSK9 Inhibitor | Review

A Less than Provocative Approach for the Primary Prevention of CAD

Authors: Robert Roberts, Jacques Fair

Published in: Journal of Cardiovascular Translational Research | Issue 1/2022

Login to get access

Abstract

Coronary artery disease (CAD) risk increases in proportion to the magnitude and duration of exposure to plasma low-density lipoprotein cholesterol (LDL-C), doubling every additional decade of exposure. Early primary prevention is three times more effective than initiated later. Several clinical trials show plasma LDL-C of 15–40 mg/dL is more effective and equally safe as the Current Cardiovascular Clinical Practice Guidelines (CCCPG) recommended target of 70mg/dL. The cholesterol in the blood is the excess synthesized by the cells and secreted into the blood for disposal in the liver. The CCCPG is inadequate since traditional risk factors (TRF) are not detectable until the sixth and seventh decade. The genetic risk score (GRS) evaluated in 1 million individuals as a risk stratifier for CAD is superior to TRF. Genetic risk for CAD was reduced by 30–50% by statin therapy, PCSK9 inhibitors, and lifestyle changes. The GRS does not change during one’s lifetime and is inexpensive. Incorporating genetic risk stratification into CCCPG would induce a paradigm shift in the primary prevention of CAD.
Literature
1.
go back to reference Murray, C. J., & Lopez, A. D. (2013). Measuring the global burden of disease. The New England Journal of Medicine, 369(5), 448–457.PubMedCrossRef Murray, C. J., & Lopez, A. D. (2013). Measuring the global burden of disease. The New England Journal of Medicine, 369(5), 448–457.PubMedCrossRef
2.
go back to reference Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., et al. (2018). Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation, 137(12), e67–e492. Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., et al. (2018). Heart disease and stroke statistics-2018 update: A report from the American Heart Association. Circulation, 137(12), e67–e492.
3.
go back to reference Grundy, S. M., Stone, N. J., Bailey, A. L., Craig, B., Birtcher Kim, K., Blumenthal Roger, S., et al. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139(25), e1082–e1143.PubMed Grundy, S. M., Stone, N. J., Bailey, A. L., Craig, B., Birtcher Kim, K., Blumenthal Roger, S., et al. (2019). 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 139(25), e1082–e1143.PubMed
4.
go back to reference Authors/Task Force Members. (2019). ESC Committee for Practice Guidelines (CPG), ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis, 290, 140–205.CrossRef Authors/Task Force Members. (2019). ESC Committee for Practice Guidelines (CPG), ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Atherosclerosis, 290, 140–205.CrossRef
5.
go back to reference Borén, J., Chapman, M. J., Krauss, R. M., Packard, C. J., Bentzon, J. F., Binder, C. J., et al. (2020). Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 41(24), 2313–2330.PubMedPubMedCentralCrossRef Borén, J., Chapman, M. J., Krauss, R. M., Packard, C. J., Bentzon, J. F., Binder, C. J., et al. (2020). Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 41(24), 2313–2330.PubMedPubMedCentralCrossRef
6.
go back to reference Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al. (2015). Heart disease and stroke statistics--2015 update: A report from the American Heart Association. Circulation, 131(4), e29–e322. Mozaffarian, D., Benjamin, E. J., Go, A. S., Arnett, D. K., Blaha, M. J., Cushman, M., et al. (2015). Heart disease and stroke statistics--2015 update: A report from the American Heart Association. Circulation, 131(4), e29–e322.
