Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 1/2022

01-02-2022 | Myocardial Infarction | Review

Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction

Authors: Olivier Schussler, Juan C. Chachques, Marco Alifano, Yves Lecarpentier

Published in: Journal of Cardiovascular Translational Research | Issue 1/2022

Login to get access

Abstract

Cardiac cells interact with the extracellular matrix (ECM) proteins through integrin mechanoreceptors that control many cellular events such as cell survival, apoptosis, differentiation, migration, and proliferation. Integrins play a crucial role in cardiac development as well as in cardiac fibrosis and hypertrophy. Integrins recognize oligopeptides present on ECM proteins and are involved in three main types of interaction, namely with collagen, laminin, and the oligopeptide RGD (Arg-Gly-Asp) present on vitronectin and fibronectin proteins. To date, the specific role of integrins recognizing the RGD has not been addressed. In this review, we examine their role during cardiac development, their role on cardiac cells, and their upregulation during pathological processes such as heart fibrosis and hypertrophy. We also examine their role in regenerative and angiogenic processes after myocardial infarction (MI) in the peri-infarct area. Specific targeting of these integrins may be a way of controlling some of these pathological events and thereby improving medical outcomes.
Literature
2.
go back to reference Wilmot, K. A., O'Flaherty, M., Capewell, S., Ford, E. S., & Vaccarino, V. (2015). Coronary heart disease mortality declines in the United States from 1979 through 2011: Evidence for stagnation in young adults, Especially Women. Circulation, 132, 997–1002.PubMedPubMedCentralCrossRef Wilmot, K. A., O'Flaherty, M., Capewell, S., Ford, E. S., & Vaccarino, V. (2015). Coronary heart disease mortality declines in the United States from 1979 through 2011: Evidence for stagnation in young adults, Especially Women. Circulation, 132, 997–1002.PubMedPubMedCentralCrossRef
3.
go back to reference Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science., 324, 98–102.PubMedPubMedCentralCrossRef Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science., 324, 98–102.PubMedPubMedCentralCrossRef
4.
go back to reference Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. The Journal of Clinical Investigation, 127, 1600–1612.PubMedPubMedCentralCrossRef Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. The Journal of Clinical Investigation, 127, 1600–1612.PubMedPubMedCentralCrossRef
5.
go back to reference Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119, 91–112.PubMedPubMedCentralCrossRef Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119, 91–112.PubMedPubMedCentralCrossRef
6.
go back to reference van den Borne, S. W., Diez, J., Blankesteijn, W. M., Verjans, J., Hofstra, L., & Narula, J. (2009). Myocardial remodeling after infarction: The role of myofibroblasts. Nature Reviews. Cardiology, 7, 30–37.PubMedCrossRef van den Borne, S. W., Diez, J., Blankesteijn, W. M., Verjans, J., Hofstra, L., & Narula, J. (2009). Myocardial remodeling after infarction: The role of myofibroblasts. Nature Reviews. Cardiology, 7, 30–37.PubMedCrossRef
7.
go back to reference Hanna, A., Humeres, C., & Frangogiannis, N. G. (2021). The role of Smad signaling cascades in cardiac fibrosis. Cellular Signalling, 77, 109826.PubMedCrossRef Hanna, A., Humeres, C., & Frangogiannis, N. G. (2021). The role of Smad signaling cascades in cardiac fibrosis. Cellular Signalling, 77, 109826.PubMedCrossRef
8.
go back to reference Dhavalikar, P., Robinson, A., Lan, Z., Jenkins, D., Chwatko, M., Salhadar, K., Jose,A., Kar, R., Shoga, E., Kannapiran, A., Cosgriff-hernadez, E. (2020). Review of integrin-targeting biomaterials in tissue engineering. Advanced Healthcare Materials, e2000795. Dhavalikar, P., Robinson, A., Lan, Z., Jenkins, D., Chwatko, M., Salhadar, K., Jose,A., Kar, R., Shoga, E., Kannapiran, A., Cosgriff-hernadez, E. (2020). Review of integrin-targeting biomaterials in tissue engineering. Advanced Healthcare Materials, e2000795.
9.
go back to reference Lietha, D., & Izard, T. (2020). Roles of membrane domains in integrin-mediated cell adhesion. International Journal of Molecular Sciences, 21. Lietha, D., & Izard, T. (2020). Roles of membrane domains in integrin-mediated cell adhesion. International Journal of Molecular Sciences, 21.
10.
go back to reference Zhao, J., Santino, F., Giacomini, D., & Gentilucci, L. (2020). Integrin-targeting peptides for the design of functional cell-responsive biomaterials. Biomedicines., 8. Zhao, J., Santino, F., Giacomini, D., & Gentilucci, L. (2020). Integrin-targeting peptides for the design of functional cell-responsive biomaterials. Biomedicines., 8.
11.
go back to reference Paddillaya, N., Mishra, A., Kondaiah, P., Pullarkat, P., Menon, G. I., & Gundiah, N. (2019). Biophysics of cell-substrate interactions under shear. Frontiers in Cell and Development Biology, 7, 251.CrossRef Paddillaya, N., Mishra, A., Kondaiah, P., Pullarkat, P., Menon, G. I., & Gundiah, N. (2019). Biophysics of cell-substrate interactions under shear. Frontiers in Cell and Development Biology, 7, 251.CrossRef
12.
go back to reference Bachmann, M., Kukkurainen, S., Hytonen, V. P., & Wehrle-Haller, B. (2019). Cell adhesion by integrins. Physiological Reviews, 99, 1655–1699.PubMedCrossRef Bachmann, M., Kukkurainen, S., Hytonen, V. P., & Wehrle-Haller, B. (2019). Cell adhesion by integrins. Physiological Reviews, 99, 1655–1699.PubMedCrossRef
13.
go back to reference Kechagia, J. Z., Ivaska, J., & Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nature Reviews. Molecular Cell Biology, 20, 457–473.PubMedCrossRef Kechagia, J. Z., Ivaska, J., & Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nature Reviews. Molecular Cell Biology, 20, 457–473.PubMedCrossRef
14.
go back to reference Santoro, R., Perrucci, G. L., Gowran, A., & Pompilio, G. (2019). Unchain my heart: Integrins at the basis of iPSC cardiomyocyte differentiation. Stem Cells International, 2019, 8203950.PubMedPubMedCentralCrossRef Santoro, R., Perrucci, G. L., Gowran, A., & Pompilio, G. (2019). Unchain my heart: Integrins at the basis of iPSC cardiomyocyte differentiation. Stem Cells International, 2019, 8203950.PubMedPubMedCentralCrossRef
15.
go back to reference Sun, Z., Costell, M., & Fassler, R. (2019). Integrin activation by talin, kindlin and mechanical forces. Nature Cell Biology, 21, 25–31.PubMedCrossRef Sun, Z., Costell, M., & Fassler, R. (2019). Integrin activation by talin, kindlin and mechanical forces. Nature Cell Biology, 21, 25–31.PubMedCrossRef
16.
go back to reference Chen, C., Manso, A. M., & Ross, R. S. (2019). Talin and kindlin as integrin-activating proteins: Focus on the heart. Pediatric Cardiology, 40, 1401–1409.PubMedPubMedCentralCrossRef Chen, C., Manso, A. M., & Ross, R. S. (2019). Talin and kindlin as integrin-activating proteins: Focus on the heart. Pediatric Cardiology, 40, 1401–1409.PubMedPubMedCentralCrossRef
17.
go back to reference Israeli-Rosenberg, S., Manso, A. M., Okada, H., & Ross, R. S. (2014). Integrins and integrin-associated proteins in the cardiac myocyte. Circulation Research, 114, 572–586.PubMedPubMedCentralCrossRef Israeli-Rosenberg, S., Manso, A. M., Okada, H., & Ross, R. S. (2014). Integrins and integrin-associated proteins in the cardiac myocyte. Circulation Research, 114, 572–586.PubMedPubMedCentralCrossRef
18.
go back to reference Bildyug, N. (2019). Extracellular matrix in regulation of contractile system in cardiomyocytes. International Journal of Molecular Sciences, 20. Bildyug, N. (2019). Extracellular matrix in regulation of contractile system in cardiomyocytes. International Journal of Molecular Sciences, 20.
19.
go back to reference Oria, R., Wiegand, T., Escribano, J., Elosegui-Artola, A., Uriarte, J. J., Moreno-Pulido, C., et al. (2017). Force loading explains spatial sensing of ligands by cells. Nature., 552, 219–224.PubMedCrossRef Oria, R., Wiegand, T., Escribano, J., Elosegui-Artola, A., Uriarte, J. J., Moreno-Pulido, C., et al. (2017). Force loading explains spatial sensing of ligands by cells. Nature., 552, 219–224.PubMedCrossRef
20.
go back to reference Li, J., Su, Y., Xia, W., Qin, Y., Humphries, M. J., Vestweber, D., et al. (2017). Conformational equilibria and intrinsic affinities define integrin activation. The EMBO Journal, 36, 629–645.PubMedPubMedCentralCrossRef Li, J., Su, Y., Xia, W., Qin, Y., Humphries, M. J., Vestweber, D., et al. (2017). Conformational equilibria and intrinsic affinities define integrin activation. The EMBO Journal, 36, 629–645.PubMedPubMedCentralCrossRef
21.
go back to reference Pierschbacher, M. D., & Ruoslahti, E. (1987). Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. The Journal of Biological Chemistry, 262, 17294–17298.PubMedCrossRef Pierschbacher, M. D., & Ruoslahti, E. (1987). Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. The Journal of Biological Chemistry, 262, 17294–17298.PubMedCrossRef
22.
go back to reference Rother, J., Richter, C., Turco, L., Knoch, F., Mey, I., Luther, S., et al. (2015). Crosstalk of cardiomyocytes and fibroblasts in co-cultures. Open Biology, 5, 150038.PubMedPubMedCentralCrossRef Rother, J., Richter, C., Turco, L., Knoch, F., Mey, I., Luther, S., et al. (2015). Crosstalk of cardiomyocytes and fibroblasts in co-cultures. Open Biology, 5, 150038.PubMedPubMedCentralCrossRef
23.
