Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2014

01-03-2014 | NON-THEMATIC REVIEW

Oxygen regulates molecular mechanisms of cancer progression and metastasis

Authors: Kartik Gupta, Esha Madan, Muzzammil Sayyid, Hugo Arias-Pulido, Eduardo Moreno, Periannan Kuppusamy, Rajan Gogna

Published in: Cancer and Metastasis Reviews | Issue 1/2014

Login to get access

Abstract

Oxygen is the basic molecule which supports life and it truly is “god's gift to life.” Despite its immense importance, research on “oxygen biology” has never received the light of the day and has been limited to physiological and biochemical studies. It seems that in modern day biology, oxygen research is summarized in one word “hypoxia.” Scientists have focused on hypoxia-induced transcriptomics and molecular–cellular alterations exclusively in disease models. Interestingly, the potential of oxygen to control the basic principles of biology like homeostatic maintenance, transcription, replication, and protein folding among many others, at the molecular level, has been completely ignored. Here, we present a perspective on the crucial role played by oxygen in regulation of basic biological phenomena. Our conclusion highlights the importance of establishing novel research areas like oxygen biology, as there is great potential in this field for basic science discoveries and clinical benefits to the society.
Literature
1.
go back to reference Sengupta, P. (2012). Health impacts of yoga and pranayama: a state-of-the-art review. Internation Journal of Preventive Medicine, 3(7), 444–458. Sengupta, P. (2012). Health impacts of yoga and pranayama: a state-of-the-art review. Internation Journal of Preventive Medicine, 3(7), 444–458.
2.
3.
go back to reference Wijesinghe, M., Perrin, K., Ranchord, A., Simmonds, M., Weatherall, M., & Beasley, R. (2009). Routine use of oxygen in the treatment of myocardial infarction: systematic review. [Meta-Analysis Review]. Heart, 95(3), 198–202. doi:10.1136/hrt.2008.148742.PubMed Wijesinghe, M., Perrin, K., Ranchord, A., Simmonds, M., Weatherall, M., & Beasley, R. (2009). Routine use of oxygen in the treatment of myocardial infarction: systematic review. [Meta-Analysis Review]. Heart, 95(3), 198–202. doi:10.​1136/​hrt.​2008.​148742.PubMed
5.
go back to reference Gu, X., El-Remessy, A. B., Brooks, S. E., Al-Shabrawey, M., Tsai, N. T., & Caldwell, R. B. (2003). Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Cell Physiology, 285(3), C546–C554. doi:10.1152/ajpcell.00424.2002.PubMed Gu, X., El-Remessy, A. B., Brooks, S. E., Al-Shabrawey, M., Tsai, N. T., & Caldwell, R. B. (2003). Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Cell Physiology, 285(3), C546–C554. doi:10.​1152/​ajpcell.​00424.​2002.PubMed
6.
go back to reference Semenza, G. L. (2000). HIF-1 and human disease: one highly involved factor. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Genes and Development, 14(16), 1983–1991.PubMed Semenza, G. L. (2000). HIF-1 and human disease: one highly involved factor. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Genes and Development, 14(16), 1983–1991.PubMed
7.
go back to reference Kvietikova, I., Wenger, R. H., Marti, H. H., & Gassmann, M. (1997). The hypoxia-inducible factor-1 DNA recognition site is cAMP-responsive. [Research Support, Non-U.S. Gov't]. Kidney International, 51(2), 564–566.PubMed Kvietikova, I., Wenger, R. H., Marti, H. H., & Gassmann, M. (1997). The hypoxia-inducible factor-1 DNA recognition site is cAMP-responsive. [Research Support, Non-U.S. Gov't]. Kidney International, 51(2), 564–566.PubMed
8.
go back to reference Grimm, C., Wenzel, A., Groszer, M., Mayser, H., Seeliger, M., Samardzija, M., et al. (2002). HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. [Research Support, Non-U.S. Gov't]. Nature Medicine, 8(7), 718–724. doi:10.1038/nm723.PubMed Grimm, C., Wenzel, A., Groszer, M., Mayser, H., Seeliger, M., Samardzija, M., et al. (2002). HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. [Research Support, Non-U.S. Gov't]. Nature Medicine, 8(7), 718–724. doi:10.​1038/​nm723.PubMed
10.
go back to reference Benita, Y., Kikuchi, H., Smith, A. D., Zhang, M. Q., Chung, D. C., & Xavier, R. J. (2009). An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. [Research Support, N.I.H., Extramural]. Nucleic Acids Research, 37(14), 4587–4602. doi:10.1093/nar/gkp425.PubMedCentralPubMed Benita, Y., Kikuchi, H., Smith, A. D., Zhang, M. Q., Chung, D. C., & Xavier, R. J. (2009). An integrative genomics approach identifies hypoxia inducible factor-1 (HIF-1)-target genes that form the core response to hypoxia. [Research Support, N.I.H., Extramural]. Nucleic Acids Research, 37(14), 4587–4602. doi:10.​1093/​nar/​gkp425.PubMedCentralPubMed
11.
go back to reference Lofstedt, T., Jogi, A., Sigvardsson, M., Gradin, K., Poellinger, L., Pahlman, S., et al. (2004). Induction of ID2 expression by hypoxia-inducible factor-1: a role in dedifferentiation of hypoxic neuroblastoma cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 279(38), 39223–39231. doi:10.1074/jbc.M402904200.PubMed Lofstedt, T., Jogi, A., Sigvardsson, M., Gradin, K., Poellinger, L., Pahlman, S., et al. (2004). Induction of ID2 expression by hypoxia-inducible factor-1: a role in dedifferentiation of hypoxic neuroblastoma cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 279(38), 39223–39231. doi:10.​1074/​jbc.​M402904200.PubMed
12.
go back to reference Zhao, X. Y., Zhao, K. W., Jiang, Y., Zhao, M., & Chen, G. Q. (2011). Synergistic induction of galectin-1 by CCAAT/enhancer binding protein alpha and hypoxia-inducible factor 1alpha and its role in differentiation of acute myeloid leukemic cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 286(42), 36808–36819. doi:10.1074/jbc.M111.247262.PubMedCentralPubMed Zhao, X. Y., Zhao, K. W., Jiang, Y., Zhao, M., & Chen, G. Q. (2011). Synergistic induction of galectin-1 by CCAAT/enhancer binding protein alpha and hypoxia-inducible factor 1alpha and its role in differentiation of acute myeloid leukemic cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 286(42), 36808–36819. doi:10.​1074/​jbc.​M111.​247262.PubMedCentralPubMed
13.
go back to reference Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. [Research Support, Non-U.S. Gov't]. Cancer Research, 66(13), 6683–6691. doi:10.1158/0008-5472.CAN-06-0425.PubMed Kaidi, A., Qualtrough, D., Williams, A. C., & Paraskeva, C. (2006). Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. [Research Support, Non-U.S. Gov't]. Cancer Research, 66(13), 6683–6691. doi:10.​1158/​0008-5472.​CAN-06-0425.PubMed
14.
go back to reference Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A., & Simon, M. C. (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Cell, 11(4), 335–347. doi:10.1016/j.ccr.2007.02.006.PubMedCentralPubMed Gordan, J. D., Bertout, J. A., Hu, C. J., Diehl, J. A., & Simon, M. C. (2007). HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Cell, 11(4), 335–347. doi:10.​1016/​j.​ccr.​2007.​02.​006.PubMedCentralPubMed
16.
go back to reference Kihira, Y., Yamano, N., Izawa-Ishizawa, Y., Ishizawa, K., Ikeda, Y., Tsuchiya, K., et al. (2011). Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1alpha in adipocytes. [Research Support, Non-U.S. Gov't]. International Journal of Biochemistry and Cell Biology, 43(11), 1602–1611. doi:10.1016/j.biocel.2011.07.009.PubMed Kihira, Y., Yamano, N., Izawa-Ishizawa, Y., Ishizawa, K., Ikeda, Y., Tsuchiya, K., et al. (2011). Basic fibroblast growth factor regulates glucose metabolism through glucose transporter 1 induced by hypoxia-inducible factor-1alpha in adipocytes. [Research Support, Non-U.S. Gov't]. International Journal of Biochemistry and Cell Biology, 43(11), 1602–1611. doi:10.​1016/​j.​biocel.​2011.​07.​009.PubMed
17.
go back to reference Baumann, M. U., Zamudio, S., & Illsley, N. P. (2007). Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Cell Physiology, 293(1), C477–C485. doi:10.1152/ajpcell.00075.2007.PubMed Baumann, M. U., Zamudio, S., & Illsley, N. P. (2007). Hypoxic upregulation of glucose transporters in BeWo choriocarcinoma cells is mediated by hypoxia-inducible factor-1. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Cell Physiology, 293(1), C477–C485. doi:10.​1152/​ajpcell.​00075.​2007.PubMed
18.
go back to reference Ullah, M. S., Davies, A. J., & Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 281(14), 9030–9037. doi:10.1074/jbc.M511397200.PubMed Ullah, M. S., Davies, A. J., & Halestrap, A. P. (2006). The plasma membrane lactate transporter MCT4, but not MCT1, is up-regulated by hypoxia through a HIF-1alpha-dependent mechanism. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 281(14), 9030–9037. doi:10.​1074/​jbc.​M511397200.PubMed
19.
go back to reference Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 269(38), 23757–23763.PubMed Semenza, G. L., Roth, P. H., Fang, H. M., & Wang, G. L. (1994). Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 269(38), 23757–23763.PubMed
20.
go back to reference Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V., et al. (2002). Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 277(8), 6183–6187. doi:10.1074/jbc.M110978200.PubMed Minchenko, A., Leshchinsky, I., Opentanova, I., Sang, N., Srinivas, V., Armstead, V., et al. (2002). Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 277(8), 6183–6187. doi:10.​1074/​jbc.​M110978200.PubMed
21.
go back to reference Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. [Research Support, N.I.H., Extramural]. Cell Metabolism, 3(3), 187–197. doi:10.1016/j.cmet.2006.01.012.PubMed Papandreou, I., Cairns, R. A., Fontana, L., Lim, A. L., & Denko, N. C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. [Research Support, N.I.H., Extramural]. Cell Metabolism, 3(3), 187–197. doi:10.​1016/​j.​cmet.​2006.​01.​012.PubMed
22.
go back to reference Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. [Research Support, N.I.H., Extramural]. Cell Metabolism, 3(3), 177–185. doi:10.1016/j.cmet.2006.02.002.PubMed Kim, J. W., Tchernyshyov, I., Semenza, G. L., & Dang, C. V. (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. [Research Support, N.I.H., Extramural]. Cell Metabolism, 3(3), 177–185. doi:10.​1016/​j.​cmet.​2006.​02.​002.PubMed
23.
go back to reference Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V., & Semenza, G. L. (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129(1), 111–122. doi:10.1016/j.cell.2007.01.047.PubMed Fukuda, R., Zhang, H., Kim, J. W., Shimoda, L., Dang, C. V., & Semenza, G. L. (2007). HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell, 129(1), 111–122. doi:10.​1016/​j.​cell.​2007.​01.​047.PubMed
24.
go back to reference Dean, J. B., Mulkey, D. K., Henderson, R. A., 3rd, Potter, S. J., & Putnam, R. W. (2004). Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Journal of Applied Physiology, 96(2), 784–791. doi:10.1152/japplphysiol.00892.2003.PubMed Dean, J. B., Mulkey, D. K., Henderson, R. A., 3rd, Potter, S. J., & Putnam, R. W. (2004). Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Journal of Applied Physiology, 96(2), 784–791. doi:10.​1152/​japplphysiol.​00892.​2003.PubMed
25.
go back to reference Pepperl, S., Dorger, M., Ringel, F., Kupatt, C., & Krombach, F. (2001). Hyperoxia upregulates the NO pathway in alveolar macrophages in vitro: role of AP-1 and NF-kappaB. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280(5), L905–L913.PubMed Pepperl, S., Dorger, M., Ringel, F., Kupatt, C., & Krombach, F. (2001). Hyperoxia upregulates the NO pathway in alveolar macrophages in vitro: role of AP-1 and NF-kappaB. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280(5), L905–L913.PubMed
26.
go back to reference Haddad, J. J., Olver, R. E., & Land, S. C. (2000). Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 275(28), 21130–21139. doi:10.1074/jbc.M000737200.PubMed Haddad, J. J., Olver, R. E., & Land, S. C. (2000). Antioxidant/pro-oxidant equilibrium regulates HIF-1alpha and NF-kappa B redox sensitivity. Evidence for inhibition by glutathione oxidation in alveolar epithelial cells. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 275(28), 21130–21139. doi:10.​1074/​jbc.​M000737200.PubMed
27.
go back to reference Michiels, C., Minet, E., Mottet, D., & Raes, M. (2002). Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. [Research Support, Non-U.S. Gov't Review]. Free Radical Biology and Medicine, 33(9), 1231–1242.PubMed Michiels, C., Minet, E., Mottet, D., & Raes, M. (2002). Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. [Research Support, Non-U.S. Gov't Review]. Free Radical Biology and Medicine, 33(9), 1231–1242.PubMed
28.
go back to reference Wu, X., Bishopric, N. H., Discher, D. J., Murphy, B. J., & Webster, K. A. (1996). Physical and functional sensitivity of zinc finger transcription factors to redox change. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 16(3), 1035–1046.PubMedCentralPubMed Wu, X., Bishopric, N. H., Discher, D. J., Murphy, B. J., & Webster, K. A. (1996). Physical and functional sensitivity of zinc finger transcription factors to redox change. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 16(3), 1035–1046.PubMedCentralPubMed
29.
go back to reference Rainwater, R., Parks, D., Anderson, M. E., Tegtmeyer, P., & Mann, K. (1995). Role of cysteine residues in regulation of p53 function. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 15(7), 3892–3903.PubMedCentralPubMed Rainwater, R., Parks, D., Anderson, M. E., Tegtmeyer, P., & Mann, K. (1995). Role of cysteine residues in regulation of p53 function. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 15(7), 3892–3903.PubMedCentralPubMed
30.
go back to reference Powis, G., & Montfort, W. R. (2001). Properties and biological activities of thioredoxins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Annual Review of Biophysics and Biomolecular Structure, 30, 421–455. doi:10.1146/annurev.biophys.30.1.421.PubMed Powis, G., & Montfort, W. R. (2001). Properties and biological activities of thioredoxins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Annual Review of Biophysics and Biomolecular Structure, 30, 421–455. doi:10.​1146/​annurev.​biophys.​30.​1.​421.PubMed
31.