7.
go back to reference Ference, B. A., Ginsberg, H. N., Graham, I., Ray, K. K., Packard, C. J., Bruckert, E., et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38(32), 2459–2472.PubMedPubMedCentralCrossRef Ference, B. A., Ginsberg, H. N., Graham, I., Ray, K. K., Packard, C. J., Bruckert, E., et al. (2017). Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 38(32), 2459–2472.PubMedPubMedCentralCrossRef
8.
go back to reference Navar-Boggan, A. M., Peterson, E. D., D’Agostino, R. B., Neely, B., Sniderman, A. D., & Pencina, M. J. (2015). Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation, 131(5), 451–458.PubMedPubMedCentralCrossRef Navar-Boggan, A. M., Peterson, E. D., D’Agostino, R. B., Neely, B., Sniderman, A. D., & Pencina, M. J. (2015). Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation, 131(5), 451–458.PubMedPubMedCentralCrossRef
9.
go back to reference Scandinavian Simvastatin Survival Study Group. (1994). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). The Lancet, 344(8934), 1383–1389. Scandinavian Simvastatin Survival Study Group. (1994). Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Simvastatin Survival Study (4S). The Lancet, 344(8934), 1383–1389.
10.
go back to reference Baigent, C., Keech, A., Kearney, P. M., Blackwell, L., Buck, G., Pollicino, C., et al. (2005). Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet, 366(9493), 1267–1278.CrossRef Baigent, C., Keech, A., Kearney, P. M., Blackwell, L., Buck, G., Pollicino, C., et al. (2005). Efficacy and safety of cholesterol-lowering treatment: Prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet, 366(9493), 1267–1278.CrossRef
11.
go back to reference Collins, R., Reith, C., Emberson, J., Armitage, J., Baigent, C., Blackwell, L., et al. (2016). Interpretation of the evidence for the efficacy and safety of statin therapy. The Lancet, 388(10059), 2532–2561.CrossRef Collins, R., Reith, C., Emberson, J., Armitage, J., Baigent, C., Blackwell, L., et al. (2016). Interpretation of the evidence for the efficacy and safety of statin therapy. The Lancet, 388(10059), 2532–2561.CrossRef
12.
go back to reference Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent, C., Blackwell, L., Emberson, J., Holland, L. E., Reith, C., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 376(9753), 1670–1681.CrossRef Cholesterol Treatment Trialists’ (CTT) Collaboration, Baigent, C., Blackwell, L., Emberson, J., Holland, L. E., Reith, C., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 376(9753), 1670–1681.CrossRef
13.
go back to reference Ference, B. A., Yoo, W., Alesh, I., Mahajan, N., Mirowska, K. K., Mewada, A., et al. (2012). Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease. Journal of the American College of Cardiology, 60(25), 2631.PubMedCrossRef Ference, B. A., Yoo, W., Alesh, I., Mahajan, N., Mirowska, K. K., Mewada, A., et al. (2012). Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease. Journal of the American College of Cardiology, 60(25), 2631.PubMedCrossRef
14.
go back to reference Swiger, K. J., Martin, S. S., Blaha, M. J., Toth, P. P., Nasir, K., Michos, E. D., et al. (2014). Narrowing sex differences in lipoprotein cholesterol subclasses following mid-life: The very large database of lipids (VLDL-10B). Journal of the American Heart Association, 3(2), e000851.PubMedPubMedCentralCrossRef Swiger, K. J., Martin, S. S., Blaha, M. J., Toth, P. P., Nasir, K., Michos, E. D., et al. (2014). Narrowing sex differences in lipoprotein cholesterol subclasses following mid-life: The very large database of lipids (VLDL-10B). Journal of the American Heart Association, 3(2), e000851.PubMedPubMedCentralCrossRef
15.
go back to reference Domanski, M. J., Tian, X., Wu, C. O., Reis, J. P., Dey, A. K., Gu, Y., Zhao, L., Bae, S., Liu, K., Hasan, A. A., Zimrin, D., Farkouh, M. E., Hong, C. C., Lloyd-Jones, D. M., & Fuster, V. (2020). Time course of LDL cholesterol exposure and cardiovascular disease event risk. Journal of the American College of Cardiology, 76(13), 1507–1516.PubMedCrossRef Domanski, M. J., Tian, X., Wu, C. O., Reis, J. P., Dey, A. K., Gu, Y., Zhao, L., Bae, S., Liu, K., Hasan, A. A., Zimrin, D., Farkouh, M. E., Hong, C. C., Lloyd-Jones, D. M., & Fuster, V. (2020). Time course of LDL cholesterol exposure and cardiovascular disease event risk. Journal of the American College of Cardiology, 76(13), 1507–1516.PubMedCrossRef
16.