go back to reference van Putten, S., Shafieyan, Y., & Hinz, B. (2015). Mechanical control of cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology, 93, 133–142.PubMedCrossRef van Putten, S., Shafieyan, Y., & Hinz, B. (2015). Mechanical control of cardiac myofibroblasts. Journal of Molecular and Cellular Cardiology, 93, 133–142.PubMedCrossRef
24.
go back to reference Schroer, A. K., & Merryman, W. D. (2015). Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. Journal of Cell Science, 128, 1865–1875.PubMedPubMedCentralCrossRef Schroer, A. K., & Merryman, W. D. (2015). Mechanobiology of myofibroblast adhesion in fibrotic cardiac disease. Journal of Cell Science, 128, 1865–1875.PubMedPubMedCentralCrossRef
25.
go back to reference Chen, C., Li, R., Ross, R. S., & Manso, A. M. (2015). Integrins and integrin-related proteins in cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 93, 162–174.PubMedPubMedCentralCrossRef Chen, C., Li, R., Ross, R. S., & Manso, A. M. (2015). Integrins and integrin-related proteins in cardiac fibrosis. Journal of Molecular and Cellular Cardiology, 93, 162–174.PubMedPubMedCentralCrossRef
26.
go back to reference Saucerman, J. J., Tan, P. M., Buchholz, K. S., McCulloch, A. D., & Omens, J. H. (2019). Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nature Reviews. Cardiology, 16, 361–378.PubMedPubMedCentralCrossRef Saucerman, J. J., Tan, P. M., Buchholz, K. S., McCulloch, A. D., & Omens, J. H. (2019). Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nature Reviews. Cardiology, 16, 361–378.PubMedPubMedCentralCrossRef
27.
go back to reference Talman, V., & Kivela, R. (2018). Cardiomyocyte-endothelial cell interactions in cardiac remodeling and regeneration. Frontiers in Cardiovascular Medicine, 5, 101.PubMedPubMedCentralCrossRef Talman, V., & Kivela, R. (2018). Cardiomyocyte-endothelial cell interactions in cardiac remodeling and regeneration. Frontiers in Cardiovascular Medicine, 5, 101.PubMedPubMedCentralCrossRef
28.
go back to reference Murray, I. R., Gonzalez, Z. N., Baily, J., Dobie, R., Wallace, R. J., Mackinnon, A. C., et al. (2017). alphav integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nature Communications, 8, 1118.PubMedPubMedCentralCrossRef Murray, I. R., Gonzalez, Z. N., Baily, J., Dobie, R., Wallace, R. J., Mackinnon, A. C., et al. (2017). alphav integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis. Nature Communications, 8, 1118.PubMedPubMedCentralCrossRef
29.
go back to reference Konstandin, M. H., Toko, H., Gastelum, G. M., Quijada, P., De La Torre, A., Quintana, M., et al. (2013). Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circulation Research, 113, 115–125.PubMedCrossRef Konstandin, M. H., Toko, H., Gastelum, G. M., Quijada, P., De La Torre, A., Quintana, M., et al. (2013). Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circulation Research, 113, 115–125.PubMedCrossRef
30.
go back to reference Civitarese, R. A., Kapus, A., McCulloch, C. A., & Connelly, K. A. (2016). Role of integrins in mediating cardiac fibroblast-cardiomyocyte cross talk: A dynamic relationship in cardiac biology and pathophysiology. Basic Research in Cardiology, 112, 6.PubMedCrossRef Civitarese, R. A., Kapus, A., McCulloch, C. A., & Connelly, K. A. (2016). Role of integrins in mediating cardiac fibroblast-cardiomyocyte cross talk: A dynamic relationship in cardiac biology and pathophysiology. Basic Research in Cardiology, 112, 6.PubMedCrossRef
31.
go back to reference Brancaccio, M., Hirsch, E., Notte, A., Selvetella, G., Lembo, G., & Tarone, G. (2006). Integrin signalling: The tug-of-war in heart hypertrophy. Cardiovascular Research, 70, 422–433.PubMedCrossRef Brancaccio, M., Hirsch, E., Notte, A., Selvetella, G., Lembo, G., & Tarone, G. (2006). Integrin signalling: The tug-of-war in heart hypertrophy. Cardiovascular Research, 70, 422–433.PubMedCrossRef
32.
go back to reference Gallo, S., Vitacolonna, A., Bonzano, A., Comoglio, P., & Crepaldi, T. (2019). ERK: A key player in the pathophysiology of cardiac hypertrophy. International Journal of Molecular Sciences, 20. Gallo, S., Vitacolonna, A., Bonzano, A., Comoglio, P., & Crepaldi, T. (2019). ERK: A key player in the pathophysiology of cardiac hypertrophy. International Journal of Molecular Sciences, 20.
33.
go back to reference Frangogiannis, N. G. (2018). Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 65, 70–99.PubMedCrossRef Frangogiannis, N. G. (2018). Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Molecular Aspects of Medicine, 65, 70–99.PubMedCrossRef
34.
go back to reference Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3, 1–19.CrossRef Ricard-Blum, S. (2011). The collagen family. Cold Spring Harbor Perspectives in Biology, 3, 1–19.CrossRef
35.
go back to reference Wolfenson, H., Lavelin, I., & Geiger, B. (2013). Dynamic regulation of the structure and functions of integrin adhesions. Developmental Cell, 24, 447–458.PubMedCrossRef Wolfenson, H., Lavelin, I., & Geiger, B. (2013). Dynamic regulation of the structure and functions of integrin adhesions. Developmental Cell, 24, 447–458.PubMedCrossRef
36.
go back to reference Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S. A., Weaver, J. C., et al. (2015). Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 15, 326–334.PubMedPubMedCentralCrossRef Chaudhuri, O., Gu, L., Klumpers, D., Darnell, M., Bencherif, S. A., Weaver, J. C., et al. (2015). Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 15, 326–334.PubMedPubMedCentralCrossRef
37.
go back to reference Bansal, R., Nakagawa, S., Yazdani, S., van Baarlen, J., Venkatesh, A., Koh, A. P., et al. (2017). Integrin alpha 11 in the regulation of the myofibroblast phenotype: Implications for fibrotic diseases. Experimental & Molecular Medicine, 49, e396.CrossRef Bansal, R., Nakagawa, S., Yazdani, S., van Baarlen, J., Venkatesh, A., Koh, A. P., et al. (2017). Integrin alpha 11 in the regulation of the myofibroblast phenotype: Implications for fibrotic diseases. Experimental & Molecular Medicine, 49, e396.CrossRef
38.
go back to reference O'Reilly, S., Ciechomska, M., Cant, R., & van Laar, J. M. (2014). Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-beta (TGF-beta) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. The Journal of Biological Chemistry, 289, 9952–9960.PubMedPubMedCentralCrossRef O'Reilly, S., Ciechomska, M., Cant, R., & van Laar, J. M. (2014). Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-beta (TGF-beta) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. The Journal of Biological Chemistry, 289, 9952–9960.PubMedPubMedCentralCrossRef
39.
go back to reference Sun, Z., Tseng, H. Y., Tan, S., Senger, F., Kurzawa, L., Dedden, D., et al. (2016). Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation. Nature Cell Biology, 18, 941–953.PubMedPubMedCentralCrossRef Sun, Z., Tseng, H. Y., Tan, S., Senger, F., Kurzawa, L., Dedden, D., et al. (2016). Kank2 activates talin, reduces force transduction across integrins and induces central adhesion formation. Nature Cell Biology, 18, 941–953.PubMedPubMedCentralCrossRef
40.
go back to reference Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell., 126, 677–689.PubMedCrossRef Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell., 126, 677–689.PubMedCrossRef
41.
go back to reference Lecarpentier, Y., Kindler, V., Krokidis, X., Bochaton-Piallat, M. L., Claes, V., Hebert, J. L., et al. (2020). Statistical mechanics of non-muscle myosin IIA in human bone marrow-derived mesenchymal stromal cells seeded in a collagen scaffold: A thermodynamic near-equilibrium linear system modified by the tripeptide Arg-Gly-Asp (RGD). Cells., 9. Lecarpentier, Y., Kindler, V., Krokidis, X., Bochaton-Piallat, M. L., Claes, V., Hebert, J. L., et al. (2020). Statistical mechanics of non-muscle myosin IIA in human bone marrow-derived mesenchymal stromal cells seeded in a collagen scaffold: A thermodynamic near-equilibrium linear system modified by the tripeptide Arg-Gly-Asp (RGD). Cells., 9.
42.
go back to reference Chaudhuri, O., Gu, L., Darnell, M., Klumpers, D., Bencherif, S. A., Weaver, J. C., et al. (2015). Substrate stress relaxation regulates cell spreading. Nature Communications, 6, 6364.PubMedCrossRef Chaudhuri, O., Gu, L., Darnell, M., Klumpers, D., Bencherif, S. A., Weaver, J. C., et al. (2015). Substrate stress relaxation regulates cell spreading. Nature Communications, 6, 6364.PubMedCrossRef
43.
go back to reference Seo, B. R., Chen, X., Ling, L., Song, Y. H., Shimpi, A. A., Choi, S., et al. (2020). Collagen microarchitecture mechanically controls myofibroblast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 117, 11387–11398.PubMedPubMedCentralCrossRef Seo, B. R., Chen, X., Ling, L., Song, Y. H., Shimpi, A. A., Choi, S., et al. (2020). Collagen microarchitecture mechanically controls myofibroblast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 117, 11387–11398.PubMedPubMedCentralCrossRef
44.
go back to reference Carson, D., Hnilova, M., Yang, X., Nemeth, C. L., Tsui, J. H., Smith, A. S., et al. (2016). Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Applied Materials & Interfaces, 8, 21923–21932.CrossRef Carson, D., Hnilova, M., Yang, X., Nemeth, C. L., Tsui, J. H., Smith, A. S., et al. (2016). Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Applied Materials & Interfaces, 8, 21923–21932.CrossRef
45.