go back to reference Qu, Y., Wang, J., Ray, P. S., Guo, H., Huang, J., Shin-Sim, M., et al. (2011). Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kappaB signaling. [Research Support, Non-U.S. Gov't]. Journal of Clinical Investigation, 121(1), 212–225. doi:10.1172/JCI43144.PubMedCentralPubMed Qu, Y., Wang, J., Ray, P. S., Guo, H., Huang, J., Shin-Sim, M., et al. (2011). Thioredoxin-like 2 regulates human cancer cell growth and metastasis via redox homeostasis and NF-kappaB signaling. [Research Support, Non-U.S. Gov't]. Journal of Clinical Investigation, 121(1), 212–225. doi:10.​1172/​JCI43144.PubMedCentralPubMed
32.
go back to reference Wood, Z. A., Schroder, E., Robin Harris, J., & Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Trends in Biochemical Sciences, 28(1), 32–40.PubMed Wood, Z. A., Schroder, E., Robin Harris, J., & Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Trends in Biochemical Sciences, 28(1), 32–40.PubMed
33.
go back to reference Ema, M., Hirota, K., Mimura, J., Abe, H., Yodoi, J., Sogawa, K., et al. (1999). Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. [Research Support, Non-U.S. Gov't]. EMBO Journal, 18(7), 1905–1914. doi:10.1093/emboj/18.7.1905.PubMedCentralPubMed Ema, M., Hirota, K., Mimura, J., Abe, H., Yodoi, J., Sogawa, K., et al. (1999). Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. [Research Support, Non-U.S. Gov't]. EMBO Journal, 18(7), 1905–1914. doi:10.​1093/​emboj/​18.​7.​1905.PubMedCentralPubMed
34.
go back to reference Matthews, J. R., Wakasugi, N., Virelizier, J. L., Yodoi, J., & Hay, R. T. (1992). Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. [Research Support, Non-U.S. Gov't]. Nucleic Acids Research, 20(15), 3821–3830.PubMedCentralPubMed Matthews, J. R., Wakasugi, N., Virelizier, J. L., Yodoi, J., & Hay, R. T. (1992). Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. [Research Support, Non-U.S. Gov't]. Nucleic Acids Research, 20(15), 3821–3830.PubMedCentralPubMed
35.
go back to reference Schreck, R., Meier, B., Mannel, D. N., Droge, W., & Baeuerle, P. A. (1992). Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. [Research Support, Non-U.S. Gov't]. Journal of Experimental Medicine, 175(5), 1181–1194.PubMed Schreck, R., Meier, B., Mannel, D. N., Droge, W., & Baeuerle, P. A. (1992). Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells. [Research Support, Non-U.S. Gov't]. Journal of Experimental Medicine, 175(5), 1181–1194.PubMed
38.
go back to reference Wang, F., Zhang, R., Beischlag, T. V., Muchardt, C., Yaniv, M., & Hankinson, O. (2004). Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(45), 46733–46741. doi:10.1074/jbc.M409002200.PubMed Wang, F., Zhang, R., Beischlag, T. V., Muchardt, C., Yaniv, M., & Hankinson, O. (2004). Roles of Brahma and Brahma/SWI2-related gene 1 in hypoxic induction of the erythropoietin gene. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(45), 46733–46741. doi:10.​1074/​jbc.​M409002200.PubMed
39.
go back to reference Kenneth, N. S., Mudie, S., van Uden, P., & Rocha, S. (2009). SWI/SNF regulates the cellular response to hypoxia. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(7), 4123–4131. doi:10.1074/jbc.M808491200.PubMed Kenneth, N. S., Mudie, S., van Uden, P., & Rocha, S. (2009). SWI/SNF regulates the cellular response to hypoxia. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(7), 4123–4131. doi:10.​1074/​jbc.​M808491200.PubMed
40.
go back to reference Jung, J. E., Lee, H. G., Cho, I. H., Chung, D. H., Yoon, S. H., Yang, Y. M., et al. (2005). STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. [Research Support, Non-U.S. Gov't]. FASEB Journal, 19(10), 1296–1298. doi:10.1096/fj.04-3099fje.PubMed Jung, J. E., Lee, H. G., Cho, I. H., Chung, D. H., Yoon, S. H., Yang, Y. M., et al. (2005). STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. [Research Support, Non-U.S. Gov't]. FASEB Journal, 19(10), 1296–1298. doi:10.​1096/​fj.​04-3099fje.PubMed
41.
go back to reference Bouquet, F., Ousset, M., Biard, D., Fallone, F., Dauvillier, S., Frit, P., et al. (2011). A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. [Research Support, Non-U.S. Gov't]. Journal of Cell Science, 124(Pt 11), 1943–1951. doi:10.1242/jcs.078030.PubMed Bouquet, F., Ousset, M., Biard, D., Fallone, F., Dauvillier, S., Frit, P., et al. (2011). A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. [Research Support, Non-U.S. Gov't]. Journal of Cell Science, 124(Pt 11), 1943–1951. doi:10.​1242/​jcs.​078030.PubMed
42.
go back to reference Lu, Y., Chu, A., Turker, M. S., & Glazer, P. M. (2011). Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Molecular and Cellular Biology, 31(16), 3339–3350. doi:10.1128/MCB.01121-10.PubMedCentralPubMed Lu, Y., Chu, A., Turker, M. S., & Glazer, P. M. (2011). Hypoxia-induced epigenetic regulation and silencing of the BRCA1 promoter. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Molecular and Cellular Biology, 31(16), 3339–3350. doi:10.​1128/​MCB.​01121-10.PubMedCentralPubMed
43.
go back to reference Lee, S. H., Kim, J., Kim, W. H., & Lee, Y. M. (2009). Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. [Research Support, Non-U.S. Gov't]. Oncogene, 28(2), 184–194. doi:10.1038/onc.2008.377.PubMed Lee, S. H., Kim, J., Kim, W. H., & Lee, Y. M. (2009). Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. [Research Support, Non-U.S. Gov't]. Oncogene, 28(2), 184–194. doi:10.​1038/​onc.​2008.​377.PubMed
44.
go back to reference Shahrzad, S., Bertrand, K., Minhas, K., & Coomber, B. L. (2007). Induction of DNA hypomethylation by tumor hypoxia. [Research Support, Non-U.S. Gov't]. Epigenetics, 2(2), 119–125.PubMed Shahrzad, S., Bertrand, K., Minhas, K., & Coomber, B. L. (2007). Induction of DNA hypomethylation by tumor hypoxia. [Research Support, Non-U.S. Gov't]. Epigenetics, 2(2), 119–125.PubMed
45.
go back to reference Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Goto, H., et al. (2008). Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. [Research Support, Non-U.S. Gov't]. Cancer Research, 68(14), 5540–5545. doi:10.1158/0008-5472.CAN-07-6460.PubMed Taguchi, A., Yanagisawa, K., Tanaka, M., Cao, K., Matsuyama, Y., Goto, H., et al. (2008). Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. [Research Support, Non-U.S. Gov't]. Cancer Research, 68(14), 5540–5545. doi:10.​1158/​0008-5472.​CAN-07-6460.PubMed
46.
go back to reference Cha, S. T., Chen, P. S., Johansson, G., Chu, C. Y., Wang, M. Y., Jeng, Y. M., et al. (2010). MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. [Research Support, Non-U.S. Gov't]. Cancer Research, 70(7), 2675–2685. doi:10.1158/0008-5472.CAN-09-2448.PubMed Cha, S. T., Chen, P. S., Johansson, G., Chu, C. Y., Wang, M. Y., Jeng, Y. M., et al. (2010). MicroRNA-519c suppresses hypoxia-inducible factor-1alpha expression and tumor angiogenesis. [Research Support, Non-U.S. Gov't]. Cancer Research, 70(7), 2675–2685. doi:10.​1158/​0008-5472.​CAN-09-2448.PubMed
47.
go back to reference Cascio, S., D'Andrea, A., Ferla, R., Surmacz, E., Gulotta, E., Amodeo, V., et al. (2010). miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. Journal of Cellular Physiology, 224(1), 242–249. doi:10.1002/jcp.22126.PubMed Cascio, S., D'Andrea, A., Ferla, R., Surmacz, E., Gulotta, E., Amodeo, V., et al. (2010). miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. Journal of Cellular Physiology, 224(1), 242–249. doi:10.​1002/​jcp.​22126.PubMed
48.
go back to reference Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339. doi:10.1073/pnas.0911082107.PubMedCentralPubMed Yamakuchi, M., Lotterman, C. D., Bao, C., Hruban, R. H., Karim, B., Mendell, J. T., et al. (2010). P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 107(14), 6334–6339. doi:10.​1073/​pnas.​0911082107.PubMedCentralPubMed
49.
go back to reference Bruning, U., Cerone, L., Neufeld, Z., Fitzpatrick, S. F., Cheong, A., Scholz, C. C., et al. (2011). MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 31(19), 4087–4096. doi:10.1128/MCB.01276-10.PubMedCentralPubMed Bruning, U., Cerone, L., Neufeld, Z., Fitzpatrick, S. F., Cheong, A., Scholz, C. C., et al. (2011). MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 31(19), 4087–4096. doi:10.​1128/​MCB.​01276-10.PubMedCentralPubMed
50.
go back to reference Kulshreshtha, R., Davuluri, R. V., Calin, G. A., & Ivan, M. (2008). A microRNA component of the hypoxic response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Cell Death and Differentiation, 15(4), 667–671. doi:10.1038/sj.cdd.4402310.PubMed Kulshreshtha, R., Davuluri, R. V., Calin, G. A., & Ivan, M. (2008). A microRNA component of the hypoxic response. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Cell Death and Differentiation, 15(4), 667–671. doi:10.​1038/​sj.​cdd.​4402310.PubMed
51.
go back to reference Kulshreshtha, R., Ferracin, M., Wojcik, S. E., Garzon, R., Alder, H., Agosto-Perez, F. J., et al. (2007). A microRNA signature of hypoxia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 27(5), 1859–1867. doi:10.1128/MCB.01395-06.PubMedCentralPubMed Kulshreshtha, R., Ferracin, M., Wojcik, S. E., Garzon, R., Alder, H., Agosto-Perez, F. J., et al. (2007). A microRNA signature of hypoxia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 27(5), 1859–1867. doi:10.​1128/​MCB.​01395-06.PubMedCentralPubMed
52.
go back to reference Devlin, C., Greco, S., Martelli, F., & Ivan, M. (2011). miR-210: more than a silent player in hypoxia. [Research Support, Non-U.S. Gov't Review]. IUBMB Life, 63(2), 94–100. doi:10.1002/iub.427.PubMed Devlin, C., Greco, S., Martelli, F., & Ivan, M. (2011). miR-210: more than a silent player in hypoxia. [Research Support, Non-U.S. Gov't Review]. IUBMB Life, 63(2), 94–100. doi:10.​1002/​iub.​427.PubMed
53.
55.
go back to reference Hirschfeld, M., zur Hausen, A., Bettendorf, H., Jager, M., & Stickeler, E. (2009). Alternative splicing of Cyr61 is regulated by hypoxia and significantly changed in breast cancer. [Research Support, Non-U.S. Gov't]. Cancer Research, 69(5), 2082–2090. doi:10.1158/0008-5472.CAN-08-1997.PubMed Hirschfeld, M., zur Hausen, A., Bettendorf, H., Jager, M., & Stickeler, E. (2009). Alternative splicing of Cyr61 is regulated by hypoxia and significantly changed in breast cancer. [Research Support, Non-U.S. Gov't]. Cancer Research, 69(5), 2082–2090. doi:10.​1158/​0008-5472.​CAN-08-1997.PubMed
56.
go back to reference Elledge, S. J., Zhou, Z., & Allen, J. B. (1992). Ribonucleotide reductase: regulation, regulation, regulation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Trends in Biochemical Sciences, 17(3), 119–123.PubMed Elledge, S. J., Zhou, Z., & Allen, J. B. (1992). Ribonucleotide reductase: regulation, regulation, regulation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Trends in Biochemical Sciences, 17(3), 119–123.PubMed
57.
go back to reference Brischwein, K., Engelcke, M., Riedinger, H. J., & Probst, H. (1997). Role of ribonucleotide reductase and deoxynucleotide pools in the oxygen-dependent control of DNA replication in Ehrlich ascites cells. [Research Support, Non-U.S. Gov't]. European Journal of Biochemistry, 244(2), 286–293.PubMed Brischwein, K., Engelcke, M., Riedinger, H. J., & Probst, H. (1997). Role of ribonucleotide reductase and deoxynucleotide pools in the oxygen-dependent control of DNA replication in Ehrlich ascites cells. [Research Support, Non-U.S. Gov't]. European Journal of Biochemistry, 244(2), 286–293.PubMed
58.
go back to reference Madan, E., Gogna, R., & Pati, U. (2012). p53 Ser15 phosphorylation disrupts the p53-RPA70 complex and induces RPA70-mediated DNA repair in hypoxia. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 443(3), 811–820. doi:10.1042/BJ20111627.PubMed Madan, E., Gogna, R., & Pati, U. (2012). p53 Ser15 phosphorylation disrupts the p53-RPA70 complex and induces RPA70-mediated DNA repair in hypoxia. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 443(3), 811–820. doi:10.​1042/​BJ20111627.PubMed
59.
go back to reference Park, J. S., Wang, M., Park, S. J., & Lee, S. H. (1999). Zinc finger of replication protein A, a non-DNA binding element, regulates its DNA binding activity through redox. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 274(41), 29075–29080.PubMed Park, J. S., Wang, M., Park, S. J., & Lee, S. H. (1999). Zinc finger of replication protein A, a non-DNA binding element, regulates its DNA binding activity through redox. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 274(41), 29075–29080.PubMed
60.
go back to reference Ohshima, N., Takahashi, M., & Hirose, F. (2003). Identification of a human homologue of the DREF transcription factor with a potential role in regulation of the histone H1 gene. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(25), 22928–22938. doi:10.1074/jbc.M303109200.PubMed Ohshima, N., Takahashi, M., & Hirose, F. (2003). Identification of a human homologue of the DREF transcription factor with a potential role in regulation of the histone H1 gene. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(25), 22928–22938. doi:10.​1074/​jbc.​M303109200.PubMed
61.
go back to reference Choi, T. Y., Park, S. Y., Kang, H. S., Cheong, J. H., Kim, H. D., Lee, B. L., et al. (2004). Redox regulation of DNA binding activity of DREF (DNA replication-related element binding factor) in Drosophila. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 378(Pt 3), 833–838. doi:10.1042/BJ20031601.PubMedCentralPubMed Choi, T. Y., Park, S. Y., Kang, H. S., Cheong, J. H., Kim, H. D., Lee, B. L., et al. (2004). Redox regulation of DNA binding activity of DREF (DNA replication-related element binding factor) in Drosophila. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 378(Pt 3), 833–838. doi:10.​1042/​BJ20031601.PubMedCentralPubMed
62.