go back to reference Zeitouni, M., Nanna, M. G., Sun, J.-L., Chiswell, K., Peterson, E. D., & Navar, A. M. (2020). Performance of guideline recommendations for prevention of myocardial infarction in young adults. Journal of the American College of Cardiology, 76(6), 653–664.PubMedPubMedCentralCrossRef Zeitouni, M., Nanna, M. G., Sun, J.-L., Chiswell, K., Peterson, E. D., & Navar, A. M. (2020). Performance of guideline recommendations for prevention of myocardial infarction in young adults. Journal of the American College of Cardiology, 76(6), 653–664.PubMedPubMedCentralCrossRef
17.
18.
go back to reference Tabas, I. (2002). Consequences of cellular cholesterol accumulation: Basic concepts and physiological implications. The Journal of Clinical Investigation, 110(7), 905–911.PubMedPubMedCentralCrossRef Tabas, I. (2002). Consequences of cellular cholesterol accumulation: Basic concepts and physiological implications. The Journal of Clinical Investigation, 110(7), 905–911.PubMedPubMedCentralCrossRef
19.
go back to reference Cannon, C. P., Blazing, M. A., Giugliano, R. P., McCagg, A., White, J. A., Theroux, P., et al. (2015). Ezetimibe added to statin therapy after acute coronary syndromes. The New England Journal of Medicine, 372(25), 2387–2397.PubMedCrossRef Cannon, C. P., Blazing, M. A., Giugliano, R. P., McCagg, A., White, J. A., Theroux, P., et al. (2015). Ezetimibe added to statin therapy after acute coronary syndromes. The New England Journal of Medicine, 372(25), 2387–2397.PubMedCrossRef
20.
go back to reference Sabatine, M. S., Giugliano, R. P., Keech, A. C., Honarpour, N., Wiviott, S. D., Murphy, S. A., et al. (2017). Evolocumab and clinical outcomes in patients with cardiovascular disease. The New England Journal of Medicine, 376(18), 1713–1722.PubMedCrossRef Sabatine, M. S., Giugliano, R. P., Keech, A. C., Honarpour, N., Wiviott, S. D., Murphy, S. A., et al. (2017). Evolocumab and clinical outcomes in patients with cardiovascular disease. The New England Journal of Medicine, 376(18), 1713–1722.PubMedCrossRef
21.
go back to reference Giugliano, R. P., Pedersen, T. R., Park, J.-G., De Ferrari, G. M., Gaciong, Z. A., Ceska, R., et al. (2017). Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: A prespecified secondary analysis of the FOURIER trial. The Lancet, 390(10106), 1962–1971.CrossRef Giugliano, R. P., Pedersen, T. R., Park, J.-G., De Ferrari, G. M., Gaciong, Z. A., Ceska, R., et al. (2017). Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: A prespecified secondary analysis of the FOURIER trial. The Lancet, 390(10106), 1962–1971.CrossRef
22.
go back to reference Schwartz, G. G., Steg, P. G., Szarek, M., Bhatt, D. L., Bittner, V. A., Diaz, R., et al. (2018). Alirocumab and cardiovascular outcomes after acute coronary syndrome. The New England Journal of Medicine, 379(22), 2097–2107.PubMedCrossRef Schwartz, G. G., Steg, P. G., Szarek, M., Bhatt, D. L., Bittner, V. A., Diaz, R., et al. (2018). Alirocumab and cardiovascular outcomes after acute coronary syndrome. The New England Journal of Medicine, 379(22), 2097–2107.PubMedCrossRef
23.