go back to reference Chiron, S., Tomczak, C., Duperray, A., Laine, J., Bonne, G., Eder, A., et al. (2012). Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix. PLoS One, 7, e36173.PubMedPubMedCentralCrossRef Chiron, S., Tomczak, C., Duperray, A., Laine, J., Bonne, G., Eder, A., et al. (2012). Complex interactions between human myoblasts and the surrounding 3D fibrin-based matrix. PLoS One, 7, e36173.PubMedPubMedCentralCrossRef
46.
go back to reference Zhang, J., Klos, M., Wilson, G. F., Herman, A. M., Lian, X., Raval, K. K., et al. (2012). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: The matrix sandwich method. Circulation Research, 111, 1125–1136.PubMedPubMedCentralCrossRef Zhang, J., Klos, M., Wilson, G. F., Herman, A. M., Lian, X., Raval, K. K., et al. (2012). Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: The matrix sandwich method. Circulation Research, 111, 1125–1136.PubMedPubMedCentralCrossRef
47.
go back to reference Hinz, B., McCulloch, C. A., & Coelho, N. M. (2019). Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Experimental Cell Research, 379, 119–128.PubMedCrossRef Hinz, B., McCulloch, C. A., & Coelho, N. M. (2019). Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Experimental Cell Research, 379, 119–128.PubMedCrossRef
48.
go back to reference Hu, S., Dasbiswas, K., Guo, Z., Tee, Y. H., Thiagarajan, V., Hersen, P., et al. (2017). Long-range self-organization of cytoskeletal myosin II filament stacks. Nature Cell Biology, 19, 133–141.PubMedCrossRef Hu, S., Dasbiswas, K., Guo, Z., Tee, Y. H., Thiagarajan, V., Hersen, P., et al. (2017). Long-range self-organization of cytoskeletal myosin II filament stacks. Nature Cell Biology, 19, 133–141.PubMedCrossRef
50.
go back to reference Happe, C. L., & Engler, A. J. (2016). Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circulation Research, 118, 296–310.PubMedPubMedCentralCrossRef Happe, C. L., & Engler, A. J. (2016). Mechanical forces reshape differentiation cues that guide cardiomyogenesis. Circulation Research, 118, 296–310.PubMedPubMedCentralCrossRef
51.
go back to reference Wei, L., Zhou, Q., Tian, H., Su, Y., Fu, G. H., & Sun, T. (2020). Integrin beta3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. International Journal of Biological Sciences, 16, 644–654.PubMedPubMedCentralCrossRef Wei, L., Zhou, Q., Tian, H., Su, Y., Fu, G. H., & Sun, T. (2020). Integrin beta3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. International Journal of Biological Sciences, 16, 644–654.PubMedPubMedCentralCrossRef
52.
go back to reference Titus, M. A. (2017). Growing, splitting and stacking myosin II filaments. Nature Cell Biology, 19, 77–79.PubMedCrossRef Titus, M. A. (2017). Growing, splitting and stacking myosin II filaments. Nature Cell Biology, 19, 77–79.PubMedCrossRef
53.
go back to reference Klapholz, B., & Brown, N. H. (2017). Talin - The master of integrin adhesions. Journal of Cell Science, 130, 2435–2446.PubMed Klapholz, B., & Brown, N. H. (2017). Talin - The master of integrin adhesions. Journal of Cell Science, 130, 2435–2446.PubMed
54.
go back to reference Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L., & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. The Journal of Cell Biology, 166, 877–887.PubMedPubMedCentralCrossRef Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L., & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. The Journal of Cell Biology, 166, 877–887.PubMedPubMedCentralCrossRef
55.
go back to reference Henning Stumpf, B., Ambriovic-Ristov, A., Radenovic, A., & Smith, A. S. (2020). Recent advances and prospects in the research of nascent adhesions. Frontiers in Physiology, 11, 574371.PubMedPubMedCentralCrossRef Henning Stumpf, B., Ambriovic-Ristov, A., Radenovic, A., & Smith, A. S. (2020). Recent advances and prospects in the research of nascent adhesions. Frontiers in Physiology, 11, 574371.PubMedPubMedCentralCrossRef
56.
57.
go back to reference Pagliarosi, O., Picchio, V., Chimenti, I., Messina, E., & Gaetani, R. (2020). Building an artificial cardiac microenvironment: A focus on the extracellular matrix. Frontiers in Cell and Development Biology, 8, 559032.CrossRef Pagliarosi, O., Picchio, V., Chimenti, I., Messina, E., & Gaetani, R. (2020). Building an artificial cardiac microenvironment: A focus on the extracellular matrix. Frontiers in Cell and Development Biology, 8, 559032.CrossRef
58.
go back to reference Chopra, A., Tabdanov, E., Patel, H., Janmey, P. A., & Kresh, J. Y. (2011). Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. American Journal of Physiology. Heart and Circulatory Physiology, 300, H1252–H1266.PubMedPubMedCentralCrossRef Chopra, A., Tabdanov, E., Patel, H., Janmey, P. A., & Kresh, J. Y. (2011). Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. American Journal of Physiology. Heart and Circulatory Physiology, 300, H1252–H1266.PubMedPubMedCentralCrossRef
59.
go back to reference Leckband, D. E., & de Rooij, J. (2014). Cadherin adhesion and mechanotransduction. Annual Review of Cell and Developmental Biology, 30, 291–315.PubMedCrossRef Leckband, D. E., & de Rooij, J. (2014). Cadherin adhesion and mechanotransduction. Annual Review of Cell and Developmental Biology, 30, 291–315.PubMedCrossRef
60.
go back to reference Lecarpentier, Y., Kindler, V., Bochaton-Piallat, M. L., Sakic, A., Claes, V., Hebert, J. L., et al. (2019). Tripeptide Arg-Gly-Asp (RGD) modifies the molecular mechanical properties of the non-muscle myosin IIA in human bone marrow-derived myofibroblasts seeded in a collagen scaffold. PLoS One, 14, e0222683.PubMedPubMedCentralCrossRef Lecarpentier, Y., Kindler, V., Bochaton-Piallat, M. L., Sakic, A., Claes, V., Hebert, J. L., et al. (2019). Tripeptide Arg-Gly-Asp (RGD) modifies the molecular mechanical properties of the non-muscle myosin IIA in human bone marrow-derived myofibroblasts seeded in a collagen scaffold. PLoS One, 14, e0222683.PubMedPubMedCentralCrossRef
61.
go back to reference Fassler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., et al. (1996). Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. Journal of Cell Science, 109(Pt 13), 2989–2999.PubMedCrossRef Fassler, R., Rohwedel, J., Maltsev, V., Bloch, W., Lentini, S., Guan, K., et al. (1996). Differentiation and integrity of cardiac muscle cells are impaired in the absence of beta 1 integrin. Journal of Cell Science, 109(Pt 13), 2989–2999.PubMedCrossRef
62.
go back to reference Cheng, P., Andersen, P., Hassel, D., Kaynak, B. L., Limphong, P., Juergensen, L., et al. (2013). Fibronectin mediates mesendodermal cell fate decisions. Development., 140, 2587–2596.PubMedPubMedCentralCrossRef Cheng, P., Andersen, P., Hassel, D., Kaynak, B. L., Limphong, P., Juergensen, L., et al. (2013). Fibronectin mediates mesendodermal cell fate decisions. Development., 140, 2587–2596.PubMedPubMedCentralCrossRef
63.
go back to reference Yang, J. T., Rayburn, H., & Hynes, R. O. (1993). Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development., 119, 1093–1105.PubMedCrossRef Yang, J. T., Rayburn, H., & Hynes, R. O. (1993). Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development., 119, 1093–1105.PubMedCrossRef
64.
go back to reference Chimenti, I., Rizzitelli, G., Gaetani, R., Angelini, F., Ionta, V., Forte, E., et al. (2011). Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials., 32, 9271–9281.PubMedCrossRef Chimenti, I., Rizzitelli, G., Gaetani, R., Angelini, F., Ionta, V., Forte, E., et al. (2011). Human cardiosphere-seeded gelatin and collagen scaffolds as cardiogenic engineered bioconstructs. Biomaterials., 32, 9271–9281.PubMedCrossRef
65.
go back to reference Taubenberger, A., Cisneros, D. A., Friedrichs, J., Puech, P. H., Muller, D. J., & Franz, C. M. (2007). Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Molecular Biology of the Cell, 18, 1634–1644.PubMedPubMedCentralCrossRef Taubenberger, A., Cisneros, D. A., Friedrichs, J., Puech, P. H., Muller, D. J., & Franz, C. M. (2007). Revealing early steps of alpha2beta1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Molecular Biology of the Cell, 18, 1634–1644.PubMedPubMedCentralCrossRef
66.
go back to reference Changede, R., Xu, X., Margadant, F., & Sheetz, M. P. (2015). Nascent integrin adhesions form on all matrix rigidities after integrin activation. Developmental Cell, 35, 614–621.PubMedCrossRef Changede, R., Xu, X., Margadant, F., & Sheetz, M. P. (2015). Nascent integrin adhesions form on all matrix rigidities after integrin activation. Developmental Cell, 35, 614–621.PubMedCrossRef
67.
go back to reference Kwon, C., Qian, L., Cheng, P., Nigam, V., Arnold, J., & Srivastava, D. (2009). A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nature Cell Biology, 11, 951–957.PubMedPubMedCentralCrossRef Kwon, C., Qian, L., Cheng, P., Nigam, V., Arnold, J., & Srivastava, D. (2009). A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nature Cell Biology, 11, 951–957.PubMedPubMedCentralCrossRef
68.
go back to reference Gaetani, R., Yin, C., Srikumar, N., Braden, R., Doevendans, P. A., Sluijter, J. P., et al. (2015). Cardiac-derived extracellular matrix enhances cardiogenic properties of human cardiac progenitor cells. Cell Transplantation, 25, 1653–1663.PubMedCrossRef Gaetani, R., Yin, C., Srikumar, N., Braden, R., Doevendans, P. A., Sluijter, J. P., et al. (2015). Cardiac-derived extracellular matrix enhances cardiogenic properties of human cardiac progenitor cells. Cell Transplantation, 25, 1653–1663.PubMedCrossRef
70.