go back to reference Helt, C. E., Rancourt, R. C., Staversky, R. J., & O'Reilly, M. A. (2001). p53-dependent induction of p21(Cip1/WAF1/Sdi1) protects against oxygen-induced toxicity. [Comparative Study Research Support, U.S. Gov't, P.H.S.]. Toxicological Sciences, 63(2), 214–222.PubMed Helt, C. E., Rancourt, R. C., Staversky, R. J., & O'Reilly, M. A. (2001). p53-dependent induction of p21(Cip1/WAF1/Sdi1) protects against oxygen-induced toxicity. [Comparative Study Research Support, U.S. Gov't, P.H.S.]. Toxicological Sciences, 63(2), 214–222.PubMed
63.
go back to reference Montaner, B., O'Donovan, P., Reelfs, O., Perrett, C. M., Zhang, X., Xu, Y. Z., et al. (2007). Reactive oxygen-mediated damage to a human DNA replication and repair protein. [Research Support, Non-U.S. Gov't]. EMBO Reports, 8(11), 1074–1079. doi:10.1038/sj.embor.7401084.PubMedCentralPubMed Montaner, B., O'Donovan, P., Reelfs, O., Perrett, C. M., Zhang, X., Xu, Y. Z., et al. (2007). Reactive oxygen-mediated damage to a human DNA replication and repair protein. [Research Support, Non-U.S. Gov't]. EMBO Reports, 8(11), 1074–1079. doi:10.​1038/​sj.​embor.​7401084.PubMedCentralPubMed
64.
go back to reference Riedinger, H. J., van Betteraey, M., & Probst, H. (1999). Hypoxia blocks in vivo initiation of simian virus 40 replication at a stage preceding origin unwinding. [Research Support, Non-U.S. Gov't]. Journal of Virology, 73(3), 2243–2252.PubMedCentralPubMed Riedinger, H. J., van Betteraey, M., & Probst, H. (1999). Hypoxia blocks in vivo initiation of simian virus 40 replication at a stage preceding origin unwinding. [Research Support, Non-U.S. Gov't]. Journal of Virology, 73(3), 2243–2252.PubMedCentralPubMed
65.
go back to reference Riedinger, H. J., van Betteraey-Nikoleit, M., & Probst, H. (2002). Re-oxygenation of hypoxic simian virus 40 (SV40)-infected CV1 cells causes distinct changes of SV40 minichromosome-associated replication proteins. [Research Support, Non-U.S. Gov't]. European Journal of Biochemistry, 269(9), 2383–2393.PubMed Riedinger, H. J., van Betteraey-Nikoleit, M., & Probst, H. (2002). Re-oxygenation of hypoxic simian virus 40 (SV40)-infected CV1 cells causes distinct changes of SV40 minichromosome-associated replication proteins. [Research Support, Non-U.S. Gov't]. European Journal of Biochemistry, 269(9), 2383–2393.PubMed
66.
go back to reference van Betteraey-Nikoleit, M., Eisele, K. H., Stabenow, D., & Probst, H. (2003). Analyzing changes of chromatin-bound replication proteins occurring in response to and after release from a hypoxic block of replicon initiation in T24 cells. European Journal of Biochemistry, 270(19), 3880–3890.PubMed van Betteraey-Nikoleit, M., Eisele, K. H., Stabenow, D., & Probst, H. (2003). Analyzing changes of chromatin-bound replication proteins occurring in response to and after release from a hypoxic block of replicon initiation in T24 cells. European Journal of Biochemistry, 270(19), 3880–3890.PubMed
67.
go back to reference Riedinger, H. J., van Betteraey-Nikoleit, M., Hilfrich, U., Eisele, K. H., & Probst, H. (2001). Oxygen-dependent regulation of in vivo replication of simian virus 40 DNA is modulated by glucose. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 276(50), 47122–47130. doi:10.1074/jbc.M106938200.PubMed Riedinger, H. J., van Betteraey-Nikoleit, M., Hilfrich, U., Eisele, K. H., & Probst, H. (2001). Oxygen-dependent regulation of in vivo replication of simian virus 40 DNA is modulated by glucose. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 276(50), 47122–47130. doi:10.​1074/​jbc.​M106938200.PubMed
68.
go back to reference Blow, J. J., & Dutta, A. (2005). Preventing re-replication of chromosomal DNA. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Nature Reviews. Molecular Cell Biology, 6(6), 476–486. doi:10.1038/nrm1663.PubMedCentralPubMed Blow, J. J., & Dutta, A. (2005). Preventing re-replication of chromosomal DNA. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Nature Reviews. Molecular Cell Biology, 6(6), 476–486. doi:10.​1038/​nrm1663.PubMedCentralPubMed
69.
go back to reference Martin, L. (2007). The replicon initiation burst released by reoxygenation of hypoxic T24 cells is accompanied by changes of MCM2 and Cdc7. Journal of Biochemistry and Molecular Biology, 40(5), 805–813.PubMed Martin, L. (2007). The replicon initiation burst released by reoxygenation of hypoxic T24 cells is accompanied by changes of MCM2 and Cdc7. Journal of Biochemistry and Molecular Biology, 40(5), 805–813.PubMed
71.
go back to reference Pani, G., Galeotti, T., & Chiarugi, P. (2010). Metastasis: cancer cell's escape from oxidative stress. [Research Support, Non-U.S. Gov't Review]. Cancer Metastasis Reviews, 29(2), 351–378. doi:10.1007/s10555-010-9225-4.PubMed Pani, G., Galeotti, T., & Chiarugi, P. (2010). Metastasis: cancer cell's escape from oxidative stress. [Research Support, Non-U.S. Gov't Review]. Cancer Metastasis Reviews, 29(2), 351–378. doi:10.​1007/​s10555-010-9225-4.PubMed
72.
go back to reference Xiong, W., Jiao, Y., Huang, W., Ma, M., Yu, M., Cui, Q., et al. (2012). Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells. [Research Support, Non-U.S. Gov't]. Acta Biochim Biophys Sin (Shanghai), 44(4), 347–358. doi:10.1093/abbs/gms006. Xiong, W., Jiao, Y., Huang, W., Ma, M., Yu, M., Cui, Q., et al. (2012). Regulation of the cell cycle via mitochondrial gene expression and energy metabolism in HeLa cells. [Research Support, Non-U.S. Gov't]. Acta Biochim Biophys Sin (Shanghai), 44(4), 347–358. doi:10.​1093/​abbs/​gms006.
73.
go back to reference Padilla, P. A., Nystul, T. G., Zager, R. A., Johnson, A. C., & Roth, M. B. (2002). Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Molecular Biology of the Cell, 13(5), 1473–1483. doi:10.1091/mbc.01-12-0594.PubMedCentralPubMed Padilla, P. A., Nystul, T. G., Zager, R. A., Johnson, A. C., & Roth, M. B. (2002). Dephosphorylation of cell cycle-regulated proteins correlates with anoxia-induced suspended animation in Caenorhabditis elegans. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Molecular Biology of the Cell, 13(5), 1473–1483. doi:10.​1091/​mbc.​01-12-0594.PubMedCentralPubMed
75.
go back to reference Foe, V. E., & Alberts, B. M. (1985). Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. [Research Support, U.S. Gov't, P.H.S.]. Journal of Cell Biology, 100(5), 1623–1636.PubMed Foe, V. E., & Alberts, B. M. (1985). Reversible chromosome condensation induced in Drosophila embryos by anoxia: visualization of interphase nuclear organization. [Research Support, U.S. Gov't, P.H.S.]. Journal of Cell Biology, 100(5), 1623–1636.PubMed
76.
go back to reference Biggar, K. K., & Storey, K. B. (2012). Evidence for cell cycle suppression and microRNA regulation of cyclin D1 during anoxia exposure in turtles. [Research Support, Non-U.S. Gov't]. Cell Cycle, 11(9), 1705–1713. doi:10.4161/cc.19790.PubMed Biggar, K. K., & Storey, K. B. (2012). Evidence for cell cycle suppression and microRNA regulation of cyclin D1 during anoxia exposure in turtles. [Research Support, Non-U.S. Gov't]. Cell Cycle, 11(9), 1705–1713. doi:10.​4161/​cc.​19790.PubMed
77.
go back to reference Goda, N., Dozier, S. J., & Johnson, R. S. (2003). HIF-1 in cell cycle regulation, apoptosis, and tumor progression. [Research Support, Non-U.S. Gov't Review]. Antioxidants and Redox Signaling, 5(4), 467–473. doi:10.1089/152308603768295212.PubMed Goda, N., Dozier, S. J., & Johnson, R. S. (2003). HIF-1 in cell cycle regulation, apoptosis, and tumor progression. [Research Support, Non-U.S. Gov't Review]. Antioxidants and Redox Signaling, 5(4), 467–473. doi:10.​1089/​1523086037682952​12.PubMed
78.
go back to reference Goda, N., Ryan, H. E., Khadivi, B., McNulty, W., Rickert, R. C., & Johnson, R. S. (2003). Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Molecular and Cellular Biology, 23(1), 359–369.PubMedCentralPubMed Goda, N., Ryan, H. E., Khadivi, B., McNulty, W., Rickert, R. C., & Johnson, R. S. (2003). Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Molecular and Cellular Biology, 23(1), 359–369.PubMedCentralPubMed
79.
go back to reference Culver, C., Melvin, A., Mudie, S., & Rocha, S. (2011). HIF-1alpha depletion results in SP1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs. [Research Support, Non-U.S. Gov't]. Cell Cycle, 10(8), 1249–1260.PubMedCentralPubMed Culver, C., Melvin, A., Mudie, S., & Rocha, S. (2011). HIF-1alpha depletion results in SP1-mediated cell cycle disruption and alters the cellular response to chemotherapeutic drugs. [Research Support, Non-U.S. Gov't]. Cell Cycle, 10(8), 1249–1260.PubMedCentralPubMed
80.
go back to reference Hackenbeck, T., Knaup, K. X., Schietke, R., Schodel, J., Willam, C., Wu, X., et al. (2009). HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. [Research Support, Non-U.S. Gov't]. Cell Cycle, 8(9), 1386–1395.PubMed Hackenbeck, T., Knaup, K. X., Schietke, R., Schodel, J., Willam, C., Wu, X., et al. (2009). HIF-1 or HIF-2 induction is sufficient to achieve cell cycle arrest in NIH3T3 mouse fibroblasts independent from hypoxia. [Research Support, Non-U.S. Gov't]. Cell Cycle, 8(9), 1386–1395.PubMed
81.
go back to reference Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Cell, 100(1), 57–70.PubMed Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. [Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Review]. Cell, 100(1), 57–70.PubMed
82.
go back to reference Madan, E., Gogna, R., Kuppusamy, P., Bhatt, M., Pati, U., & Mahdi, A. A. (2012). TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. British Journal of Cancer, 107(3), 516–526. doi:10.1038/bjc.2012.260.PubMedCentralPubMed Madan, E., Gogna, R., Kuppusamy, P., Bhatt, M., Pati, U., & Mahdi, A. A. (2012). TIGAR induces p53-mediated cell-cycle arrest by regulation of RB-E2F1 complex. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. British Journal of Cancer, 107(3), 516–526. doi:10.​1038/​bjc.​2012.​260.PubMedCentralPubMed
83.
go back to reference Wen, W., Ding, J., Sun, W., Wu, K., Ning, B., Gong, W., et al. (2010). Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. [Research Support, Non-U.S. Gov't]. Cancer Research, 70(5), 2010–2019. doi:10.1158/0008-5472.CAN-08-4910.PubMed Wen, W., Ding, J., Sun, W., Wu, K., Ning, B., Gong, W., et al. (2010). Suppression of cyclin D1 by hypoxia-inducible factor-1 via direct mechanism inhibits the proliferation and 5-fluorouracil-induced apoptosis of A549 cells. [Research Support, Non-U.S. Gov't]. Cancer Research, 70(5), 2010–2019. doi:10.​1158/​0008-5472.​CAN-08-4910.PubMed
84.
go back to reference Sengupta, T., Abraham, G., Xu, Y., Clurman, B. E., & Minella, A. C. (2011). Hypoxia-inducible factor 1 is activated by dysregulated cyclin E during mammary epithelial morphogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 31(18), 3885–3895. doi:10.1128/MCB.05089-11.PubMedCentralPubMed Sengupta, T., Abraham, G., Xu, Y., Clurman, B. E., & Minella, A. C. (2011). Hypoxia-inducible factor 1 is activated by dysregulated cyclin E during mammary epithelial morphogenesis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 31(18), 3885–3895. doi:10.​1128/​MCB.​05089-11.PubMedCentralPubMed
85.
go back to reference Jezek, P., & Hlavata, L. (2005). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. [Research Support, Non-U.S. Gov't Review]. International Journal of Biochemistry and Cell Biology, 37(12), 2478–2503. doi:10.1016/j.biocel.2005.05.013.PubMed Jezek, P., & Hlavata, L. (2005). Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. [Research Support, Non-U.S. Gov't Review]. International Journal of Biochemistry and Cell Biology, 37(12), 2478–2503. doi:10.​1016/​j.​biocel.​2005.​05.​013.PubMed
86.
go back to reference Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., & Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Science, 270(5234), 296–299.PubMed Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., & Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Science, 270(5234), 296–299.PubMed
87.
go back to reference Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B., et al. (1997). Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. Journal of Biological Chemistry, 272(1), 217–221.PubMed Bae, Y. S., Kang, S. W., Seo, M. S., Baines, I. C., Tekle, E., Chock, P. B., et al. (1997). Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. Journal of Biological Chemistry, 272(1), 217–221.PubMed
88.
go back to reference Havens, C. G., Ho, A., Yoshioka, N., & Dowdy, S. F. (2006). Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 26(12), 4701–4711. doi:10.1128/MCB.00303-06.PubMedCentralPubMed Havens, C. G., Ho, A., Yoshioka, N., & Dowdy, S. F. (2006). Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 26(12), 4701–4711. doi:10.​1128/​MCB.​00303-06.PubMedCentralPubMed
89.
go back to reference Kim, J. H., Song, S. Y., Park, S. G., Song, S. U., Xia, Y., & Sung, J. H. (2012). Primary involvement of NADPH oxidase 4 in hypoxia-induced generation of reactive oxygen species in adipose-derived stem cells. Stem Cells and Development, 21(12), 2212–2221. doi:10.1089/scd.2011.0561.PubMedCentralPubMed Kim, J. H., Song, S. Y., Park, S. G., Song, S. U., Xia, Y., & Sung, J. H. (2012). Primary involvement of NADPH oxidase 4 in hypoxia-induced generation of reactive oxygen species in adipose-derived stem cells. Stem Cells and Development, 21(12), 2212–2221. doi:10.​1089/​scd.​2011.​0561.PubMedCentralPubMed
90.