go back to reference Ference, B. A., Cannon, C. P., Landmesser, U., Lüscher, T. F., Catapano, A. L., & Ray, K. K. (2018). Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: An analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. European Heart Journal, 39(27), 2540–2545.PubMedCrossRef Ference, B. A., Cannon, C. P., Landmesser, U., Lüscher, T. F., Catapano, A. L., & Ray, K. K. (2018). Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: An analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. European Heart Journal, 39(27), 2540–2545.PubMedCrossRef
25.
go back to reference Kones, R., & Rumana, U. (2015). Current treatment of dyslipidemia: A new paradigm for statin drug use and the need for additional therapies. Drugs, 75(11), 1187–1199.PubMedCrossRef Kones, R., & Rumana, U. (2015). Current treatment of dyslipidemia: A new paradigm for statin drug use and the need for additional therapies. Drugs, 75(11), 1187–1199.PubMedCrossRef
26.
go back to reference Fujita, H., Okada, T., Inami, I., Makimoto, M., Hosono, S., Minato, M., et al. (2008). Low– density lipoprotein profile changes during the neonatal period. Journal of Perinatology, 28(5), 335–340.PubMedCrossRef Fujita, H., Okada, T., Inami, I., Makimoto, M., Hosono, S., Minato, M., et al. (2008). Low– density lipoprotein profile changes during the neonatal period. Journal of Perinatology, 28(5), 335–340.PubMedCrossRef
27.
go back to reference Pac-Kozuchowska, E. (2007). Evaluation of lipids, lipoproteins and apolipoproteins concentrations in cord blood serum of newborns from rural and urban environments. Annals of Agricultural and Environmental Medicine, 14(1), 25–29.PubMed Pac-Kozuchowska, E. (2007). Evaluation of lipids, lipoproteins and apolipoproteins concentrations in cord blood serum of newborns from rural and urban environments. Annals of Agricultural and Environmental Medicine, 14(1), 25–29.PubMed
28.
go back to reference Chan, L., & Boerwinkle, E. (1994). Gene-environment interactions and gene therapy in atherosclerosis. Cardiology in Review, 2, 130–137.CrossRef Chan, L., & Boerwinkle, E. (1994). Gene-environment interactions and gene therapy in atherosclerosis. Cardiology in Review, 2, 130–137.CrossRef
29.
go back to reference McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316(5830), 1488–1491.PubMedPubMedCentralCrossRef McPherson, R., Pertsemlidis, A., Kavaslar, N., Stewart, A., Roberts, R., Cox, D. R., et al. (2007). A common allele on chromosome 9 associated with coronary heart disease. Science, 316(5830), 1488–1491.PubMedPubMedCentralCrossRef
30.
go back to reference Helgadottir, A., Thorleifsson, G., Manolescu, A., Gretarsdottir, S., Blondal, T., Jonasdottir, A., et al. (2007). A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science, 316(5830), 1491–1493.PubMedCrossRef Helgadottir, A., Thorleifsson, G., Manolescu, A., Gretarsdottir, S., Blondal, T., Jonasdottir, A., et al. (2007). A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science, 316(5830), 1491–1493.PubMedCrossRef
31.
go back to reference Erdmann, J., Kessler, T., Munoz Venegas, L., & Schunkert, H. (2018). A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovascular Research, 114(9), 1241–1257.PubMed Erdmann, J., Kessler, T., Munoz Venegas, L., & Schunkert, H. (2018). A decade of genome-wide association studies for coronary artery disease: The challenges ahead. Cardiovascular Research, 114(9), 1241–1257.PubMed
32.
go back to reference Khera, A. V., Chaffin, M., Zekavat, S. M., Collins, R. L., Roselli, C., Natarajan, P., et al. (2019). Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation, 139(13), 1593–1602.PubMedPubMedCentralCrossRef Khera, A. V., Chaffin, M., Zekavat, S. M., Collins, R. L., Roselli, C., Natarajan, P., et al. (2019). Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation, 139(13), 1593–1602.PubMedPubMedCentralCrossRef
33.