go back to reference Atherton, P., Stutchbury, B., Jethwa, D., & Ballestrem, C. (2016). Mechanosensitive components of integrin adhesions: Role of vinculin. Experimental Cell Research, 343, 21–27.PubMedPubMedCentralCrossRef Atherton, P., Stutchbury, B., Jethwa, D., & Ballestrem, C. (2016). Mechanosensitive components of integrin adhesions: Role of vinculin. Experimental Cell Research, 343, 21–27.PubMedPubMedCentralCrossRef
71.
go back to reference Grover, C. N., Gwynne, J. H., Pugh, N., Hamaia, S., Farndale, R. W., Best, S. M., et al. (2012). Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomaterialia, 8, 3080–3090.PubMedPubMedCentralCrossRef Grover, C. N., Gwynne, J. H., Pugh, N., Hamaia, S., Farndale, R. W., Best, S. M., et al. (2012). Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomaterialia, 8, 3080–3090.PubMedPubMedCentralCrossRef
72.
go back to reference Kapp, T. G., Rechenmacher, F., Neubauer, S., Maltsev, O. V., Cavalcanti-Adam, E. A., Zarka, R., et al. (2017). A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Scientific Reports, 7, 39805.PubMedPubMedCentralCrossRef Kapp, T. G., Rechenmacher, F., Neubauer, S., Maltsev, O. V., Cavalcanti-Adam, E. A., Zarka, R., et al. (2017). A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Scientific Reports, 7, 39805.PubMedPubMedCentralCrossRef
73.
go back to reference Roca-Cusachs, P., Gauthier, N. C., Del Rio, A., & Sheetz, M. P. (2009). Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 106, 16245–16250.PubMedPubMedCentralCrossRef Roca-Cusachs, P., Gauthier, N. C., Del Rio, A., & Sheetz, M. P. (2009). Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proceedings of the National Academy of Sciences of the United States of America, 106, 16245–16250.PubMedPubMedCentralCrossRef
74.
go back to reference Serrao, G. W., Turnbull, I. C., Ancukiewicz, D., Kim, D. E., Kao, E., Cashman, T. J., et al. (2012). Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Engineering. Part A, 18, 1322–1333.PubMedPubMedCentralCrossRef Serrao, G. W., Turnbull, I. C., Ancukiewicz, D., Kim, D. E., Kao, E., Cashman, T. J., et al. (2012). Myocyte-depleted engineered cardiac tissues support therapeutic potential of mesenchymal stem cells. Tissue Engineering. Part A, 18, 1322–1333.PubMedPubMedCentralCrossRef
75.
go back to reference Qi, L., Yu, Y., Chi, X., Xu, W., Lu, D., Song, Y., et al. (2015). Kindlin-2 interacts with alpha-actinin-2 and beta1 integrin to maintain the integrity of the Z-disc in cardiac muscles. FEBS Letters, 589, 2155–2162.PubMedCrossRef Qi, L., Yu, Y., Chi, X., Xu, W., Lu, D., Song, Y., et al. (2015). Kindlin-2 interacts with alpha-actinin-2 and beta1 integrin to maintain the integrity of the Z-disc in cardiac muscles. FEBS Letters, 589, 2155–2162.PubMedCrossRef
76.
go back to reference Okada, H., Lai, N. C., Kawaraguchi, Y., Liao, P., Copps, J., Sugano, Y., et al. (2013). Integrins protect cardiomyocytes from ischemia/reperfusion injury. The Journal of Clinical Investigation, 123, 4294–4308.PubMedPubMedCentralCrossRef Okada, H., Lai, N. C., Kawaraguchi, Y., Liao, P., Copps, J., Sugano, Y., et al. (2013). Integrins protect cardiomyocytes from ischemia/reperfusion injury. The Journal of Clinical Investigation, 123, 4294–4308.PubMedPubMedCentralCrossRef
77.
go back to reference Heras-Bautista, C. O., Mikhael, N., Lam, J., Shinde, V., Katsen-Globa, A., Dieluweit, S., et al. (2019). Cardiomyocytes facing fibrotic conditions re-express extracellular matrix transcripts. Acta Biomaterialia, 89, 180–192.PubMedCrossRef Heras-Bautista, C. O., Mikhael, N., Lam, J., Shinde, V., Katsen-Globa, A., Dieluweit, S., et al. (2019). Cardiomyocytes facing fibrotic conditions re-express extracellular matrix transcripts. Acta Biomaterialia, 89, 180–192.PubMedCrossRef
78.
go back to reference Darnell, M., O'Neil, A., Mao, A., Gu, L., Rubin, L. L., & Mooney, D. J. (2018). Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proceedings of the National Academy of Sciences of the United States of America, 115, E8368–E8E77.PubMedPubMedCentral Darnell, M., O'Neil, A., Mao, A., Gu, L., Rubin, L. L., & Mooney, D. J. (2018). Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proceedings of the National Academy of Sciences of the United States of America, 115, E8368–E8E77.PubMedPubMedCentral
79.
go back to reference Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature., 584, 535–546.PubMedPubMedCentralCrossRef Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J., & Shenoy, V. B. (2020). Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature., 584, 535–546.PubMedPubMedCentralCrossRef
80.
go back to reference Sauer, F., Oswald, L., Ariza de Schellenberger, A., Tzschatzsch, H., Schrank, F., Fischer, T., et al. (2019). Collagen networks determine viscoelastic properties of connective tissues yet do not hinder diffusion of the aqueous solvent. Soft Matter, 15, 3055–3064.PubMedCrossRef Sauer, F., Oswald, L., Ariza de Schellenberger, A., Tzschatzsch, H., Schrank, F., Fischer, T., et al. (2019). Collagen networks determine viscoelastic properties of connective tissues yet do not hinder diffusion of the aqueous solvent. Soft Matter, 15, 3055–3064.PubMedCrossRef
81.
go back to reference Schips, T. G., Vanhoutte, D., Vo, A., Correll, R. N., Brody, M. J., Khalil, H., et al. (2019). Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nature Communications, 10, 76.PubMedPubMedCentralCrossRef Schips, T. G., Vanhoutte, D., Vo, A., Correll, R. N., Brody, M. J., Khalil, H., et al. (2019). Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nature Communications, 10, 76.PubMedPubMedCentralCrossRef
82.
go back to reference Cameron, A. R., Frith, J. E., & Cooper-White, J. J. (2011). The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials., 32, 5979–5993.PubMedCrossRef Cameron, A. R., Frith, J. E., & Cooper-White, J. J. (2011). The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials., 32, 5979–5993.PubMedCrossRef
83.
go back to reference Borg, T. K., Goldsmith, E. C., Price, R., Carver, W., Terracio, L., & Samarel, A. M. (2000). Specialization at the Z line of cardiac myocytes. Cardiovascular Research, 46, 277–285.PubMedCrossRef Borg, T. K., Goldsmith, E. C., Price, R., Carver, W., Terracio, L., & Samarel, A. M. (2000). Specialization at the Z line of cardiac myocytes. Cardiovascular Research, 46, 277–285.PubMedCrossRef
84.
go back to reference Burgess, M. L., Terracio, L., Hirozane, T., & Borg, T. K. (2002). Differential integrin expression by cardiac fibroblasts from hypertensive and exercise-trained rat hearts. Cardiovascular Pathology, 11, 78–87.PubMedCrossRef Burgess, M. L., Terracio, L., Hirozane, T., & Borg, T. K. (2002). Differential integrin expression by cardiac fibroblasts from hypertensive and exercise-trained rat hearts. Cardiovascular Pathology, 11, 78–87.PubMedCrossRef
85.
go back to reference Yang, H., Cai, C., Ye, L., Rao, Y., Wang, Q., Hu, D., et al. (2015). The relationship between angiotensin-converting enzyme gene insertion/deletion polymorphism and digestive cancer risk: Insights from a meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System, 16, 1306–1313.PubMedCrossRef Yang, H., Cai, C., Ye, L., Rao, Y., Wang, Q., Hu, D., et al. (2015). The relationship between angiotensin-converting enzyme gene insertion/deletion polymorphism and digestive cancer risk: Insights from a meta-analysis. Journal of the Renin-Angiotensin-Aldosterone System, 16, 1306–1313.PubMedCrossRef
86.
go back to reference Matsushita, T., Oyamada, M., Fujimoto, K., Yasuda, Y., Masuda, S., Wada, Y., et al. (1999). Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circulation Research, 85, 1046–1055.PubMedCrossRef Matsushita, T., Oyamada, M., Fujimoto, K., Yasuda, Y., Masuda, S., Wada, Y., et al. (1999). Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circulation Research, 85, 1046–1055.PubMedCrossRef
87.
88.
go back to reference Ng, C. P., Hinz, B., & Swartz, M. A. (2005). Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 118, 4731–4739.PubMedCrossRef Ng, C. P., Hinz, B., & Swartz, M. A. (2005). Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 118, 4731–4739.PubMedCrossRef
89.
go back to reference Lecarpentier, Y., Schussler, O., Sakic, A., Rincon-Garriz, J. M., Soulie, P., Bochaton-Piallat, M. L., et al. (2018). Human bone marrow contains mesenchymal stromal stem cells that differentiate in vitro into contractile myofibroblasts controlling T lymphocyte proliferation. Stem Cells International, 2018, 6134787.PubMedPubMedCentralCrossRef Lecarpentier, Y., Schussler, O., Sakic, A., Rincon-Garriz, J. M., Soulie, P., Bochaton-Piallat, M. L., et al. (2018). Human bone marrow contains mesenchymal stromal stem cells that differentiate in vitro into contractile myofibroblasts controlling T lymphocyte proliferation. Stem Cells International, 2018, 6134787.PubMedPubMedCentralCrossRef
90.
go back to reference van der Flier, A., Badu-Nkansah, K., Whittaker, C. A., Crowley, D., Bronson, R. T., Lacy-Hulbert, A., et al. (2010). Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development., 137, 2439–2449.PubMedPubMedCentralCrossRef van der Flier, A., Badu-Nkansah, K., Whittaker, C. A., Crowley, D., Bronson, R. T., Lacy-Hulbert, A., et al. (2010). Endothelial alpha5 and alphav integrins cooperate in remodeling of the vasculature during development. Development., 137, 2439–2449.PubMedPubMedCentralCrossRef
91.