go back to reference Cave, A. C., Brewer, A. C., Narayanapanicker, A., Ray, R., Grieve, D. J., Walker, S., et al. (2006). NADPH oxidases in cardiovascular health and disease. [Research Support, Non-U.S. Gov't Review]. Antioxidants and Redox Signaling, 8(5–6), 691–728. doi:10.1089/ars.2006.8.691.PubMed Cave, A. C., Brewer, A. C., Narayanapanicker, A., Ray, R., Grieve, D. J., Walker, S., et al. (2006). NADPH oxidases in cardiovascular health and disease. [Research Support, Non-U.S. Gov't Review]. Antioxidants and Redox Signaling, 8(5–6), 691–728. doi:10.​1089/​ars.​2006.​8.​691.PubMed
91.
go back to reference Salmeen, A., Park, B. O., & Meyer, T. (2010). The NADPH oxidases NOX4 and DUOX2 regulate cell cycle entry via a p53-dependent pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Oncogene, 29(31), 4473–4484. doi:10.1038/onc.2010.200.PubMedCentralPubMed Salmeen, A., Park, B. O., & Meyer, T. (2010). The NADPH oxidases NOX4 and DUOX2 regulate cell cycle entry via a p53-dependent pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Oncogene, 29(31), 4473–4484. doi:10.​1038/​onc.​2010.​200.PubMedCentralPubMed
92.
go back to reference Mesquita, F. S., Dyer, S. N., Heinrich, D. A., Bulun, S. E., Marsh, E. E., & Nowak, R. A. (2010). Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. [Research Support, N.I.H., Extramural]. Biology of Reproduction, 82(2), 341–351. doi:10.1095/biolreprod.108.075887.PubMedCentralPubMed Mesquita, F. S., Dyer, S. N., Heinrich, D. A., Bulun, S. E., Marsh, E. E., & Nowak, R. A. (2010). Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. [Research Support, N.I.H., Extramural]. Biology of Reproduction, 82(2), 341–351. doi:10.​1095/​biolreprod.​108.​075887.PubMedCentralPubMed
93.
go back to reference Menon, S. G., Sarsour, E. H., Spitz, D. R., Higashikubo, R., Sturm, M., Zhang, H., et al. (2003). Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. [Research Support, U.S. Gov't, P.H.S.]. Cancer Research, 63(9), 2109–2117.PubMed Menon, S. G., Sarsour, E. H., Spitz, D. R., Higashikubo, R., Sturm, M., Zhang, H., et al. (2003). Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle. [Research Support, U.S. Gov't, P.H.S.]. Cancer Research, 63(9), 2109–2117.PubMed
94.
go back to reference Lu, Q., Jourd'Heuil, F. L., & Jourd'Heuil, D. (2007). Redox control of G(1)/S cell cycle regulators during nitric oxide-mediated cell cycle arrest. [Research Support, N.I.H., Extramural]. Journal of Cellular Physiology, 212(3), 827–839. doi:10.1002/jcp.21079.PubMed Lu, Q., Jourd'Heuil, F. L., & Jourd'Heuil, D. (2007). Redox control of G(1)/S cell cycle regulators during nitric oxide-mediated cell cycle arrest. [Research Support, N.I.H., Extramural]. Journal of Cellular Physiology, 212(3), 827–839. doi:10.​1002/​jcp.​21079.PubMed
95.
go back to reference Kalns, J. E., & Piepmeier, E. H. (1999). Exposure to hyperbaric oxygen induces cell cycle perturbation in prostate cancer cells. In Vitro Cellular and Developmental Biology - Animal, 35(2), 98–101. doi:10.1007/s11626-999-0008-6.PubMed Kalns, J. E., & Piepmeier, E. H. (1999). Exposure to hyperbaric oxygen induces cell cycle perturbation in prostate cancer cells. In Vitro Cellular and Developmental Biology - Animal, 35(2), 98–101. doi:10.​1007/​s11626-999-0008-6.PubMed
96.
go back to reference Shenberger, J. S., & Dixon, P. S. (1999). Oxygen induces S-phase growth arrest and increases p53 and p21(WAF1/CIP1) expression in human bronchial smooth-muscle cells. American Journal of Respiratory Cell and Molecular Biology, 21(3), 395–402.PubMed Shenberger, J. S., & Dixon, P. S. (1999). Oxygen induces S-phase growth arrest and increases p53 and p21(WAF1/CIP1) expression in human bronchial smooth-muscle cells. American Journal of Respiratory Cell and Molecular Biology, 21(3), 395–402.PubMed
97.
go back to reference Rancourt, R. C., Keng, P. C., Helt, C. E., & O'Reilly, M. A. (2001). The role of p21(CIP1/WAF1) in growth of epithelial cells exposed to hyperoxia. [Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280(4), L617–L626.PubMed Rancourt, R. C., Keng, P. C., Helt, C. E., & O'Reilly, M. A. (2001). The role of p21(CIP1/WAF1) in growth of epithelial cells exposed to hyperoxia. [Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280(4), L617–L626.PubMed
98.
go back to reference Helt, C. E., Staversky, R. J., Lee, Y. J., Bambara, R. A., Keng, P. C., & O'Reilly, M. A. (2004). The Cdk and PCNA domains on p21Cip1 both function to inhibit G1/S progression during hyperoxia. [Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(3), L506–L513. doi:10.1152/ajplung.00243.2003.PubMed Helt, C. E., Staversky, R. J., Lee, Y. J., Bambara, R. A., Keng, P. C., & O'Reilly, M. A. (2004). The Cdk and PCNA domains on p21Cip1 both function to inhibit G1/S progression during hyperoxia. [Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(3), L506–L513. doi:10.​1152/​ajplung.​00243.​2003.PubMed
99.
go back to reference O'Reilly, M. A., Staversky, R. J., Watkins, R. H., Reed, C. K., de Mesy Jensen, K. L., Finkelstein, J. N., et al. (2001). The cyclin-dependent kinase inhibitor p21 protects the lung from oxidative stress. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Respiratory Cell and Molecular Biology, 24(6), 703–710.PubMed O'Reilly, M. A., Staversky, R. J., Watkins, R. H., Reed, C. K., de Mesy Jensen, K. L., Finkelstein, J. N., et al. (2001). The cyclin-dependent kinase inhibitor p21 protects the lung from oxidative stress. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Respiratory Cell and Molecular Biology, 24(6), 703–710.PubMed
100.
go back to reference Datto, M. B., Li, Y., Panus, J. F., Howe, D. J., Xiong, Y., & Wang, X. F. (1995). Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5545–5549.PubMedCentralPubMed Datto, M. B., Li, Y., Panus, J. F., Howe, D. J., Xiong, Y., & Wang, X. F. (1995). Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5545–5549.PubMedCentralPubMed
101.
go back to reference Bellido, T., O'Brien, C. A., Roberson, P. K., & Manolagas, S. C. (1998). Transcriptional activation of the p21(WAF1, CIP1, SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 273(33), 21137–21144.PubMed Bellido, T., O'Brien, C. A., Roberson, P. K., & Manolagas, S. C. (1998). Transcriptional activation of the p21(WAF1, CIP1, SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 273(33), 21137–21144.PubMed
102.
go back to reference Cen, B., Deguchi, A., & Weinstein, I. B. (2008). Activation of protein kinase G Increases the expression of p21CIP1, p27KIP1, and histidine triad protein 1 through Sp1. [Research Support, Non-U.S. Gov't]. Cancer Research, 68(13), 5355–5362. doi:10.1158/0008-5472.CAN-07-6869.PubMed Cen, B., Deguchi, A., & Weinstein, I. B. (2008). Activation of protein kinase G Increases the expression of p21CIP1, p27KIP1, and histidine triad protein 1 through Sp1. [Research Support, Non-U.S. Gov't]. Cancer Research, 68(13), 5355–5362. doi:10.​1158/​0008-5472.​CAN-07-6869.PubMed
103.
go back to reference Austin, R. C. (2009). The unfolded protein response in health and disease. [Editorial Introductory Research Support, Non-U.S. Gov't]. Antioxidants and Redox Signaling, 11(9), 2279–2287. doi:10.1089/ARS.2009.2686.PubMed Austin, R. C. (2009). The unfolded protein response in health and disease. [Editorial Introductory Research Support, Non-U.S. Gov't]. Antioxidants and Redox Signaling, 11(9), 2279–2287. doi:10.​1089/​ARS.​2009.​2686.PubMed
104.
go back to reference Gogna, R., Madan, E., Kuppusamy, P., & Pati, U. (2012). Re-oxygenation causes hypoxic tumor regression through restoration of p53 wild-type conformation and post-translational modifications. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cell Death Dis, 3, e286. doi:10.1038/cddis.2012.15.PubMedCentralPubMed Gogna, R., Madan, E., Kuppusamy, P., & Pati, U. (2012). Re-oxygenation causes hypoxic tumor regression through restoration of p53 wild-type conformation and post-translational modifications. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cell Death Dis, 3, e286. doi:10.​1038/​cddis.​2012.​15.PubMedCentralPubMed
105.
go back to reference Gogna, R., Madan, E., Kuppusamy, P., & Pati, U. (2012). Chaperoning of mutant p53 protein by wild-type p53 protein causes hypoxic tumor regression. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 287(4), 2907–2914. doi:10.1074/jbc.M111.317354.PubMedCentralPubMed Gogna, R., Madan, E., Kuppusamy, P., & Pati, U. (2012). Chaperoning of mutant p53 protein by wild-type p53 protein causes hypoxic tumor regression. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 287(4), 2907–2914. doi:10.​1074/​jbc.​M111.​317354.PubMedCentralPubMed
106.
107.
go back to reference Ostergaard, L., Simonsen, U., Eskildsen-Helmond, Y., Vorum, H., Uldbjerg, N., Honore, B., et al. (2009). Proteomics reveals lowering oxygen alters cytoskeletal and endoplasmatic stress proteins in human endothelial cells. [Research Support, Non-U.S. Gov't]. Proteomics, 9(19), 4457–4467. doi:10.1002/pmic.200800130.PubMed Ostergaard, L., Simonsen, U., Eskildsen-Helmond, Y., Vorum, H., Uldbjerg, N., Honore, B., et al. (2009). Proteomics reveals lowering oxygen alters cytoskeletal and endoplasmatic stress proteins in human endothelial cells. [Research Support, Non-U.S. Gov't]. Proteomics, 9(19), 4457–4467. doi:10.​1002/​pmic.​200800130.PubMed
108.
go back to reference Inokuchi, Y., Nakajima, Y., Shimazawa, M., Kurita, T., Kubo, M., Saito, A., et al. (2009). Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death. [Research Support, Non-U.S. Gov't]. Investigative Ophthalmology and Visual Science, 50(1), 334–344. doi:10.1167/iovs.08-2123.PubMed Inokuchi, Y., Nakajima, Y., Shimazawa, M., Kurita, T., Kubo, M., Saito, A., et al. (2009). Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death. [Research Support, Non-U.S. Gov't]. Investigative Ophthalmology and Visual Science, 50(1), 334–344. doi:10.​1167/​iovs.​08-2123.PubMed
109.
go back to reference Frickel, E. M., Frei, P., Bouvier, M., Stafford, W. F., Helenius, A., Glockshuber, R., et al. (2004). ERp57 is a multifunctional thiol-disulfide oxidoreductase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(18), 18277–18287. doi:10.1074/jbc.M314089200.PubMed Frickel, E. M., Frei, P., Bouvier, M., Stafford, W. F., Helenius, A., Glockshuber, R., et al. (2004). ERp57 is a multifunctional thiol-disulfide oxidoreductase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(18), 18277–18287. doi:10.​1074/​jbc.​M314089200.PubMed
110.
go back to reference Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry, 273(50), 33741–33749.PubMed Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry, 273(50), 33741–33749.PubMed
111.
go back to reference Doroudgar, S., Thuerauf, D. J., Marcinko, M. C., Belmont, P. J., & Glembotski, C. C. (2009). Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 284(43), 29735–29745. doi:10.1074/jbc.M109.018036.PubMedCentralPubMed Doroudgar, S., Thuerauf, D. J., Marcinko, M. C., Belmont, P. J., & Glembotski, C. C. (2009). Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. [Research Support, N.I.H., Extramural]. Journal of Biological Chemistry, 284(43), 29735–29745. doi:10.​1074/​jbc.​M109.​018036.PubMedCentralPubMed
112.
go back to reference Kuwabara, K., Matsumoto, M., Ikeda, J., Hori, O., Ogawa, S., Maeda, Y., et al. (1996). Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 271(9), 5025–5032.PubMed Kuwabara, K., Matsumoto, M., Ikeda, J., Hori, O., Ogawa, S., Maeda, Y., et al. (1996). Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 271(9), 5025–5032.PubMed
113.
go back to reference Bando, Y., Ogawa, S., Yamauchi, A., Kuwabara, K., Ozawa, K., Hori, O., et al. (2000). 150-kDa oxygen-regulated protein (ORP150) functions as a novel molecular chaperone in MDCK cells. American Journal of Physiology. Cell Physiology, 278(6), C1172–C1182.PubMed Bando, Y., Ogawa, S., Yamauchi, A., Kuwabara, K., Ozawa, K., Hori, O., et al. (2000). 150-kDa oxygen-regulated protein (ORP150) functions as a novel molecular chaperone in MDCK cells. American Journal of Physiology. Cell Physiology, 278(6), C1172–C1182.PubMed
114.
go back to reference Tamatani, M., Matsuyama, T., Yamaguchi, A., Mitsuda, N., Tsukamoto, Y., Taniguchi, M., et al. (2001). ORP150 protects against hypoxia/ischemia-induced neuronal death. [Research Support, Non-U.S. Gov't]. Nature Medicine, 7(3), 317–323. doi:10.1038/85463.PubMed Tamatani, M., Matsuyama, T., Yamaguchi, A., Mitsuda, N., Tsukamoto, Y., Taniguchi, M., et al. (2001). ORP150 protects against hypoxia/ischemia-induced neuronal death. [Research Support, Non-U.S. Gov't]. Nature Medicine, 7(3), 317–323. doi:10.​1038/​85463.PubMed
115.
go back to reference Miyazaki, M., Ozawa, K., Hori, O., Kitao, Y., Matsushita, K., Ogawa, S., et al. (2002). Expression of 150-kd oxygen-regulated protein in the hippocampus suppresses delayed neuronal cell death. Journal of Cerebral Blood Flow and Metabolism, 22(8), 979–987. doi:10.1097/00004647-200208000-00009.PubMed Miyazaki, M., Ozawa, K., Hori, O., Kitao, Y., Matsushita, K., Ogawa, S., et al. (2002). Expression of 150-kd oxygen-regulated protein in the hippocampus suppresses delayed neuronal cell death. Journal of Cerebral Blood Flow and Metabolism, 22(8), 979–987. doi:10.​1097/​00004647-200208000-00009.PubMed
116.