go back to reference Inouye, M., Abraham, G., Nelson, C. P., Wood, A. M., Sweeting, M. J., Dudbridge, F., et al. (2018). Genomic risk prediction of coronary artery disease in 480,000 adults. Journal of the American College of Cardiology, 72(16), 1883–1893.PubMedPubMedCentralCrossRef Inouye, M., Abraham, G., Nelson, C. P., Wood, A. M., Sweeting, M. J., Dudbridge, F., et al. (2018). Genomic risk prediction of coronary artery disease in 480,000 adults. Journal of the American College of Cardiology, 72(16), 1883–1893.PubMedPubMedCentralCrossRef
34.
go back to reference Davies, R. W., Dandona, S., Stewart, A. F., et al. (2010). Improved prediction of cardiovascular disease based on a panel of single nucleotide polymorphisms identified through genome-wide association studies. Circulation. Cardiovascular Genetics, 3(5), 468–474.PubMedPubMedCentralCrossRef Davies, R. W., Dandona, S., Stewart, A. F., et al. (2010). Improved prediction of cardiovascular disease based on a panel of single nucleotide polymorphisms identified through genome-wide association studies. Circulation. Cardiovascular Genetics, 3(5), 468–474.PubMedPubMedCentralCrossRef
35.
go back to reference Assimes, T. L., & Roberts, R. (2016). Genetics: Implications for prevention and management of coronary artery disease. Journal of the American College of Cardiology, 68(25), 2797–2818.PubMedCrossRef Assimes, T. L., & Roberts, R. (2016). Genetics: Implications for prevention and management of coronary artery disease. Journal of the American College of Cardiology, 68(25), 2797–2818.PubMedCrossRef
36.
go back to reference Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., et al. (2018). Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nature Genetics, 50(9), 1219–1224.PubMedPubMedCentralCrossRef Khera, A. V., Chaffin, M., Aragam, K. G., Haas, M. E., Roselli, C., Choi, S. H., et al. (2018). Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nature Genetics, 50(9), 1219–1224.PubMedPubMedCentralCrossRef
37.
go back to reference Mega, J. L., Stitziel, N. O., Smith, J. G., Chasman, D. I., Caulfield, M., Devlin, J. J., et al. (2015). Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet, 385(9984), 2264–2271.PubMedPubMedCentralCrossRef Mega, J. L., Stitziel, N. O., Smith, J. G., Chasman, D. I., Caulfield, M., Devlin, J. J., et al. (2015). Genetic risk, coronary heart disease events, and the clinical benefit of statin therapy: An analysis of primary and secondary prevention trials. Lancet, 385(9984), 2264–2271.PubMedPubMedCentralCrossRef
38.
go back to reference Natarajan, P., Young, R., Stitziel, N. O., Padmanabhan, S., Baber, U., Mehran, R., et al. (2017). Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation, 135(22), 2091–2101.PubMedPubMedCentralCrossRef Natarajan, P., Young, R., Stitziel, N. O., Padmanabhan, S., Baber, U., Mehran, R., et al. (2017). Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation, 135(22), 2091–2101.PubMedPubMedCentralCrossRef
39.
go back to reference Abraham, G., Havulinna, A. S., Bhalala, O. G., et al. (2016). Genomic prediction of coronary heart disease. European Heart Journal, 37(43), 3267–3278.PubMedPubMedCentralCrossRef Abraham, G., Havulinna, A. S., Bhalala, O. G., et al. (2016). Genomic prediction of coronary heart disease. European Heart Journal, 37(43), 3267–3278.PubMedPubMedCentralCrossRef
40.
go back to reference Marston, N. A., Kamanu, F. K., Francesco, N., Yared, G., Carolina, R., Sever Peter, S., et al. (2020). Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score. Circulation, 141(8), 616–623.PubMedCrossRef Marston, N. A., Kamanu, F. K., Francesco, N., Yared, G., Carolina, R., Sever Peter, S., et al. (2020). Predicting benefit from evolocumab therapy in patients with atherosclerotic disease using a genetic risk score. Circulation, 141(8), 616–623.PubMedCrossRef
41.