go back to reference Sharp, W. W., Simpson, D. G., Borg, T. K., Samarel, A. M., & Terracio, L. (1997). Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. The American Journal of Physiology, 273, H546–H556.PubMed Sharp, W. W., Simpson, D. G., Borg, T. K., Samarel, A. M., & Terracio, L. (1997). Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. The American Journal of Physiology, 273, H546–H556.PubMed
92.
go back to reference Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., et al. (2006). Coupling of the nucleus and cytoplasm: Role of the LINC complex. The Journal of Cell Biology, 172, 41–53.PubMedPubMedCentralCrossRef Crisp, M., Liu, Q., Roux, K., Rattner, J. B., Shanahan, C., Burke, B., et al. (2006). Coupling of the nucleus and cytoplasm: Role of the LINC complex. The Journal of Cell Biology, 172, 41–53.PubMedPubMedCentralCrossRef
93.
go back to reference Zhang, J., Zhu, W., Radisic, M., & Vunjak-Novakovic, G. (2018). Can we engineer a human cardiac patch for therapy? Circulation Research, 123, 244–265.PubMedPubMedCentralCrossRef Zhang, J., Zhu, W., Radisic, M., & Vunjak-Novakovic, G. (2018). Can we engineer a human cardiac patch for therapy? Circulation Research, 123, 244–265.PubMedPubMedCentralCrossRef
94.
go back to reference Zhang, J. Q., Elzey, B., Williams, G., Lu, S., Law, D. J., & Horowits, R. (2001). Ultrastructural and biochemical localization of N-RAP at the interface between myofibrils and intercalated disks in the mouse heart. Biochemistry., 40, 14898–14906.PubMedCrossRef Zhang, J. Q., Elzey, B., Williams, G., Lu, S., Law, D. J., & Horowits, R. (2001). Ultrastructural and biochemical localization of N-RAP at the interface between myofibrils and intercalated disks in the mouse heart. Biochemistry., 40, 14898–14906.PubMedCrossRef
95.
go back to reference Brancaccio, M., Guazzone, S., Menini, N., Sibona, E., Hirsch, E., De Andrea, M., et al. (1999). Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain. The Journal of Biological Chemistry, 274, 29282–29288.PubMedCrossRef Brancaccio, M., Guazzone, S., Menini, N., Sibona, E., Hirsch, E., De Andrea, M., et al. (1999). Melusin is a new muscle-specific interactor for beta(1) integrin cytoplasmic domain. The Journal of Biological Chemistry, 274, 29282–29288.PubMedCrossRef
96.
go back to reference Willey, C. D., Balasubramanian, S., Rodriguez Rosas, M. C., Ross, R. S., & Kuppuswamy, D. (2003). Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src. Journal of Molecular and Cellular Cardiology, 35, 671–683.PubMedCrossRef Willey, C. D., Balasubramanian, S., Rodriguez Rosas, M. C., Ross, R. S., & Kuppuswamy, D. (2003). Focal complex formation in adult cardiomyocytes is accompanied by the activation of beta3 integrin and c-Src. Journal of Molecular and Cellular Cardiology, 35, 671–683.PubMedCrossRef
97.
go back to reference Manso, A. M., Okada, H., Sakamoto, F. M., Moreno, E., Monkley, S. J., Li, R., et al. (2017). Loss of mouse cardiomyocyte talin-1 and talin-2 leads to beta-1 integrin reduction, costameric instability, and dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 114, E6250–E62E9.PubMedPubMedCentral Manso, A. M., Okada, H., Sakamoto, F. M., Moreno, E., Monkley, S. J., Li, R., et al. (2017). Loss of mouse cardiomyocyte talin-1 and talin-2 leads to beta-1 integrin reduction, costameric instability, and dilated cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 114, E6250–E62E9.PubMedPubMedCentral
98.
go back to reference Valencik, M. L., Zhang, D., Punske, B., Hu, P., McDonald, J. A., & Litwin, S. E. (2006). Integrin activation in the heart: A link between electrical and contractile dysfunction? Circulation Research, 99, 1403–1410.PubMedCrossRef Valencik, M. L., Zhang, D., Punske, B., Hu, P., McDonald, J. A., & Litwin, S. E. (2006). Integrin activation in the heart: A link between electrical and contractile dysfunction? Circulation Research, 99, 1403–1410.PubMedCrossRef
99.
go back to reference Quang, K. L., Maguy, A., Qi, X. Y., Naud, P., Xiong, F., Tadevosyan, A., et al. (2015). Loss of cardiomyocyte integrin-linked kinase produces an arrhythmogenic cardiomyopathy in mice. Circulation. Arrhythmia and Electrophysiology, 8, 921–932.PubMedCrossRef Quang, K. L., Maguy, A., Qi, X. Y., Naud, P., Xiong, F., Tadevosyan, A., et al. (2015). Loss of cardiomyocyte integrin-linked kinase produces an arrhythmogenic cardiomyopathy in mice. Circulation. Arrhythmia and Electrophysiology, 8, 921–932.PubMedCrossRef
100.
go back to reference Suryakumar, G., Kasiganesan, H., Balasubramanian, S., & Kuppuswamy, D. (2010). Lack of beta3 integrin signaling contributes to calpain-mediated myocardial cell loss in pressure-overloaded myocardium. Journal of Cardiovascular Pharmacology, 55, 567–573.PubMedPubMedCentralCrossRef Suryakumar, G., Kasiganesan, H., Balasubramanian, S., & Kuppuswamy, D. (2010). Lack of beta3 integrin signaling contributes to calpain-mediated myocardial cell loss in pressure-overloaded myocardium. Journal of Cardiovascular Pharmacology, 55, 567–573.PubMedPubMedCentralCrossRef
101.
go back to reference Su, Y., Tian, H., Wei, L., Fu, G., & Sun, T. (2018). Integrin beta3 inhibits hypoxia-induced apoptosis in cardiomyocytes. Acta Biochimica et Biophysica Sinica Shanghai, 50, 658–665.CrossRef Su, Y., Tian, H., Wei, L., Fu, G., & Sun, T. (2018). Integrin beta3 inhibits hypoxia-induced apoptosis in cardiomyocytes. Acta Biochimica et Biophysica Sinica Shanghai, 50, 658–665.CrossRef
102.
go back to reference Maninova, M., & Vomastek, T. (2016). Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. The FEBS Journal, 283, 3676–3693.PubMedCrossRef Maninova, M., & Vomastek, T. (2016). Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. The FEBS Journal, 283, 3676–3693.PubMedCrossRef
103.
go back to reference Hinz, B., Celetta, G., Tomasek, J. J., Gabbiani, G., & Chaponnier, C. (2001). Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Molecular Biology of the Cell, 12, 2730–2741.PubMedPubMedCentralCrossRef Hinz, B., Celetta, G., Tomasek, J. J., Gabbiani, G., & Chaponnier, C. (2001). Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Molecular Biology of the Cell, 12, 2730–2741.PubMedPubMedCentralCrossRef
104.
go back to reference Burnette, D. T., Shao, L., Ott, C., Pasapera, A. M., Fischer, R. S., Baird, M. A., et al. (2014). A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. The Journal of Cell Biology, 205, 83–96.PubMedPubMedCentralCrossRef Burnette, D. T., Shao, L., Ott, C., Pasapera, A. M., Fischer, R. S., Baird, M. A., et al. (2014). A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. The Journal of Cell Biology, 205, 83–96.PubMedPubMedCentralCrossRef
105.
go back to reference Beach, J. R., Bruun, K. S., Shao, L., Li, D., Swider, Z., Remmert, K., et al. (2017). Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments. Nature Cell Biology, 19, 85–93.PubMedPubMedCentralCrossRef Beach, J. R., Bruun, K. S., Shao, L., Li, D., Swider, Z., Remmert, K., et al. (2017). Actin dynamics and competition for myosin monomer govern the sequential amplification of myosin filaments. Nature Cell Biology, 19, 85–93.PubMedPubMedCentralCrossRef
106.
go back to reference van der Ven, P. F., Bartsch, J. W., Gautel, M., Jockusch, H., & Furst, D. O. (2000). A functional knock-out of titin results in defective myofibril assembly. Journal of Cell Science, 113(Pt 8), 1405–1414.PubMed van der Ven, P. F., Bartsch, J. W., Gautel, M., Jockusch, H., & Furst, D. O. (2000). A functional knock-out of titin results in defective myofibril assembly. Journal of Cell Science, 113(Pt 8), 1405–1414.PubMed
107.
go back to reference Manso, A. M., Kang, S. M., & Ross, R. S. (2009). Integrins, focal adhesions, and cardiac fibroblasts. Journal of Investigative Medicine, 57, 856–860.PubMedPubMedCentralCrossRef Manso, A. M., Kang, S. M., & Ross, R. S. (2009). Integrins, focal adhesions, and cardiac fibroblasts. Journal of Investigative Medicine, 57, 856–860.PubMedPubMedCentralCrossRef
108.
go back to reference Galdyszynska, M., Bobrowska, J., Lekka, M., Radwanska, P., Piera, L., Szymanski, J., et al. (2020). The stiffness-controlled release of interleukin-6 by cardiac fibroblasts is dependent on integrin alpha2beta1. Journal of Cellular and Molecular Medicine. Galdyszynska, M., Bobrowska, J., Lekka, M., Radwanska, P., Piera, L., Szymanski, J., et al. (2020). The stiffness-controlled release of interleukin-6 by cardiac fibroblasts is dependent on integrin alpha2beta1. Journal of Cellular and Molecular Medicine.