go back to reference Kitano, H., Nishimura, H., Tachibana, H., Yoshikawa, H., & Matsuyama, T. (2004). ORP150 ameliorates ischemia/reperfusion injury from middle cerebral artery occlusion in mouse brain. [Comparative Study]. Brain Research, 1015(1–2), 122–128. doi:10.1016/j.brainres.2004.04.058.PubMed Kitano, H., Nishimura, H., Tachibana, H., Yoshikawa, H., & Matsuyama, T. (2004). ORP150 ameliorates ischemia/reperfusion injury from middle cerebral artery occlusion in mouse brain. [Comparative Study]. Brain Research, 1015(1–2), 122–128. doi:10.​1016/​j.​brainres.​2004.​04.​058.PubMed
117.
go back to reference Ozawa, K., Kondo, T., Hori, O., Kitao, Y., Stern, D. M., Eisenmenger, W., et al. (2001). Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. Journal of Clinical Investigation, 108(1), 41–50. doi:10.1172/JCI11772.PubMedCentralPubMed Ozawa, K., Kondo, T., Hori, O., Kitao, Y., Stern, D. M., Eisenmenger, W., et al. (2001). Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. Journal of Clinical Investigation, 108(1), 41–50. doi:10.​1172/​JCI11772.PubMedCentralPubMed
118.
go back to reference Ozawa, K., Tsukamoto, Y., Hori, O., Kitao, Y., Yanagi, H., Stern, D. M., et al. (2001). Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Research, 61(10), 4206–4213.PubMed Ozawa, K., Tsukamoto, Y., Hori, O., Kitao, Y., Yanagi, H., Stern, D. M., et al. (2001). Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Research, 61(10), 4206–4213.PubMed
119.
go back to reference Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., & Gitlin, J. D. (1997). The copper chaperone for superoxide dismutase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 272(38), 23469–23472.PubMed Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., & Gitlin, J. D. (1997). The copper chaperone for superoxide dismutase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 272(38), 23469–23472.PubMed
120.
go back to reference Schmidt, P. J., Kunst, C., & Culotta, V. C. (2000). Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein–protein interactions with the copper chaperone for SOD1. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 275(43), 33771–33776. doi:10.1074/jbc.M006254200.PubMed Schmidt, P. J., Kunst, C., & Culotta, V. C. (2000). Copper activation of superoxide dismutase 1 (SOD1) in vivo. Role for protein–protein interactions with the copper chaperone for SOD1. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 275(43), 33771–33776. doi:10.​1074/​jbc.​M006254200.PubMed
121.
go back to reference Wong, P. C., Waggoner, D., Subramaniam, J. R., Tessarollo, L., Bartnikas, T. B., Culotta, V. C., et al. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 97(6), 2886–2891. doi:10.1073/pnas.040461197.PubMedCentralPubMed Wong, P. C., Waggoner, D., Subramaniam, J. R., Tessarollo, L., Bartnikas, T. B., Culotta, V. C., et al. (2000). Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 97(6), 2886–2891. doi:10.​1073/​pnas.​040461197.PubMedCentralPubMed
122.
go back to reference Kirby, K., Jensen, L. T., Binnington, J., Hilliker, A. J., Ulloa, J., Culotta, V. C., et al. (2008). Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 283(51), 35393–35401. doi:10.1074/jbc.M807131200.PubMedCentralPubMed Kirby, K., Jensen, L. T., Binnington, J., Hilliker, A. J., Ulloa, J., Culotta, V. C., et al. (2008). Instability of superoxide dismutase 1 of Drosophila in mutants deficient for its cognate copper chaperone. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 283(51), 35393–35401. doi:10.​1074/​jbc.​M807131200.PubMedCentralPubMed
123.
go back to reference Leitch, J. M., Jensen, L. T., Bouldin, S. D., Outten, C. E., Hart, P. J., & Culotta, V. C. (2009). Activation of Cu, Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(33), 21863–21871. doi:10.1074/jbc.M109.000489.PubMedCentralPubMed Leitch, J. M., Jensen, L. T., Bouldin, S. D., Outten, C. E., Hart, P. J., & Culotta, V. C. (2009). Activation of Cu, Zn-superoxide dismutase in the absence of oxygen and the copper chaperone CCS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(33), 21863–21871. doi:10.​1074/​jbc.​M109.​000489.PubMedCentralPubMed
124.
go back to reference Shao, L., Perez, R. E., Gerthoffer, W. T., Truog, W. E., & Xu, D. (2009). Heat shock protein 27 protects lung epithelial cells from hyperoxia-induced apoptotic cell death. [Research Support, Non-U.S. Gov't]. Pediatric Research, 65(3), 328–333. doi:10.1203/PDR.0b013e3181961a51.PubMed Shao, L., Perez, R. E., Gerthoffer, W. T., Truog, W. E., & Xu, D. (2009). Heat shock protein 27 protects lung epithelial cells from hyperoxia-induced apoptotic cell death. [Research Support, Non-U.S. Gov't]. Pediatric Research, 65(3), 328–333. doi:10.​1203/​PDR.​0b013e3181961a51​.PubMed
125.
go back to reference Zeng, L., Tan, J., Hu, Z., Lu, W., & Yang, B. (2010). Hsp20 protects neuroblastoma cells from ischemia/reperfusion injury by inhibition of apoptosis via a mechanism that involves the mitochondrial pathways. [Research Support, Non-U.S. Gov't]. Current Neurovascular Research, 7(4), 281–287.PubMed Zeng, L., Tan, J., Hu, Z., Lu, W., & Yang, B. (2010). Hsp20 protects neuroblastoma cells from ischemia/reperfusion injury by inhibition of apoptosis via a mechanism that involves the mitochondrial pathways. [Research Support, Non-U.S. Gov't]. Current Neurovascular Research, 7(4), 281–287.PubMed
126.
go back to reference Zhang, L., Zhao, H., Blagg, B. S., & Dobrowsky, R. T. (2012). C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Proteome Research, 11(4), 2581–2593. doi:10.1021/pr300056m.PubMedCentralPubMed Zhang, L., Zhao, H., Blagg, B. S., & Dobrowsky, R. T. (2012). C-terminal heat shock protein 90 inhibitor decreases hyperglycemia-induced oxidative stress and improves mitochondrial bioenergetics in sensory neurons. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Proteome Research, 11(4), 2581–2593. doi:10.​1021/​pr300056m.PubMedCentralPubMed
127.
go back to reference Doeppner, T. R., Ewert, T. A., Tonges, L., Herz, J., Zechariah, A., ElAli, A., et al. (2012). Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells, 30(6), 1297–1310. doi:10.1002/stem.1098.PubMed Doeppner, T. R., Ewert, T. A., Tonges, L., Herz, J., Zechariah, A., ElAli, A., et al. (2012). Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells, 30(6), 1297–1310. doi:10.​1002/​stem.​1098.PubMed
128.
go back to reference Sreedhar, A. S., Mihaly, K., Pato, B., Schnaider, T., Stetak, A., Kis-Petik, K., et al. (2003). Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(37), 35231–35240. doi:10.1074/jbc.M301371200.PubMed Sreedhar, A. S., Mihaly, K., Pato, B., Schnaider, T., Stetak, A., Kis-Petik, K., et al. (2003). Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 278(37), 35231–35240. doi:10.​1074/​jbc.​M301371200.PubMed
129.
go back to reference Neckers, L., & Ivy, S. P. (2003). Heat shock protein 90. [Review]. Current Opinion in Oncology, 15(6), 419–424.PubMed Neckers, L., & Ivy, S. P. (2003). Heat shock protein 90. [Review]. Current Opinion in Oncology, 15(6), 419–424.PubMed
130.
go back to reference Katschinski, D. M., Le, L., Schindler, S. G., Thomas, T., Voss, A. K., & Wenger, R. H. (2004). Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization. [Research Support, Non-U.S. Gov't]. Cellular Physiology and Biochemistry, 14(4–6), 351–360. doi:10.1159/000080345.PubMed Katschinski, D. M., Le, L., Schindler, S. G., Thomas, T., Voss, A. K., & Wenger, R. H. (2004). Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1alpha stabilization. [Research Support, Non-U.S. Gov't]. Cellular Physiology and Biochemistry, 14(4–6), 351–360. doi:10.​1159/​000080345.PubMed
131.
go back to reference Zhou, J., Schmid, T., Frank, R., & Brune, B. (2004). PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 279(14), 13506–13513. doi:10.1074/jbc.M310164200.PubMed Zhou, J., Schmid, T., Frank, R., & Brune, B. (2004). PI3K/Akt is required for heat shock proteins to protect hypoxia-inducible factor 1alpha from pVHL-independent degradation. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 279(14), 13506–13513. doi:10.​1074/​jbc.​M310164200.PubMed
132.
go back to reference Zhang, D., Li, J., Costa, M., Gao, J., & Huang, C. (2010). JNK1 mediates degradation HIF-1alpha by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Research, 70(2), 813–823. doi:10.1158/0008-5472.CAN-09-0448.PubMedCentralPubMed Zhang, D., Li, J., Costa, M., Gao, J., & Huang, C. (2010). JNK1 mediates degradation HIF-1alpha by a VHL-independent mechanism that involves the chaperones Hsp90/Hsp70. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Research, 70(2), 813–823. doi:10.​1158/​0008-5472.​CAN-09-0448.PubMedCentralPubMed
133.
go back to reference Trisciuoglio, D., Gabellini, C., Desideri, M., Ziparo, E., Zupi, G., & Del Bufalo, D. (2010). Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90. [Research Support, Non-U.S. Gov't]. PLoS One, 5(7), e11772. doi:10.1371/journal.pone.0011772.PubMedCentralPubMed Trisciuoglio, D., Gabellini, C., Desideri, M., Ziparo, E., Zupi, G., & Del Bufalo, D. (2010). Bcl-2 regulates HIF-1alpha protein stabilization in hypoxic melanoma cells via the molecular chaperone HSP90. [Research Support, Non-U.S. Gov't]. PLoS One, 5(7), e11772. doi:10.​1371/​journal.​pone.​0011772.PubMedCentralPubMed
134.
go back to reference Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. [Research Support, Non-U.S. Gov't Review]. Nature Reviews. Molecular Cell Biology, 5(5), 343–354. doi:10.1038/nrm1366.PubMed Schofield, C. J., & Ratcliffe, P. J. (2004). Oxygen sensing by HIF hydroxylases. [Research Support, Non-U.S. Gov't Review]. Nature Reviews. Molecular Cell Biology, 5(5), 343–354. doi:10.​1038/​nrm1366.PubMed
135.
go back to reference Liu, Y. V., Baek, J. H., Zhang, H., Diez, R., Cole, R. N., & Semenza, G. L. (2007). RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. [In Vitro Research Support, N.I.H., Extramural]. Molecular Cell, 25(2), 207–217. doi:10.1016/j.molcel.2007.01.001.PubMedCentralPubMed Liu, Y. V., Baek, J. H., Zhang, H., Diez, R., Cole, R. N., & Semenza, G. L. (2007). RACK1 competes with HSP90 for binding to HIF-1alpha and is required for O(2)-independent and HSP90 inhibitor-induced degradation of HIF-1alpha. [In Vitro Research Support, N.I.H., Extramural]. Molecular Cell, 25(2), 207–217. doi:10.​1016/​j.​molcel.​2007.​01.​001.PubMedCentralPubMed
136.
go back to reference van de Sluis, B., Groot, A. J., Vermeulen, J., van der Wall, E., van Diest, P. J., Wijmenga, C., et al. (2009). COMMD1 promotes pVHL and O2-independent proteolysis of HIF-1alpha via HSP90/70. [Research Support, Non-U.S. Gov't]. PLoS One, 4(10), e7332. doi:10.1371/journal.pone.0007332.PubMedCentralPubMed van de Sluis, B., Groot, A. J., Vermeulen, J., van der Wall, E., van Diest, P. J., Wijmenga, C., et al. (2009). COMMD1 promotes pVHL and O2-independent proteolysis of HIF-1alpha via HSP90/70. [Research Support, Non-U.S. Gov't]. PLoS One, 4(10), e7332. doi:10.​1371/​journal.​pone.​0007332.PubMedCentralPubMed
137.
go back to reference Kawanami, D., Mahabeleshwar, G. H., Lin, Z., Atkins, G. B., Hamik, A., Haldar, S. M., et al. (2009). Kruppel-like factor 2 inhibits hypoxia-inducible factor 1alpha expression and function in the endothelium. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(31), 20522–20530. doi:10.1074/jbc.M109.025346.PubMedCentralPubMed Kawanami, D., Mahabeleshwar, G. H., Lin, Z., Atkins, G. B., Hamik, A., Haldar, S. M., et al. (2009). Kruppel-like factor 2 inhibits hypoxia-inducible factor 1alpha expression and function in the endothelium. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 284(31), 20522–20530. doi:10.​1074/​jbc.​M109.​025346.PubMedCentralPubMed
138.
go back to reference Nandal, A., Ruiz, J. C., Subramanian, P., Ghimire-Rijal, S., Sinnamon, R. A., Stemmler, T. L., et al. (2011). Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't]. Cell Metabolism, 14(5), 647–657. doi:10.1016/j.cmet.2011.08.015.PubMedCentralPubMed Nandal, A., Ruiz, J. C., Subramanian, P., Ghimire-Rijal, S., Sinnamon, R. A., Stemmler, T. L., et al. (2011). Activation of the HIF prolyl hydroxylase by the iron chaperones PCBP1 and PCBP2. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov't]. Cell Metabolism, 14(5), 647–657. doi:10.​1016/​j.​cmet.​2011.​08.​015.PubMedCentralPubMed
139.
go back to reference Chambellan, A., Cruickshank, P. J., McKenzie, P., Cannady, S. B., Szabo, K., Comhair, S. A., et al. (2006). Gene expression profile of human airway epithelium induced by hyperoxia in vivo. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. American Journal of Respiratory Cell and Molecular Biology, 35(4), 424–435. doi:10.1165/rcmb.2005-0251OC.PubMedCentralPubMed Chambellan, A., Cruickshank, P. J., McKenzie, P., Cannady, S. B., Szabo, K., Comhair, S. A., et al. (2006). Gene expression profile of human airway epithelium induced by hyperoxia in vivo. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. American Journal of Respiratory Cell and Molecular Biology, 35(4), 424–435. doi:10.​1165/​rcmb.​2005-0251OC.PubMedCentralPubMed
140.