go back to reference Amy, D., Gabriel, S. P., Schwartz, G. G., Michael, S., Emil, H., Lina, B., et al. (2020). Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation, 141(8), 624–636.CrossRef Amy, D., Gabriel, S. P., Schwartz, G. G., Michael, S., Emil, H., Lina, B., et al. (2020). Patients with high genome-wide polygenic risk scores for coronary artery disease may receive greater clinical benefit from alirocumab treatment in the ODYSSEY OUTCOMES trial. Circulation, 141(8), 624–636.CrossRef
42.
go back to reference Elliott, J., Bodinier, B., Bond, T. A., et al. (2020). Predictive accuracy of a polygenic risk score–Enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA, 323(7), 636–645.PubMedPubMedCentralCrossRef Elliott, J., Bodinier, B., Bond, T. A., et al. (2020). Predictive accuracy of a polygenic risk score–Enhanced prediction model vs a clinical risk score for coronary artery disease. JAMA, 323(7), 636–645.PubMedPubMedCentralCrossRef
43.
go back to reference Mosley, J. D., Gupta, D. K., Tan, J., et al. (2020). Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA, 323(7), 627–635.PubMedPubMedCentralCrossRef Mosley, J. D., Gupta, D. K., Tan, J., et al. (2020). Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA, 323(7), 627–635.PubMedPubMedCentralCrossRef
44.
go back to reference Aragam, K. G., Dobbyn, A., Judy, R., Chaffin, M., Chaudhary, K., Hindy, G., et al. (2020). Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease. Journal of the American College of Cardiology, 75(22), 2769.PubMedPubMedCentralCrossRef Aragam, K. G., Dobbyn, A., Judy, R., Chaffin, M., Chaudhary, K., Hindy, G., et al. (2020). Limitations of contemporary guidelines for managing patients at high genetic risk of coronary artery disease. Journal of the American College of Cardiology, 75(22), 2769.PubMedPubMedCentralCrossRef
45.
go back to reference Wang, M., Menon, R., Mishra, S., Patel, A. P., Chaffin, M., Tanneeru, D., et al. (2020). Validation of a genome-wide polygenic score for coronary artery disease in South Asians. Journal of the American College of Cardiology, 76(6), 703–714.PubMedPubMedCentralCrossRef Wang, M., Menon, R., Mishra, S., Patel, A. P., Chaffin, M., Tanneeru, D., et al. (2020). Validation of a genome-wide polygenic score for coronary artery disease in South Asians. Journal of the American College of Cardiology, 76(6), 703–714.PubMedPubMedCentralCrossRef
46.
go back to reference Khera, A. V., Emdin, C. A., Drake, I., Natarajan, P., Bick, A. G., Cook, N. R., et al. (2016). Genetic risk, adherence to a healthy lifestyle, and coronary disease. The New England Journal of Medicine, 375(24), 2349–2358.PubMedPubMedCentralCrossRef Khera, A. V., Emdin, C. A., Drake, I., Natarajan, P., Bick, A. G., Cook, N. R., et al. (2016). Genetic risk, adherence to a healthy lifestyle, and coronary disease. The New England Journal of Medicine, 375(24), 2349–2358.PubMedPubMedCentralCrossRef
47.
go back to reference Tikkanen, E., Gustafsson, S., & Ingelsson, E. (2018). Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: Longitudinal analyses in the UK Biobank study. Circulation., 137(24), 2583–2591.PubMedPubMedCentralCrossRef Tikkanen, E., Gustafsson, S., & Ingelsson, E. (2018). Associations of fitness, physical activity, strength, and genetic risk with cardiovascular disease: Longitudinal analyses in the UK Biobank study. Circulation., 137(24), 2583–2591.PubMedPubMedCentralCrossRef
Metadata
Title
A Less than Provocative Approach for the Primary Prevention of CAD
Authors
Robert Roberts
Jacques Fair
Publication date
01-02-2022
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 1/2022
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-021-10144-6

Other articles of this Issue 1/2022

Journal of Cardiovascular Translational Research 1/2022 Go to the issue