109.
go back to reference Carracedo, S., Lu, N., Popova, S. N., Jonsson, R., Eckes, B., & Gullberg, D. (2010). The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. The Journal of Biological Chemistry, 285, 10434–10445.PubMedPubMedCentralCrossRef Carracedo, S., Lu, N., Popova, S. N., Jonsson, R., Eckes, B., & Gullberg, D. (2010). The fibroblast integrin alpha11beta1 is induced in a mechanosensitive manner involving activin A and regulates myofibroblast differentiation. The Journal of Biological Chemistry, 285, 10434–10445.PubMedPubMedCentralCrossRef
110.
go back to reference Perrucci, G. L., Barbagallo, V. A., Corliano, M., Tosi, D., Santoro, R., Nigro, P., et al. (2018). Integrin alphanubeta5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. Journal of Translational Medicine, 16, 352.PubMedPubMedCentralCrossRef Perrucci, G. L., Barbagallo, V. A., Corliano, M., Tosi, D., Santoro, R., Nigro, P., et al. (2018). Integrin alphanubeta5 in vitro inhibition limits pro-fibrotic response in cardiac fibroblasts of spontaneously hypertensive rats. Journal of Translational Medicine, 16, 352.PubMedPubMedCentralCrossRef
111.
go back to reference Sarrazy, V., Koehler, A., Chow, M. L., Zimina, E., Li, C. X., Kato, H., et al. (2014). Integrins alphavbeta5 and alphavbeta3 promote latent TGF-beta1 activation by human cardiac fibroblast contraction. Cardiovascular Research, 102, 407–417.PubMedPubMedCentralCrossRef Sarrazy, V., Koehler, A., Chow, M. L., Zimina, E., Li, C. X., Kato, H., et al. (2014). Integrins alphavbeta5 and alphavbeta3 promote latent TGF-beta1 activation by human cardiac fibroblast contraction. Cardiovascular Research, 102, 407–417.PubMedPubMedCentralCrossRef
112.
go back to reference Bouvet, M., Claude, O., Roux, M., Skelly, D., Masurkar, N., Mougenot, N., et al. (2020). Anti-integrin alphav therapy improves cardiac fibrosis after myocardial infarction by blunting cardiac PW1(+) stromal cells. Scientific Reports, 10, 11404.PubMedPubMedCentralCrossRef Bouvet, M., Claude, O., Roux, M., Skelly, D., Masurkar, N., Mougenot, N., et al. (2020). Anti-integrin alphav therapy improves cardiac fibrosis after myocardial infarction by blunting cardiac PW1(+) stromal cells. Scientific Reports, 10, 11404.PubMedPubMedCentralCrossRef
114.
go back to reference Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127, 526–537.PubMedCrossRef Hinz, B. (2007). Formation and function of the myofibroblast during tissue repair. The Journal of Investigative Dermatology, 127, 526–537.PubMedCrossRef
115.
go back to reference Goffin, J. M., Pittet, P., Csucs, G., Lussi, J. W., Meister, J. J., & Hinz, B. (2006). Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. The Journal of Cell Biology, 172, 259–268.PubMedPubMedCentralCrossRef Goffin, J. M., Pittet, P., Csucs, G., Lussi, J. W., Meister, J. J., & Hinz, B. (2006). Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. The Journal of Cell Biology, 172, 259–268.PubMedPubMedCentralCrossRef
116.
go back to reference Zhang, Y., Li, H., Wei, R., Ma, J., Zhao, Y., Lian, Z., et al. (2015). Endothelial cells regulate cardiac myocyte reorganisation through beta1-integrin signalling. Cellular Physiology and Biochemistry, 35, 1808–1820.PubMedCrossRef Zhang, Y., Li, H., Wei, R., Ma, J., Zhao, Y., Lian, Z., et al. (2015). Endothelial cells regulate cardiac myocyte reorganisation through beta1-integrin signalling. Cellular Physiology and Biochemistry, 35, 1808–1820.PubMedCrossRef
117.
go back to reference Kim, S., Bell, K., Mousa, S. A., & Varner, J. A. (2000). Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. The American Journal of Pathology, 156, 1345–1362.PubMedPubMedCentralCrossRef Kim, S., Bell, K., Mousa, S. A., & Varner, J. A. (2000). Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. The American Journal of Pathology, 156, 1345–1362.PubMedPubMedCentralCrossRef
118.
go back to reference Xie, L., Duncan, M. B., Pahler, J., Sugimoto, H., Martino, M., Lively, J., et al. (2011). Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 108, 9939–9944.PubMedPubMedCentralCrossRef Xie, L., Duncan, M. B., Pahler, J., Sugimoto, H., Martino, M., Lively, J., et al. (2011). Counterbalancing angiogenic regulatory factors control the rate of cancer progression and survival in a stage-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 108, 9939–9944.PubMedPubMedCentralCrossRef
119.
go back to reference Osada-Oka, M., Ikeda, T., Akiba, S., & Sato, T. (2008). Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1alpha-dependent expression of thrombospondin-1. Journal of Cellular Biochemistry, 104, 1918–1926.PubMedCrossRef Osada-Oka, M., Ikeda, T., Akiba, S., & Sato, T. (2008). Hypoxia stimulates the autocrine regulation of migration of vascular smooth muscle cells via HIF-1alpha-dependent expression of thrombospondin-1. Journal of Cellular Biochemistry, 104, 1918–1926.PubMedCrossRef
120.
go back to reference Giordano, A., D'Angelillo, A., Romano, S., D'Arrigo, P., Corcione, N., Bisogni, R., et al. (2014). Tirofiban induces VEGF production and stimulates migration and proliferation of endothelial cells. Vascular Pharmacology, 61, 63–71.PubMedCrossRef Giordano, A., D'Angelillo, A., Romano, S., D'Arrigo, P., Corcione, N., Bisogni, R., et al. (2014). Tirofiban induces VEGF production and stimulates migration and proliferation of endothelial cells. Vascular Pharmacology, 61, 63–71.PubMedCrossRef
122.
go back to reference Zwolanek, D., Flicker, M., Kirstatter, E., Zaucke, F., van Osch, G. J., & Erben, R. G. (2015). beta1 integrins mediate attachment of mesenchymal stem cells to cartilage lesions. BioResearch Open Access., 4, 39–53.PubMedPubMedCentralCrossRef Zwolanek, D., Flicker, M., Kirstatter, E., Zaucke, F., van Osch, G. J., & Erben, R. G. (2015). beta1 integrins mediate attachment of mesenchymal stem cells to cartilage lesions. BioResearch Open Access., 4, 39–53.PubMedPubMedCentralCrossRef
123.
go back to reference Popov, C., Radic, T., Haasters, F., Prall, W. C., Aszodi, A., Gullberg, D., et al. (2011). Integrins alpha2beta1 and alpha11beta1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death & Disease, 2, e186.CrossRef Popov, C., Radic, T., Haasters, F., Prall, W. C., Aszodi, A., Gullberg, D., et al. (2011). Integrins alpha2beta1 and alpha11beta1 regulate the survival of mesenchymal stem cells on collagen I. Cell Death & Disease, 2, e186.CrossRef
124.
go back to reference Veevers-Lowe, J., Ball, S. G., Shuttleworth, A., & Kielty, C. M. (2011). Mesenchymal stem cell migration is regulated by fibronectin through alpha5beta1-integrin-mediated activation of PDGFR-beta and potentiation of growth factor signals. Journal of Cell Science, 124, 1288–1300.PubMedPubMedCentralCrossRef Veevers-Lowe, J., Ball, S. G., Shuttleworth, A., & Kielty, C. M. (2011). Mesenchymal stem cell migration is regulated by fibronectin through alpha5beta1-integrin-mediated activation of PDGFR-beta and potentiation of growth factor signals. Journal of Cell Science, 124, 1288–1300.PubMedPubMedCentralCrossRef
125.
go back to reference Nitzsche, F., Muller, C., Lukomska, B., Jolkkonen, J., Deten, A., & Boltze, J. (2017). Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells, 35, 1446–1460.PubMedCrossRef Nitzsche, F., Muller, C., Lukomska, B., Jolkkonen, J., Deten, A., & Boltze, J. (2017). Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells, 35, 1446–1460.PubMedCrossRef
126.
go back to reference Jaukovic, A., Abadjieva, D., Trivanovic, D., Stoyanova, E., Kostadinova, M., Pashova, S., et al. (2020). Specificity of 3D MSC spheroids microenvironment: Impact on MSC behavior and properties. Stem Cell Reviews and Reports, 16, 853–875.PubMedCrossRef Jaukovic, A., Abadjieva, D., Trivanovic, D., Stoyanova, E., Kostadinova, M., Pashova, S., et al. (2020). Specificity of 3D MSC spheroids microenvironment: Impact on MSC behavior and properties. Stem Cell Reviews and Reports, 16, 853–875.PubMedCrossRef
127.
go back to reference Rashedi, I., Talele, N., Wang, X. H., Hinz, B., Radisic, M., & Keating, A. (2017). Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One, 12, e0187348.PubMedPubMedCentralCrossRef Rashedi, I., Talele, N., Wang, X. H., Hinz, B., Radisic, M., & Keating, A. (2017). Collagen scaffold enhances the regenerative properties of mesenchymal stromal cells. PLoS One, 12, e0187348.PubMedPubMedCentralCrossRef
128.
go back to reference van den Akker, F., Deddens, J. C., Doevendans, P. A., & Sluijter, J. P. (1830). Cardiac stem cell therapy to modulate inflammation upon myocardial infarction. Biochimica et Biophysica Acta, 2012, 2449–2458. van den Akker, F., Deddens, J. C., Doevendans, P. A., & Sluijter, J. P. (1830). Cardiac stem cell therapy to modulate inflammation upon myocardial infarction. Biochimica et Biophysica Acta, 2012, 2449–2458.