go back to reference Wong, H. R., Menendez, I. Y., Ryan, M. A., Denenberg, A. G., & Wispe, J. R. (1998). Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology, 275(4 Pt 1), L836–L841.PubMed Wong, H. R., Menendez, I. Y., Ryan, M. A., Denenberg, A. G., & Wispe, J. R. (1998). Increased expression of heat shock protein-70 protects A549 cells against hyperoxia. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. American Journal of Physiology, 275(4 Pt 1), L836–L841.PubMed
141.
go back to reference Malhotra, V., Kooy, N. W., Denenberg, A. G., Dunsmore, K. E., & Wong, H. R. (2002). Ablation of the heat shock factor-1 increases susceptibility to hyperoxia-mediated cellular injury. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Experimental Lung Research, 28(8), 609–622. doi:10.1080/01902140260426724.PubMed Malhotra, V., Kooy, N. W., Denenberg, A. G., Dunsmore, K. E., & Wong, H. R. (2002). Ablation of the heat shock factor-1 increases susceptibility to hyperoxia-mediated cellular injury. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Experimental Lung Research, 28(8), 609–622. doi:10.​1080/​0190214026042672​4.PubMed
142.
go back to reference Xu, D., Perez, R. E., Rezaiekhaligh, M. H., Bourdi, M., & Truog, W. E. (2009). Knockdown of ERp57 increases BiP/GRP78 induction and protects against hyperoxia and tunicamycin-induced apoptosis. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(1), L44–L51. doi:10.1152/ajplung.90626.2008.PubMed Xu, D., Perez, R. E., Rezaiekhaligh, M. H., Bourdi, M., & Truog, W. E. (2009). Knockdown of ERp57 increases BiP/GRP78 induction and protects against hyperoxia and tunicamycin-induced apoptosis. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(1), L44–L51. doi:10.​1152/​ajplung.​90626.​2008.PubMed
144.
go back to reference Nam, S. Y., Ko, Y. S., Jung, J., Yoon, J., Kim, Y. H., Choi, Y. J., et al. (2011). A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-kappaB promotes gastric tumour growth and angiogenesis. [Research Support, Non-U.S. Gov't]. British Journal of Cancer, 104(1), 166–174. doi:10.1038/sj.bjc.6606020.PubMedCentralPubMed Nam, S. Y., Ko, Y. S., Jung, J., Yoon, J., Kim, Y. H., Choi, Y. J., et al. (2011). A hypoxia-dependent upregulation of hypoxia-inducible factor-1 by nuclear factor-kappaB promotes gastric tumour growth and angiogenesis. [Research Support, Non-U.S. Gov't]. British Journal of Cancer, 104(1), 166–174. doi:10.​1038/​sj.​bjc.​6606020.PubMedCentralPubMed
145.
go back to reference Mazumdar, J., O'Brien, W. T., Johnson, R. S., LaManna, J. C., Chavez, J. C., Klein, P. S., et al. (2010). O2 regulates stem cells through Wnt/beta-catenin signalling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nature Cell Biology, 12(10), 1007–1013. doi:10.1038/ncb2102.PubMedCentralPubMed Mazumdar, J., O'Brien, W. T., Johnson, R. S., LaManna, J. C., Chavez, J. C., Klein, P. S., et al. (2010). O2 regulates stem cells through Wnt/beta-catenin signalling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nature Cell Biology, 12(10), 1007–1013. doi:10.​1038/​ncb2102.PubMedCentralPubMed
146.
go back to reference Eliasz, S., Liang, S., Chen, Y., De Marco, M. A., Machek, O., Skucha, S., et al. (2010). Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Oncogene, 29(17), 2488–2498. doi:10.1038/onc.2010.7.PubMedCentralPubMed Eliasz, S., Liang, S., Chen, Y., De Marco, M. A., Machek, O., Skucha, S., et al. (2010). Notch-1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF-1R pathway. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Oncogene, 29(17), 2488–2498. doi:10.​1038/​onc.​2010.​7.PubMedCentralPubMed
147.
go back to reference Song, H. P., Zhang, L., Dang, Y. M., Yan, H., Chu, Z. G., & Huang, Y. S. (2010). The phosphatidylinositol 3-kinase-Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial function. [Research Support, Non-U.S. Gov't]. Clinical and Experimental Pharmacology and Physiology, 37(5–6), 598–604. doi:10.1111/j.1440-1681.2010.05355.x.PubMed Song, H. P., Zhang, L., Dang, Y. M., Yan, H., Chu, Z. G., & Huang, Y. S. (2010). The phosphatidylinositol 3-kinase-Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial function. [Research Support, Non-U.S. Gov't]. Clinical and Experimental Pharmacology and Physiology, 37(5–6), 598–604. doi:10.​1111/​j.​1440-1681.​2010.​05355.​x.PubMed
148.
go back to reference Xenaki, G., Ontikatze, T., Rajendran, R., Stratford, I. J., Dive, C., Krstic-Demonacos, M., et al. (2008). PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. [Research Support, Non-U.S. Gov't]. Oncogene, 27(44), 5785–5796. doi:10.1038/onc.2008.192.PubMedCentralPubMed Xenaki, G., Ontikatze, T., Rajendran, R., Stratford, I. J., Dive, C., Krstic-Demonacos, M., et al. (2008). PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. [Research Support, Non-U.S. Gov't]. Oncogene, 27(44), 5785–5796. doi:10.​1038/​onc.​2008.​192.PubMedCentralPubMed
149.
go back to reference Tan, C., Zhang, L. Y., Chen, H., Xiao, L., Liu, X. P., & Zhang, J. X. (2011). Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia–reoxygenation injury in pheochromocytoma (PC12) cells. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 416(3–4), 403–408. doi:10.1016/j.bbrc.2011.11.054.PubMed Tan, C., Zhang, L. Y., Chen, H., Xiao, L., Liu, X. P., & Zhang, J. X. (2011). Overexpression of the human ubiquitin E3 ligase CUL4A alleviates hypoxia–reoxygenation injury in pheochromocytoma (PC12) cells. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 416(3–4), 403–408. doi:10.​1016/​j.​bbrc.​2011.​11.​054.PubMed
150.
go back to reference Delivoria-Papadopoulos, M., & Mishra, O. P. (2010). Mechanism of post-translational modification by tyrosine phosphorylation of apoptotic proteins during hypoxia in the cerebral cortex of newborn piglets. [Research Support, N.I.H., Extramural]. Neurochemical Research, 35(1), 76–84. doi:10.1007/s11064-009-0032-7.PubMed Delivoria-Papadopoulos, M., & Mishra, O. P. (2010). Mechanism of post-translational modification by tyrosine phosphorylation of apoptotic proteins during hypoxia in the cerebral cortex of newborn piglets. [Research Support, N.I.H., Extramural]. Neurochemical Research, 35(1), 76–84. doi:10.​1007/​s11064-009-0032-7.PubMed
151.
go back to reference Bhogal, R. H., Weston, C. J., Curbishley, S. M., Adams, D. H., & Afford, S. C. (2012). Activation of CD40 with platelet derived CD154 promotes reactive oxygen species dependent death of human hepatocytes during hypoxia and reoxygenation. [Research Support, Non-U.S. Gov't]. PLoS One, 7(1), e30867. doi:10.1371/journal.pone.0030867.PubMedCentralPubMed Bhogal, R. H., Weston, C. J., Curbishley, S. M., Adams, D. H., & Afford, S. C. (2012). Activation of CD40 with platelet derived CD154 promotes reactive oxygen species dependent death of human hepatocytes during hypoxia and reoxygenation. [Research Support, Non-U.S. Gov't]. PLoS One, 7(1), e30867. doi:10.​1371/​journal.​pone.​0030867.PubMedCentralPubMed
152.
go back to reference Ling, Y. H., Liebes, L., Zou, Y., & Perez-Soler, R. (2003). Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 278(36), 33714–33723. doi:10.1074/jbc.M302559200.PubMed Ling, Y. H., Liebes, L., Zou, Y., & Perez-Soler, R. (2003). Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 278(36), 33714–33723. doi:10.​1074/​jbc.​M302559200.PubMed
153.
go back to reference Chuang, C. Y., Chen, T. L., Cherng, Y. G., Tai, Y. T., Chen, T. G., & Chen, R. M. (2011). Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway. [Evaluation Studies Research Support, Non-U.S. Gov't]. Archives of Toxicology, 85(3), 209–218. doi:10.1007/s00204-010-0585-x.PubMed Chuang, C. Y., Chen, T. L., Cherng, Y. G., Tai, Y. T., Chen, T. G., & Chen, R. M. (2011). Lipopolysaccharide induces apoptotic insults to human alveolar epithelial A549 cells through reactive oxygen species-mediated activation of an intrinsic mitochondrion-dependent pathway. [Evaluation Studies Research Support, Non-U.S. Gov't]. Archives of Toxicology, 85(3), 209–218. doi:10.​1007/​s00204-010-0585-x.PubMed
155.
go back to reference Dong, X. B., Yang, C. T., Zheng, D. D., Mo, L. Q., Wang, X. Y., Lan, A. P., et al. (2012). Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biochemistry, 362(1–2), 149–157. doi:10.1007/s11010-011-1137-2.PubMed Dong, X. B., Yang, C. T., Zheng, D. D., Mo, L. Q., Wang, X. Y., Lan, A. P., et al. (2012). Inhibition of ROS-activated ERK1/2 pathway contributes to the protection of H2S against chemical hypoxia-induced injury in H9c2 cells. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biochemistry, 362(1–2), 149–157. doi:10.​1007/​s11010-011-1137-2.PubMed
156.
go back to reference Holtz, W. A., Turetzky, J. M., Jong, Y. J., & O'Malley, K. L. (2006). Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Journal of Neurochemistry, 99(1), 54–69. doi:10.1111/j.1471-4159.2006.04025.x.PubMed Holtz, W. A., Turetzky, J. M., Jong, Y. J., & O'Malley, K. L. (2006). Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. Journal of Neurochemistry, 99(1), 54–69. doi:10.​1111/​j.​1471-4159.​2006.​04025.​x.PubMed
157.
go back to reference Xue, X., Piao, J. H., Nakajima, A., Sakon-Komazawa, S., Kojima, Y., Mori, K., et al. (2005). Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 280(40), 33917–33925. doi:10.1074/jbc.M505818200.PubMed Xue, X., Piao, J. H., Nakajima, A., Sakon-Komazawa, S., Kojima, Y., Mori, K., et al. (2005). Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 280(40), 33917–33925. doi:10.​1074/​jbc.​M505818200.PubMed
158.
go back to reference Elanchezhian, R., Palsamy, P., Madson, C. J., Mulhern, M. L., Lynch, D. W., Troia, A. M., et al. (2012). Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells. [Research Support, N.I.H., Extramural]. Cell Death Dis, 3, e301. doi:10.1038/cddis.2012.40.PubMedCentralPubMed Elanchezhian, R., Palsamy, P., Madson, C. J., Mulhern, M. L., Lynch, D. W., Troia, A. M., et al. (2012). Low glucose under hypoxic conditions induces unfolded protein response and produces reactive oxygen species in lens epithelial cells. [Research Support, N.I.H., Extramural]. Cell Death Dis, 3, e301. doi:10.​1038/​cddis.​2012.​40.PubMedCentralPubMed
159.
go back to reference Zhang, Y. S., He, L., Liu, B., Li, N. S., Luo, X. J., Hu, C. P., et al. (2012). A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia–reperfusion. [Research Support, Non-U.S. Gov't]. Basic Research in Cardiology, 107(3), 266. doi:10.1007/s00395-012-0266-4.PubMed Zhang, Y. S., He, L., Liu, B., Li, N. S., Luo, X. J., Hu, C. P., et al. (2012). A novel pathway of NADPH oxidase/vascular peroxidase 1 in mediating oxidative injury following ischemia–reperfusion. [Research Support, Non-U.S. Gov't]. Basic Research in Cardiology, 107(3), 266. doi:10.​1007/​s00395-012-0266-4.PubMed
160.
go back to reference Amanso, A. M., & Griendling, K. K. (2012). Differential roles of NADPH oxidases in vascular physiology and pathophysiology. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Frontiers in Bioscience (Scholar Edition), 4, 1044–1064. Amanso, A. M., & Griendling, K. K. (2012). Differential roles of NADPH oxidases in vascular physiology and pathophysiology. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Frontiers in Bioscience (Scholar Edition), 4, 1044–1064.
161.
go back to reference Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., et al. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. [Research Support, Non-U.S. Gov't]. Cell, 122(2), 221–233. doi:10.1016/j.cell.2005.05.011.PubMed Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., et al. (2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. [Research Support, Non-U.S. Gov't]. Cell, 122(2), 221–233. doi:10.​1016/​j.​cell.​2005.​05.​011.PubMed
162.
go back to reference Ferber, E. C., Peck, B., Delpuech, O., Bell, G. P., East, P., & Schulze, A. (2012). FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. [Research Support, Non-U.S. Gov't]. Cell Death and Differentiation, 19(6), 968–979. doi:10.1038/cdd.2011.179.PubMedCentralPubMed Ferber, E. C., Peck, B., Delpuech, O., Bell, G. P., East, P., & Schulze, A. (2012). FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. [Research Support, Non-U.S. Gov't]. Cell Death and Differentiation, 19(6), 968–979. doi:10.​1038/​cdd.​2011.​179.PubMedCentralPubMed
163.
go back to reference Kolamunne, R. T., Clare, M., & Griffiths, H. R. (2011). Mitochondrial superoxide anion radicals mediate induction of apoptosis in cardiac myoblasts exposed to chronic hypoxia. [Research Support, Non-U.S. Gov't]. Archives of Biochemistry and Biophysics, 505(2), 256–265. doi:10.1016/j.abb.2010.10.015.PubMed Kolamunne, R. T., Clare, M., & Griffiths, H. R. (2011). Mitochondrial superoxide anion radicals mediate induction of apoptosis in cardiac myoblasts exposed to chronic hypoxia. [Research Support, Non-U.S. Gov't]. Archives of Biochemistry and Biophysics, 505(2), 256–265. doi:10.​1016/​j.​abb.​2010.​10.​015.PubMed
164.
go back to reference Daiber, A. (2010). Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. [In Vitro Research Support, Non-U.S. Gov't Review]. Biochimica et Biophysica Acta, 1797(6–7), 897–906. doi:10.1016/j.bbabio.2010.01.032.PubMed Daiber, A. (2010). Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. [In Vitro Research Support, Non-U.S. Gov't Review]. Biochimica et Biophysica Acta, 1797(6–7), 897–906. doi:10.​1016/​j.​bbabio.​2010.​01.​032.PubMed
165.
go back to reference Heather, L. C., Cole, M. A., Tan, J. J., Ambrose, L. J., Pope, S., Abd-Jamil, A. H., et al. (2012). Metabolic adaptation to chronic hypoxia in cardiac mitochondria. [Research Support, Non-U.S. Gov't]. Basic Research in Cardiology, 107(3), 268. doi:10.1007/s00395-012-0268-2.PubMed Heather, L. C., Cole, M. A., Tan, J. J., Ambrose, L. J., Pope, S., Abd-Jamil, A. H., et al. (2012). Metabolic adaptation to chronic hypoxia in cardiac mitochondria. [Research Support, Non-U.S. Gov't]. Basic Research in Cardiology, 107(3), 268. doi:10.​1007/​s00395-012-0268-2.PubMed
167.
go back to reference Ma, Q., Fang, H., Shang, W., Liu, L., Xu, Z., Ye, T., et al. (2011). Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 286(31), 27573–27581. doi:10.1074/jbc.M111.241794.PubMedCentralPubMed Ma, Q., Fang, H., Shang, W., Liu, L., Xu, Z., Ye, T., et al. (2011). Superoxide flashes: early mitochondrial signals for oxidative stress-induced apoptosis. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 286(31), 27573–27581. doi:10.​1074/​jbc.​M111.​241794.PubMedCentralPubMed
168.
go back to reference Pasdois, P., Parker, J. E., Griffiths, E. J., & Halestrap, A. P. (2011). The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. [Comparative Study Research Support, Non-U.S. Gov't]. Biochemical Journal, 436(2), 493–505. doi:10.1042/BJ20101957.PubMedCentralPubMed Pasdois, P., Parker, J. E., Griffiths, E. J., & Halestrap, A. P. (2011). The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia. [Comparative Study Research Support, Non-U.S. Gov't]. Biochemical Journal, 436(2), 493–505. doi:10.​1042/​BJ20101957.PubMedCentralPubMed
169.
go back to reference Kim, C. H., Ko, A. R., Lee, S. Y., Jeon, H. M., Kim, S. M., Park, H. G., et al. (2010). Hypoxia switches glucose depletion-induced necrosis to phosphoinositide 3-kinase/Akt-dependent apoptosis in A549 lung adenocarcinoma cells. [Research Support, Non-U.S. Gov't]. International Journal of Oncology, 36(1), 117–124.PubMed Kim, C. H., Ko, A. R., Lee, S. Y., Jeon, H. M., Kim, S. M., Park, H. G., et al. (2010). Hypoxia switches glucose depletion-induced necrosis to phosphoinositide 3-kinase/Akt-dependent apoptosis in A549 lung adenocarcinoma cells. [Research Support, Non-U.S. Gov't]. International Journal of Oncology, 36(1), 117–124.PubMed
170.
go back to reference Cai, Y., Martens, G. A., Hinke, S. A., Heimberg, H., Pipeleers, D., & Van de Casteele, M. (2007). Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 42(1), 64–78. doi:10.1016/j.freeradbiomed.2006.09.018.PubMed Cai, Y., Martens, G. A., Hinke, S. A., Heimberg, H., Pipeleers, D., & Van de Casteele, M. (2007). Increased oxygen radical formation and mitochondrial dysfunction mediate beta cell apoptosis under conditions of AMP-activated protein kinase stimulation. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 42(1), 64–78. doi:10.​1016/​j.​freeradbiomed.​2006.​09.​018.PubMed
171.
172.
go back to reference Wei, H., Bedja, D., Koitabashi, N., Xing, D., Chen, J., Fox-Talbot, K., et al. (2012). Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-beta signaling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 109(14), E841–E850. doi:10.1073/pnas.1202081109.PubMedCentralPubMed Wei, H., Bedja, D., Koitabashi, N., Xing, D., Chen, J., Fox-Talbot, K., et al. (2012). Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-beta signaling. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 109(14), E841–E850. doi:10.​1073/​pnas.​1202081109.PubMedCentralPubMed
173.
go back to reference Xu, Z., Liu, E., Peng, C., Li, Y., He, Z., Zhao, C., et al. (2012). Role of hypoxia-inducible-1alpha in hepatocellular carcinoma cells using a Tet-on inducible system to regulate its expression in vitro. [Research Support, Non-U.S. Gov't]. Oncology Reports, 27(2), 573–578. doi:10.3892/or.2011.1533.PubMed Xu, Z., Liu, E., Peng, C., Li, Y., He, Z., Zhao, C., et al. (2012). Role of hypoxia-inducible-1alpha in hepatocellular carcinoma cells using a Tet-on inducible system to regulate its expression in vitro. [Research Support, Non-U.S. Gov't]. Oncology Reports, 27(2), 573–578. doi:10.​3892/​or.​2011.​1533.PubMed
174.
go back to reference Nardinocchi, L., Puca, R., Sacchi, A., & D'Orazi, G. (2009). Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. [Research Support, Non-U.S. Gov't]. Molecular Cancer, 8, 1. doi:10.1186/1476-4598-8-1.PubMedCentralPubMed Nardinocchi, L., Puca, R., Sacchi, A., & D'Orazi, G. (2009). Inhibition of HIF-1alpha activity by homeodomain-interacting protein kinase-2 correlates with sensitization of chemoresistant cells to undergo apoptosis. [Research Support, Non-U.S. Gov't]. Molecular Cancer, 8, 1. doi:10.​1186/​1476-4598-8-1.PubMedCentralPubMed
175.
go back to reference Chen, H., Xiong, T., Qu, Y., Zhao, F., Ferriero, D., & Mu, D. (2012). mTOR activates hypoxia-inducible factor-1alpha and inhibits neuronal apoptosis in the developing rat brain during the early phase after hypoxia-ischemia. [Research Support, Non-U.S. Gov't]. Neuroscience Letters, 507(2), 118–123. doi:10.1016/j.neulet.2011.11.058.PubMedCentralPubMed Chen, H., Xiong, T., Qu, Y., Zhao, F., Ferriero, D., & Mu, D. (2012). mTOR activates hypoxia-inducible factor-1alpha and inhibits neuronal apoptosis in the developing rat brain during the early phase after hypoxia-ischemia. [Research Support, Non-U.S. Gov't]. Neuroscience Letters, 507(2), 118–123. doi:10.​1016/​j.​neulet.​2011.​11.​058.PubMedCentralPubMed
176.
go back to reference Hindryckx, P., De Vos, M., Jacques, P., Ferdinande, L., Peeters, H., Olievier, K., et al. (2010). Hydroxylase inhibition abrogates TNF-alpha-induced intestinal epithelial damage by hypoxia-inducible factor-1-dependent repression of FADD. [Research Support, Non-U.S. Gov't]. Journal of Immunology, 185(10), 6306–6316. doi:10.4049/jimmunol.1002541. Hindryckx, P., De Vos, M., Jacques, P., Ferdinande, L., Peeters, H., Olievier, K., et al. (2010). Hydroxylase inhibition abrogates TNF-alpha-induced intestinal epithelial damage by hypoxia-inducible factor-1-dependent repression of FADD. [Research Support, Non-U.S. Gov't]. Journal of Immunology, 185(10), 6306–6316. doi:10.​4049/​jimmunol.​1002541.
177.
go back to reference Mayes, P. A., Dolloff, N. G., Daniel, C. J., Liu, J. J., Hart, L. S., Kuribayashi, K., et al. (2011). Overcoming hypoxia-induced apoptotic resistance through combinatorial inhibition of GSK-3beta and CDK1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Research, 71(15), 5265–5275. doi:10.1158/0008-5472.CAN-11-1383.PubMedCentralPubMed Mayes, P. A., Dolloff, N. G., Daniel, C. J., Liu, J. J., Hart, L. S., Kuribayashi, K., et al. (2011). Overcoming hypoxia-induced apoptotic resistance through combinatorial inhibition of GSK-3beta and CDK1. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Cancer Research, 71(15), 5265–5275. doi:10.​1158/​0008-5472.​CAN-11-1383.PubMedCentralPubMed
179.
go back to reference Huang, Y., Yu, J., Yan, C., Hou, J., Pu, J., Zhang, G., et al. (2012). Effect of small interfering RNA targeting hypoxia-inducible factor-1alpha on radiosensitivity of PC3 cell line. Urology, 79(3), 744 e–724. doi:10.1016/j.urology.2011.10.024. Huang, Y., Yu, J., Yan, C., Hou, J., Pu, J., Zhang, G., et al. (2012). Effect of small interfering RNA targeting hypoxia-inducible factor-1alpha on radiosensitivity of PC3 cell line. Urology, 79(3), 744 e–724. doi:10.​1016/​j.​urology.​2011.​10.​024.
180.
go back to reference Robador, P. A., San Jose, G., Rodriguez, C., Guadall, A., Moreno, M. U., Beaumont, J., et al. (2011). HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia. [Research Support, Non-U.S. Gov't]. Cardiovascular Research, 92(2), 247–255. doi:10.1093/cvr/cvr202.PubMed Robador, P. A., San Jose, G., Rodriguez, C., Guadall, A., Moreno, M. U., Beaumont, J., et al. (2011). HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia. [Research Support, Non-U.S. Gov't]. Cardiovascular Research, 92(2), 247–255. doi:10.​1093/​cvr/​cvr202.PubMed
181.
go back to reference Zhang, X. L., Yan, Z. W., Sheng, W. W., Xiao, J., Zhang, Z. X., & Ye, Z. B. (2011). Activation of hypoxia-inducible factor-1 ameliorates postischemic renal injury via inducible nitric oxide synthase. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biochemistry, 358(1–2), 287–295. doi:10.1007/s11010-011-0979-y.PubMed Zhang, X. L., Yan, Z. W., Sheng, W. W., Xiao, J., Zhang, Z. X., & Ye, Z. B. (2011). Activation of hypoxia-inducible factor-1 ameliorates postischemic renal injury via inducible nitric oxide synthase. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biochemistry, 358(1–2), 287–295. doi:10.​1007/​s11010-011-0979-y.PubMed
182.
go back to reference Du, F., Zhu, L., Qian, Z. M., Wu, X. M., Yung, W. H., & Ke, Y. (2010). Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. [Research Support, Non-U.S. Gov't]. Biochimica et Biophysica Acta, 1802(11), 1048–1053. doi:10.1016/j.bbadis.2010.06.013.PubMed Du, F., Zhu, L., Qian, Z. M., Wu, X. M., Yung, W. H., & Ke, Y. (2010). Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. [Research Support, Non-U.S. Gov't]. Biochimica et Biophysica Acta, 1802(11), 1048–1053. doi:10.​1016/​j.​bbadis.​2010.​06.​013.PubMed
183.
go back to reference Ao, J. E., Kuang, L. H., Zhou, Y., Zhao, R., & Yang, C. M. (2012). Hypoxia-inducible factor 1 regulated ARC expression mediated hypoxia induced inactivation of the intrinsic death pathway in p53 deficient human colon cancer cells. Biochemical and Biophysical Research Communications, 420(4), 913–917. doi:10.1016/j.bbrc.2012.03.101.PubMed Ao, J. E., Kuang, L. H., Zhou, Y., Zhao, R., & Yang, C. M. (2012). Hypoxia-inducible factor 1 regulated ARC expression mediated hypoxia induced inactivation of the intrinsic death pathway in p53 deficient human colon cancer cells. Biochemical and Biophysical Research Communications, 420(4), 913–917. doi:10.​1016/​j.​bbrc.​2012.​03.​101.PubMed
184.
go back to reference Sasabe, E., Yang, Z., Ohno, S., & Yamamoto, T. (2010). Reactive oxygen species produced by the knockdown of manganese-superoxide dismutase up-regulate hypoxia-inducible factor-1alpha expression in oral squamous cell carcinoma cells. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 48(10), 1321–1329. doi:10.1016/j.freeradbiomed.2010.02.013.PubMed Sasabe, E., Yang, Z., Ohno, S., & Yamamoto, T. (2010). Reactive oxygen species produced by the knockdown of manganese-superoxide dismutase up-regulate hypoxia-inducible factor-1alpha expression in oral squamous cell carcinoma cells. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 48(10), 1321–1329. doi:10.​1016/​j.​freeradbiomed.​2010.​02.​013.PubMed
185.
go back to reference Cadenas, S., Aragones, J., & Landazuri, M. O. (2010). Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. [Research Support, Non-U.S. Gov't Review]. Cardiovascular Research, 88(2), 219–228. doi:10.1093/cvr/cvq256.PubMed Cadenas, S., Aragones, J., & Landazuri, M. O. (2010). Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. [Research Support, Non-U.S. Gov't Review]. Cardiovascular Research, 88(2), 219–228. doi:10.​1093/​cvr/​cvq256.PubMed
186.
go back to reference Rezvani, H. R., Dedieu, S., North, S., Belloc, F., Rossignol, R., Letellier, T., et al. (2007). Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 282(22), 16413–16422. doi:10.1074/jbc.M611397200.PubMed Rezvani, H. R., Dedieu, S., North, S., Belloc, F., Rossignol, R., Letellier, T., et al. (2007). Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 282(22), 16413–16422. doi:10.​1074/​jbc.​M611397200.PubMed
187.
go back to reference Zhao, Y., Wu, S., Wu, J., Jia, P., Gao, S., Yan, X., et al. (2011). Introduction of hypoxia-targeting p53 fusion protein for the selective therapy of non-small cell lung cancer. [Research Support, Non-U.S. Gov't]. Cancer Biology and Therapy, 11(1), 95–107. doi:10.4161/cbt.11.1.13960.PubMed Zhao, Y., Wu, S., Wu, J., Jia, P., Gao, S., Yan, X., et al. (2011). Introduction of hypoxia-targeting p53 fusion protein for the selective therapy of non-small cell lung cancer. [Research Support, Non-U.S. Gov't]. Cancer Biology and Therapy, 11(1), 95–107. doi:10.​4161/​cbt.​11.​1.​13960.PubMed
188.
go back to reference Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. [Research Support, Non-U.S. Gov't]. Oncogene, 21(24), 3872–3878. doi:10.1038/sj.onc.1205513.PubMed Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. [Research Support, Non-U.S. Gov't]. Oncogene, 21(24), 3872–3878. doi:10.​1038/​sj.​onc.​1205513.PubMed
189.
go back to reference Singaravelu, K., Devalaraja-Narashimha, K., Lastovica, B., & Padanilam, B. J. (2009). PERP, a p53 proapoptotic target, mediates apoptotic cell death in renal ischemia. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Renal Physiology, 296(4), F847–F858. doi:10.1152/ajprenal.90438.2008.PubMed Singaravelu, K., Devalaraja-Narashimha, K., Lastovica, B., & Padanilam, B. J. (2009). PERP, a p53 proapoptotic target, mediates apoptotic cell death in renal ischemia. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Renal Physiology, 296(4), F847–F858. doi:10.​1152/​ajprenal.​90438.​2008.PubMed
190.