129.
go back to reference Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9, 1195–1201.PubMedCrossRef Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., et al. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medicine, 9, 1195–1201.PubMedCrossRef
130.
go back to reference Li, W., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25, 2118–2127.PubMedCrossRef Li, W., Ma, N., Ong, L. L., Nesselmann, C., Klopsch, C., Ladilov, Y., et al. (2007). Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells, 25, 2118–2127.PubMedCrossRef
131.
go back to reference Song, S. W., Chang, W., Song, B. W., Song, H., Lim, S., Kim, H. J., et al. (2009). Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells, 27, 1358–1365.PubMedCrossRef Song, S. W., Chang, W., Song, B. W., Song, H., Lim, S., Kim, H. J., et al. (2009). Integrin-linked kinase is required in hypoxic mesenchymal stem cells for strengthening cell adhesion to ischemic myocardium. Stem Cells, 27, 1358–1365.PubMedCrossRef
132.
go back to reference Cho, Y. H., Cha, M. J., Song, B. W., Kim, I. K., Song, H., Chang, W., et al. (2011). Enhancement of MSC adhesion and therapeutic efficiency in ischemic heart using lentivirus delivery with periostin. Biomaterials., 33, 1376–1385.PubMedCrossRef Cho, Y. H., Cha, M. J., Song, B. W., Kim, I. K., Song, H., Chang, W., et al. (2011). Enhancement of MSC adhesion and therapeutic efficiency in ischemic heart using lentivirus delivery with periostin. Biomaterials., 33, 1376–1385.PubMedCrossRef
133.
go back to reference Salinas, C. N., & Anseth, K. S. (2008). The influence of the RGD peptide motif and its contextual presentation in PEG gels on human mesenchymal stem cell viability. Journal of Tissue Engineering and Regenerative Medicine, 2, 296–304.PubMedPubMedCentralCrossRef Salinas, C. N., & Anseth, K. S. (2008). The influence of the RGD peptide motif and its contextual presentation in PEG gels on human mesenchymal stem cell viability. Journal of Tissue Engineering and Regenerative Medicine, 2, 296–304.PubMedPubMedCentralCrossRef
134.
go back to reference Simpson, D. L., & Dudley Jr., S. C. (2011). Modulation of human mesenchymal stem cell function in a three-dimensional matrix promotes attenuation of adverse remodelling after myocardial infarction. Journal of Tissue Engineering and Regenerative Medicine, 7, 192–202.PubMedCrossRef Simpson, D. L., & Dudley Jr., S. C. (2011). Modulation of human mesenchymal stem cell function in a three-dimensional matrix promotes attenuation of adverse remodelling after myocardial infarction. Journal of Tissue Engineering and Regenerative Medicine, 7, 192–202.PubMedCrossRef
135.
go back to reference Maureira, P., Marie, P. Y., Yu, F., Poussier, S., Liu, Y., Groubatch, F., et al. (2012). Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. Journal of Biomedical Science, 19, 93.PubMedPubMedCentralCrossRef Maureira, P., Marie, P. Y., Yu, F., Poussier, S., Liu, Y., Groubatch, F., et al. (2012). Repairing chronic myocardial infarction with autologous mesenchymal stem cells engineered tissue in rat promotes angiogenesis and limits ventricular remodeling. Journal of Biomedical Science, 19, 93.PubMedPubMedCentralCrossRef
136.
go back to reference Di Spigna, G., Iannone, M., Ladogana, P., Salzano, S., Ventre, M., Covelli, B., et al. (2017). Human cardiac multipotent adult stem cells in 3D matrix: New approach of tissue engineering in cardiac regeneration post-infarction. Journal of Biological Regulators and Homeostatic Agents, 31, 911–921.PubMed Di Spigna, G., Iannone, M., Ladogana, P., Salzano, S., Ventre, M., Covelli, B., et al. (2017). Human cardiac multipotent adult stem cells in 3D matrix: New approach of tissue engineering in cardiac regeneration post-infarction. Journal of Biological Regulators and Homeostatic Agents, 31, 911–921.PubMed
137.
go back to reference Li, T. S., Cheng, K., Lee, S. T., Matsushita, S., Davis, D., Malliaras, K., et al. (2010). Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells, 28, 2088–2098.PubMedPubMedCentralCrossRef Li, T. S., Cheng, K., Lee, S. T., Matsushita, S., Davis, D., Malliaras, K., et al. (2010). Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells, 28, 2088–2098.PubMedPubMedCentralCrossRef
138.
go back to reference Li, X., Tamama, K., Xie, X., & Guan, J. (2016). Improving cell engraftment in cardiac stem cell therapy. Stem Cells International, 2016, 7168797.PubMedCrossRef Li, X., Tamama, K., Xie, X., & Guan, J. (2016). Improving cell engraftment in cardiac stem cell therapy. Stem Cells International, 2016, 7168797.PubMedCrossRef
139.
go back to reference Liu, S., Jiang, Z., Qiao, L., Guo, B., Xiao, W., Zhang, X., et al. (2017). Integrin beta-3 is required for the attachment, retention and therapeutic benefits of human cardiospheres in myocardial infarction. Journal of Cellular and Molecular Medicine, 22, 382–389.PubMedPubMedCentralCrossRef Liu, S., Jiang, Z., Qiao, L., Guo, B., Xiao, W., Zhang, X., et al. (2017). Integrin beta-3 is required for the attachment, retention and therapeutic benefits of human cardiospheres in myocardial infarction. Journal of Cellular and Molecular Medicine, 22, 382–389.PubMedPubMedCentralCrossRef
140.
go back to reference Battista, S., Guarnieri, D., Borselli, C., Zeppetelli, S., Borzacchiello, A., Mayol, L., et al. (2005). The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials., 26, 6194–6207.PubMedCrossRef Battista, S., Guarnieri, D., Borselli, C., Zeppetelli, S., Borzacchiello, A., Mayol, L., et al. (2005). The effect of matrix composition of 3D constructs on embryonic stem cell differentiation. Biomaterials., 26, 6194–6207.PubMedCrossRef
141.
go back to reference Thorsteinsdottir, S., Roelen, B. A., Goumans, M. J., Ward-van Oostwaard, D., Gaspar, A. C., & Mummery, C. L. (1999). Expression of the alpha 6A integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation., 64, 173–184.PubMedCrossRef Thorsteinsdottir, S., Roelen, B. A., Goumans, M. J., Ward-van Oostwaard, D., Gaspar, A. C., & Mummery, C. L. (1999). Expression of the alpha 6A integrin splice variant in developing mouse embryonic stem cell aggregates and correlation with cardiac muscle differentiation. Differentiation., 64, 173–184.PubMedCrossRef
142.
go back to reference van Laake, L. W., van Donselaar, E. G., Monshouwer-Kloots, J., Schreurs, C., Passier, R., Humbel, B. M., et al. (2010). Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes. Cellular and Molecular Life Sciences, 67, 277–290.PubMedCrossRef van Laake, L. W., van Donselaar, E. G., Monshouwer-Kloots, J., Schreurs, C., Passier, R., Humbel, B. M., et al. (2010). Extracellular matrix formation after transplantation of human embryonic stem cell-derived cardiomyocytes. Cellular and Molecular Life Sciences, 67, 277–290.PubMedCrossRef
143.
go back to reference Sun, M., Opavsky, M. A., Stewart, D. J., Rabinovitch, M., Dawood, F., Wen, W. H., et al. (2003). Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: Regulation by cytokines. Circulation., 107, 1046–1052.PubMedCrossRef Sun, M., Opavsky, M. A., Stewart, D. J., Rabinovitch, M., Dawood, F., Wen, W. H., et al. (2003). Temporal response and localization of integrins beta1 and beta3 in the heart after myocardial infarction: Regulation by cytokines. Circulation., 107, 1046–1052.PubMedCrossRef
144.
go back to reference Krishnamurthy, P., Subramanian, V., Singh, M., & Singh, K. (2006). Deficiency of beta1 integrins results in increased myocardial dysfunction after myocardial infarction. Heart., 92, 1309–1315.PubMedPubMedCentralCrossRef Krishnamurthy, P., Subramanian, V., Singh, M., & Singh, K. (2006). Deficiency of beta1 integrins results in increased myocardial dysfunction after myocardial infarction. Heart., 92, 1309–1315.PubMedPubMedCentralCrossRef
145.
go back to reference Adderley, S. R., & Fitzgerald, D. J. (2000). Glycoprotein IIb/IIIa antagonists induce apoptosis in rat cardiomyocytes by caspase-3 activation. The Journal of Biological Chemistry, 275, 5760–5766.PubMedCrossRef Adderley, S. R., & Fitzgerald, D. J. (2000). Glycoprotein IIb/IIIa antagonists induce apoptosis in rat cardiomyocytes by caspase-3 activation. The Journal of Biological Chemistry, 275, 5760–5766.PubMedCrossRef
146.
go back to reference Giordano, A., Romano, S., D'Angelillo, A., Corcione, N., Messina, S., Avellino, R., et al. (2015). Tirofiban counteracts endothelial cell apoptosis through the VEGF/VEGFR2/pAkt axis. Vascular Pharmacology, 80, 67–74.PubMedCrossRef Giordano, A., Romano, S., D'Angelillo, A., Corcione, N., Messina, S., Avellino, R., et al. (2015). Tirofiban counteracts endothelial cell apoptosis through the VEGF/VEGFR2/pAkt axis. Vascular Pharmacology, 80, 67–74.PubMedCrossRef
148.
go back to reference Higuchi, T., Bengel, F. M., Seidl, S., Watzlowik, P., Kessler, H., Hegenloh, R., et al. (2008). Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovascular Research, 78, 395–403.PubMedCrossRef Higuchi, T., Bengel, F. M., Seidl, S., Watzlowik, P., Kessler, H., Hegenloh, R., et al. (2008). Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovascular Research, 78, 395–403.PubMedCrossRef
149.
go back to reference Sherif, H. M., Saraste, A., Nekolla, S. G., Weidl, E., Reder, S., Tapfer, A., et al. (2012). Molecular imaging of early alphavbeta3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. Journal of Nuclear Medicine, 53, 318–323.PubMedCrossRef Sherif, H. M., Saraste, A., Nekolla, S. G., Weidl, E., Reder, S., Tapfer, A., et al. (2012). Molecular imaging of early alphavbeta3 integrin expression predicts long-term left-ventricle remodeling after myocardial infarction in rats. Journal of Nuclear Medicine, 53, 318–323.PubMedCrossRef
150.
go back to reference Jenkins, W. S., Vesey, A. T., Stirrat, C., Connell, M., Lucatelli, C., Neale, A., et al. (2016). Cardiac alphaVbeta3 integrin expression following acute myocardial infarction in humans. Heart., 103, 607–615.PubMedCrossRef Jenkins, W. S., Vesey, A. T., Stirrat, C., Connell, M., Lucatelli, C., Neale, A., et al. (2016). Cardiac alphaVbeta3 integrin expression following acute myocardial infarction in humans. Heart., 103, 607–615.PubMedCrossRef
151.
go back to reference Ben-Mordechai, T., Holbova, R., Landa-Rouben, N., Harel-Adar, T., Feinberg, M. S., Abd Elrahman, I., et al. (2013). Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. Journal of the American College of Cardiology, 62, 1890–1901.PubMedCrossRef Ben-Mordechai, T., Holbova, R., Landa-Rouben, N., Harel-Adar, T., Feinberg, M. S., Abd Elrahman, I., et al. (2013). Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. Journal of the American College of Cardiology, 62, 1890–1901.PubMedCrossRef
152.
go back to reference Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. The Journal of Experimental Medicine, 205, 295–303.PubMedPubMedCentralCrossRef Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. The Journal of Experimental Medicine, 205, 295–303.PubMedPubMedCentralCrossRef
153.
go back to reference Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101, 313–321.PubMedPubMedCentralCrossRef Oka, T., Xu, J., Kaiser, R. A., Melendez, J., Hambleton, M., Sargent, M. A., et al. (2007). Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circulation Research, 101, 313–321.PubMedPubMedCentralCrossRef
154.
go back to reference Trueblood, N. A., Xie, Z., Communal, C., Sam, F., Ngoy, S., Liaw, L., et al. (2001). Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circulation Research, 88, 1080–1087.PubMedCrossRef Trueblood, N. A., Xie, Z., Communal, C., Sam, F., Ngoy, S., Liaw, L., et al. (2001). Exaggerated left ventricular dilation and reduced collagen deposition after myocardial infarction in mice lacking osteopontin. Circulation Research, 88, 1080–1087.PubMedCrossRef
155.
go back to reference Deckx, S., Johnson, D. M., Rienks, M., Carai, P., Van Deel, E., Van der Velden, J., et al. (2019). Extracellular SPARC increases cardiomyocyte contraction during health and disease. PLoS One, 14, e0209534.PubMedPubMedCentralCrossRef Deckx, S., Johnson, D. M., Rienks, M., Carai, P., Van Deel, E., Van der Velden, J., et al. (2019). Extracellular SPARC increases cardiomyocyte contraction during health and disease. PLoS One, 14, e0209534.PubMedPubMedCentralCrossRef
156.
go back to reference Frangogiannis, N. G., Ren, G., Dewald, O., Zymek, P., Haudek, S., Koerting, A., et al. (2005). Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation., 111, 2935–2942.PubMedCrossRef Frangogiannis, N. G., Ren, G., Dewald, O., Zymek, P., Haudek, S., Koerting, A., et al. (2005). Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts. Circulation., 111, 2935–2942.PubMedCrossRef
157.
go back to reference Weis, S. M., & Cheresh, D. A. (2005). Pathophysiological consequences of VEGF-induced vascular permeability. Nature., 437, 497–504.PubMedCrossRef Weis, S. M., & Cheresh, D. A. (2005). Pathophysiological consequences of VEGF-induced vascular permeability. Nature., 437, 497–504.PubMedCrossRef
158.
go back to reference Yanamandala, M., Zhu, W., Garry, D. J., Kamp, T. J., Hare, J. M., Jun, H. W., et al. (2017). Overcoming the roadblocks to cardiac cell therapy using tissue engineering. Journal of the American College of Cardiology, 70, 766–775.PubMedPubMedCentralCrossRef Yanamandala, M., Zhu, W., Garry, D. J., Kamp, T. J., Hare, J. M., Jun, H. W., et al. (2017). Overcoming the roadblocks to cardiac cell therapy using tissue engineering. Journal of the American College of Cardiology, 70, 766–775.PubMedPubMedCentralCrossRef
159.
go back to reference Menasche, P., Vanneaux, V., Fabreguettes, J. R., Bel, A., Tosca, L., Garcia, S., et al. (2014). Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: A translational experience. European Heart Journal, 36, 743–750.PubMedCrossRef Menasche, P., Vanneaux, V., Fabreguettes, J. R., Bel, A., Tosca, L., Garcia, S., et al. (2014). Towards a clinical use of human embryonic stem cell-derived cardiac progenitors: A translational experience. European Heart Journal, 36, 743–750.PubMedCrossRef
160.
go back to reference Nguyen, P. K., Rhee, J. W., & Wu, J. C. (2016). Adult stem cell therapy and heart failure, 2000 to 2016: A systematic review. JAMA Cardiology, 1, 831–841.PubMedPubMedCentralCrossRef Nguyen, P. K., Rhee, J. W., & Wu, J. C. (2016). Adult stem cell therapy and heart failure, 2000 to 2016: A systematic review. JAMA Cardiology, 1, 831–841.PubMedPubMedCentralCrossRef
161.
go back to reference Liu, J., Narsinh, K. H., Lan, F., Wang, L., Nguyen, P. K., Hu, S., et al. (2012). Early stem cell engraftment predicts late cardiac functional recovery: Preclinical insights from molecular imaging. Circulation. Cardiovascular Imaging, 5, 481–490.PubMedPubMedCentralCrossRef Liu, J., Narsinh, K. H., Lan, F., Wang, L., Nguyen, P. K., Hu, S., et al. (2012). Early stem cell engraftment predicts late cardiac functional recovery: Preclinical insights from molecular imaging. Circulation. Cardiovascular Imaging, 5, 481–490.PubMedPubMedCentralCrossRef
162.
go back to reference Ahmadi, A., McNeill, B., Vulesevic, B., Kordos, M., Mesana, L., Thorn, S., et al. (2014). The role of integrin alpha2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials., 35, 4749–4758.PubMedCrossRef Ahmadi, A., McNeill, B., Vulesevic, B., Kordos, M., Mesana, L., Thorn, S., et al. (2014). The role of integrin alpha2 in cell and matrix therapy that improves perfusion, viability and function of infarcted myocardium. Biomaterials., 35, 4749–4758.PubMedCrossRef
163.
go back to reference Zhu, J., Hoop, C. L., Case, D. A., & Baum, J. (2018). Cryptic binding sites become accessible through surface reconstruction of the type I collagen fibril. Scientific Reports, 8, 16646.PubMedPubMedCentralCrossRef Zhu, J., Hoop, C. L., Case, D. A., & Baum, J. (2018). Cryptic binding sites become accessible through surface reconstruction of the type I collagen fibril. Scientific Reports, 8, 16646.PubMedPubMedCentralCrossRef
164.
go back to reference Schussler, O., Coirault, C., Louis-Tisserand, M., Al-Chare, W., Oliviero, P., Menard, C., et al. (2009). Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nature Clinical Practice. Cardiovascular Medicine, 6, 240–249.PubMed Schussler, O., Coirault, C., Louis-Tisserand, M., Al-Chare, W., Oliviero, P., Menard, C., et al. (2009). Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft. Nature Clinical Practice. Cardiovascular Medicine, 6, 240–249.PubMed
165.
go back to reference Radisic, M., Deen, W., Langer, R., & Vunjak-Novakovic, G. (2005). Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. American Journal of Physiology. Heart and Circulatory Physiology, 288, H1278–H1289.PubMedCrossRef Radisic, M., Deen, W., Langer, R., & Vunjak-Novakovic, G. (2005). Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. American Journal of Physiology. Heart and Circulatory Physiology, 288, H1278–H1289.PubMedCrossRef
166.
go back to reference Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., & Vunjak-Novakovic, G. (2006). Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnology and Bioengineering, 93, 332–343.PubMedCrossRef Radisic, M., Malda, J., Epping, E., Geng, W., Langer, R., & Vunjak-Novakovic, G. (2006). Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnology and Bioengineering, 93, 332–343.PubMedCrossRef
167.
go back to reference Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101, 18129–18134.PubMedPubMedCentralCrossRef Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., et al. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 101, 18129–18134.PubMedPubMedCentralCrossRef
168.
go back to reference Radisic, M., Marsano, A., Maidhof, R., Wang, Y., & Vunjak-Novakovic, G. (2008). Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 3, 719–738.PubMedPubMedCentralCrossRef Radisic, M., Marsano, A., Maidhof, R., Wang, Y., & Vunjak-Novakovic, G. (2008). Cardiac tissue engineering using perfusion bioreactor systems. Nature Protocols, 3, 719–738.PubMedPubMedCentralCrossRef
169.
go back to reference Paez-Mayorga, J., Hernandez-Vargas, G., Ruiz-Esparza, G. U., Iqbal, H. M. N., Wang, X., Zhang, Y. S., et al. (2018). Bioreactors for cardiac tissue engineering. Advanced Healthcare Materials, 8, e1701504.PubMedCrossRef Paez-Mayorga, J., Hernandez-Vargas, G., Ruiz-Esparza, G. U., Iqbal, H. M. N., Wang, X., Zhang, Y. S., et al. (2018). Bioreactors for cardiac tissue engineering. Advanced Healthcare Materials, 8, e1701504.PubMedCrossRef
170.
go back to reference Yang, H., Borg, T. K., Liu, H., & Gao, B. Z. (2014). Interactive relationship between basement-membrane development and sarcomerogenesis in single cardiomyocytes. Experimental Cell Research, 330, 222–232.PubMedPubMedCentralCrossRef Yang, H., Borg, T. K., Liu, H., & Gao, B. Z. (2014). Interactive relationship between basement-membrane development and sarcomerogenesis in single cardiomyocytes. Experimental Cell Research, 330, 222–232.PubMedPubMedCentralCrossRef
171.
go back to reference Ladage, D., Yaniz-Galende, E., Rapti, K., Ishikawa, K., Tilemann, L., Shapiro, S., et al. (2013). Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. PLoS One, 8, e59656.PubMedPubMedCentralCrossRef Ladage, D., Yaniz-Galende, E., Rapti, K., Ishikawa, K., Tilemann, L., Shapiro, S., et al. (2013). Stimulating myocardial regeneration with periostin peptide in large mammals improves function post-myocardial infarction but increases myocardial fibrosis. PLoS One, 8, e59656.PubMedPubMedCentralCrossRef
Metadata
Title
Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction
Authors
Olivier Schussler
Juan C. Chachques
Marco Alifano
Yves Lecarpentier
Publication date
01-02-2022
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 1/2022
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-021-10154-4

Other articles of this Issue 1/2022

Journal of Cardiovascular Translational Research 1/2022 Go to the issue

Editorial Note

Letter to the Editor