go back to reference Nijboer, C. H., Heijnen, C. J., van der Kooij, M. A., Zijlstra, J., van Velthoven, C. T., Culmsee, C., et al. (2011). Targeting the p53 pathway to protect the neonatal ischemic brain. [Research Support, Non-U.S. Gov't]. Annals of Neurology, 70(2), 255–264. doi:10.1002/ana.22413.PubMed Nijboer, C. H., Heijnen, C. J., van der Kooij, M. A., Zijlstra, J., van Velthoven, C. T., Culmsee, C., et al. (2011). Targeting the p53 pathway to protect the neonatal ischemic brain. [Research Support, Non-U.S. Gov't]. Annals of Neurology, 70(2), 255–264. doi:10.​1002/​ana.​22413.PubMed
191.
go back to reference Stenger, C., Naves, T., Verdier, M., & Ratinaud, M. H. (2011). The cell death response to the ROS inducer, cobalt chloride, in neuroblastoma cell lines according to p53 status. [Research Support, Non-U.S. Gov't]. International Journal of Oncology, 39(3), 601–609. doi:10.3892/ijo.2011.1083.PubMed Stenger, C., Naves, T., Verdier, M., & Ratinaud, M. H. (2011). The cell death response to the ROS inducer, cobalt chloride, in neuroblastoma cell lines according to p53 status. [Research Support, Non-U.S. Gov't]. International Journal of Oncology, 39(3), 601–609. doi:10.​3892/​ijo.​2011.​1083.PubMed
192.
go back to reference Seth, R., Yang, C., Kaushal, V., Shah, S. V., & Kaushal, G. P. (2005). p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 280(35), 31230–31239. doi:10.1074/jbc.M503305200.PubMed Seth, R., Yang, C., Kaushal, V., Shah, S. V., & Kaushal, G. P. (2005). p53-dependent caspase-2 activation in mitochondrial release of apoptosis-inducing factor and its role in renal tubular epithelial cell injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 280(35), 31230–31239. doi:10.​1074/​jbc.​M503305200.PubMed
193.
go back to reference Singaravelu, K., & Padanilam, B. J. (2011). p53 target Siva regulates apoptosis in ischemic kidneys. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. American Journal of Physiology. Renal Physiology, 300(5), F1130–F1141. doi:10.1152/ajprenal.00591.2010.PubMedCentralPubMed Singaravelu, K., & Padanilam, B. J. (2011). p53 target Siva regulates apoptosis in ischemic kidneys. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. American Journal of Physiology. Renal Physiology, 300(5), F1130–F1141. doi:10.​1152/​ajprenal.​00591.​2010.PubMedCentralPubMed
194.
go back to reference Budinger, G. R., Tso, M., McClintock, D. S., Dean, D. A., Sznajder, J. I., & Chandel, N. S. (2002). Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 277(18), 15654–15660. doi:10.1074/jbc.M109317200.PubMed Budinger, G. R., Tso, M., McClintock, D. S., Dean, D. A., Sznajder, J. I., & Chandel, N. S. (2002). Hyperoxia-induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 277(18), 15654–15660. doi:10.​1074/​jbc.​M109317200.PubMed
195.
go back to reference Husari, A. W., Dbaibo, G. S., Bitar, H., Khayat, A., Panjarian, S., Nasser, M., et al. (2006). Apoptosis and the activity of ceramide, Bax and Bcl-2 in the lungs of neonatal rats exposed to limited and prolonged hyperoxia. [Comparative Study]. Respiratory Research, 7, 100. doi:10.1186/1465-9921-7-100.PubMedCentralPubMed Husari, A. W., Dbaibo, G. S., Bitar, H., Khayat, A., Panjarian, S., Nasser, M., et al. (2006). Apoptosis and the activity of ceramide, Bax and Bcl-2 in the lungs of neonatal rats exposed to limited and prolonged hyperoxia. [Comparative Study]. Respiratory Research, 7, 100. doi:10.​1186/​1465-9921-7-100.PubMedCentralPubMed
196.
go back to reference Gill, M. B., Bockhorst, K., Narayana, P., & Perez-Polo, J. R. (2008). Bax shuttling after neonatal hypoxia–ischemia: hyperoxia effects. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Neuroscience Research, 86(16), 3584–3604. doi:10.1002/jnr.21795.PubMedCentralPubMed Gill, M. B., Bockhorst, K., Narayana, P., & Perez-Polo, J. R. (2008). Bax shuttling after neonatal hypoxia–ischemia: hyperoxia effects. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Neuroscience Research, 86(16), 3584–3604. doi:10.​1002/​jnr.​21795.PubMedCentralPubMed
197.
go back to reference Brutus, N. A., Hanley, S., Ashraf, Q. M., Mishra, O. P., & Delivoria-Papadopoulos, M. (2009). Effect of hyperoxia on serine phosphorylation of apoptotic proteins in mitochondrial membranes of the cerebral cortex of newborn piglets. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neurochemical Research, 34(7), 1219–1225. doi:10.1007/s11064-008-9898-z.PubMed Brutus, N. A., Hanley, S., Ashraf, Q. M., Mishra, O. P., & Delivoria-Papadopoulos, M. (2009). Effect of hyperoxia on serine phosphorylation of apoptotic proteins in mitochondrial membranes of the cerebral cortex of newborn piglets. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Neurochemical Research, 34(7), 1219–1225. doi:10.​1007/​s11064-008-9898-z.PubMed
198.
go back to reference Buccellato, L. J., Tso, M., Akinci, O. I., Chandel, N. S., & Budinger, G. R. (2004). Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(8), 6753–6760. doi:10.1074/jbc.M310145200.PubMed Buccellato, L. J., Tso, M., Akinci, O. I., Chandel, N. S., & Budinger, G. R. (2004). Reactive oxygen species are required for hyperoxia-induced Bax activation and cell death in alveolar epithelial cells. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Journal of Biological Chemistry, 279(8), 6753–6760. doi:10.​1074/​jbc.​M310145200.PubMed
199.
go back to reference Kim, M. N., Lee, K. E., Hong, J. Y., Heo, W. I., Kim, K. W., Kim, K. E., et al. (2012). Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 421(4), 790–796. doi:10.1016/j.bbrc.2012.04.085.PubMed Kim, M. N., Lee, K. E., Hong, J. Y., Heo, W. I., Kim, K. W., Kim, K. E., et al. (2012). Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 421(4), 790–796. doi:10.​1016/​j.​bbrc.​2012.​04.​085.PubMed
200.
go back to reference Metrailler-Ruchonnet, I., Pagano, A., Carnesecchi, S., Ody, C., Donati, Y., & Barazzone Argiroffo, C. (2007). Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 42(7), 1062–1074. doi:10.1016/j.freeradbiomed.2007.01.008.PubMed Metrailler-Ruchonnet, I., Pagano, A., Carnesecchi, S., Ody, C., Donati, Y., & Barazzone Argiroffo, C. (2007). Bcl-2 protects against hyperoxia-induced apoptosis through inhibition of the mitochondria-dependent pathway. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 42(7), 1062–1074. doi:10.​1016/​j.​freeradbiomed.​2007.​01.​008.PubMed
201.
go back to reference Chang, E., Hornick, K., Fritz, K. I., Mishra, O. P., & Delivoria-Papadopoulos, M. (2007). Effect of hyperoxia on cortical neuronal nuclear function and programmed cell death mechanisms. [Research Support, N.I.H., Extramural]. Neurochemical Research, 32(7), 1142–1149. doi:10.1007/s11064-007-9282-4.PubMed Chang, E., Hornick, K., Fritz, K. I., Mishra, O. P., & Delivoria-Papadopoulos, M. (2007). Effect of hyperoxia on cortical neuronal nuclear function and programmed cell death mechanisms. [Research Support, N.I.H., Extramural]. Neurochemical Research, 32(7), 1142–1149. doi:10.​1007/​s11064-007-9282-4.PubMed
202.
go back to reference Kolliputi, N., & Waxman, A. B. (2009). IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(1), L6–L16. doi:10.1152/ajplung.90381.2008.PubMedCentralPubMed Kolliputi, N., & Waxman, A. B. (2009). IL-6 cytoprotection in hyperoxic acute lung injury occurs via PI3K/Akt-mediated Bax phosphorylation. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 297(1), L6–L16. doi:10.​1152/​ajplung.​90381.​2008.PubMedCentralPubMed
203.
go back to reference Wang, X., Wang, Y., Kim, H. P., Nakahira, K., Ryter, S. W., & Choi, A. M. (2007). Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 282(3), 1718–1726. doi:10.1074/jbc.M607610200.PubMed Wang, X., Wang, Y., Kim, H. P., Nakahira, K., Ryter, S. W., & Choi, A. M. (2007). Carbon monoxide protects against hyperoxia-induced endothelial cell apoptosis by inhibiting reactive oxygen species formation. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 282(3), 1718–1726. doi:10.​1074/​jbc.​M607610200.PubMed
204.
go back to reference Fu, Y. Q., Fang, F., Lu, Z. Y., Kuang, F. W., & Xu, F. (2010). N-acetylcysteine protects alveolar epithelial cells from hydrogen peroxide-induced apoptosis through scavenging reactive oxygen species and suppressing c-Jun N-terminal kinase. [Research Support, Non-U.S. Gov't]. Experimental Lung Research, 36(6), 352–361. doi:10.3109/01902141003678582.PubMed Fu, Y. Q., Fang, F., Lu, Z. Y., Kuang, F. W., & Xu, F. (2010). N-acetylcysteine protects alveolar epithelial cells from hydrogen peroxide-induced apoptosis through scavenging reactive oxygen species and suppressing c-Jun N-terminal kinase. [Research Support, Non-U.S. Gov't]. Experimental Lung Research, 36(6), 352–361. doi:10.​3109/​0190214100367858​2.PubMed
205.
go back to reference Yamada, T., Iwasaki, Y., Nagata, K., Fushiki, S., Nakamura, H., Marunaka, Y., et al. (2007). Thioredoxin-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls. Pulmonary Pharmacology & Therapeutics, 20(6), 650–659. doi:10.1016/j.pupt.2006.07.004. Yamada, T., Iwasaki, Y., Nagata, K., Fushiki, S., Nakamura, H., Marunaka, Y., et al. (2007). Thioredoxin-1 protects against hyperoxia-induced apoptosis in cells of the alveolar walls. Pulmonary Pharmacology & Therapeutics, 20(6), 650–659. doi:10.​1016/​j.​pupt.​2006.​07.​004.
206.
208.
go back to reference Lee, A. C., Fenster, B. E., Ito, H., Takeda, K., Bae, N. S., Hirai, T., et al. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 274(12), 7936–7940.PubMed Lee, A. C., Fenster, B. E., Ito, H., Takeda, K., Bae, N. S., Hirai, T., et al. (1999). Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 274(12), 7936–7940.PubMed
209.
go back to reference Leikam, C., Hufnagel, A., Schartl, M., & Meierjohann, S. (2008). Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. [Research Support, Non-U.S. Gov't]. Oncogene, 27(56), 7070–7082. doi:10.1038/onc.2008.323.PubMed Leikam, C., Hufnagel, A., Schartl, M., & Meierjohann, S. (2008). Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. [Research Support, Non-U.S. Gov't]. Oncogene, 27(56), 7070–7082. doi:10.​1038/​onc.​2008.​323.PubMed
210.
go back to reference Moiseeva, O., Bourdeau, V., Roux, A., Deschenes-Simard, X., & Ferbeyre, G. (2009). Mitochondrial dysfunction contributes to oncogene-induced senescence. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 29(16), 4495–4507. doi:10.1128/MCB.01868-08.PubMedCentralPubMed Moiseeva, O., Bourdeau, V., Roux, A., Deschenes-Simard, X., & Ferbeyre, G. (2009). Mitochondrial dysfunction contributes to oncogene-induced senescence. [Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 29(16), 4495–4507. doi:10.​1128/​MCB.​01868-08.PubMedCentralPubMed
211.
go back to reference Weyemi, U., Lagente-Chevallier, O., Boufraqech, M., Prenois, F., Courtin, F., Caillou, B., et al. (2012). ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. [Research Support, Non-U.S. Gov't]. Oncogene, 31(9), 1117–1129. doi:10.1038/onc.2011.327.PubMedCentralPubMed Weyemi, U., Lagente-Chevallier, O., Boufraqech, M., Prenois, F., Courtin, F., Caillou, B., et al. (2012). ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence. [Research Support, Non-U.S. Gov't]. Oncogene, 31(9), 1117–1129. doi:10.​1038/​onc.​2011.​327.PubMedCentralPubMed
212.
go back to reference Bai, X. Y., Ma, Y., Ding, R., Fu, B., Shi, S., & Chen, X. M. (2011). miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. [Research Support, Non-U.S. Gov't]. Journal of the American Society of Nephrology, 22(7), 1252–1261. doi:10.1681/ASN.2010040367.PubMedCentralPubMed Bai, X. Y., Ma, Y., Ding, R., Fu, B., Shi, S., & Chen, X. M. (2011). miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. [Research Support, Non-U.S. Gov't]. Journal of the American Society of Nephrology, 22(7), 1252–1261. doi:10.​1681/​ASN.​2010040367.PubMedCentralPubMed
213.
go back to reference Briganti, S., Wlaschek, M., Hinrichs, C., Bellei, B., Flori, E., Treiber, N., et al. (2008). Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 45(5), 636–644. doi:10.1016/j.freeradbiomed.2008.05.006.PubMed Briganti, S., Wlaschek, M., Hinrichs, C., Bellei, B., Flori, E., Treiber, N., et al. (2008). Small molecular antioxidants effectively protect from PUVA-induced oxidative stress responses underlying fibroblast senescence and photoaging. [Research Support, Non-U.S. Gov't]. Free Radical Biology and Medicine, 45(5), 636–644. doi:10.​1016/​j.​freeradbiomed.​2008.​05.​006.PubMed
214.
go back to reference Ham, S. A., Hwang, J. S., Yoo, T., Lee, H., Kang, E. S., Park, C., et al. (2012). Ligand-activated PPARdelta inhibits UVB-induced senescence of human keratinocytes via PTEN-mediated inhibition of superoxide production. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 444(1), 27–38. doi:10.1042/BJ20111832.PubMed Ham, S. A., Hwang, J. S., Yoo, T., Lee, H., Kang, E. S., Park, C., et al. (2012). Ligand-activated PPARdelta inhibits UVB-induced senescence of human keratinocytes via PTEN-mediated inhibition of superoxide production. [Research Support, Non-U.S. Gov't]. Biochemical Journal, 444(1), 27–38. doi:10.​1042/​BJ20111832.PubMed
215.
216.
go back to reference Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., et al. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. [Comparative Study Research Support, Non-U.S. Gov't]. Nature Medicine, 12(4), 446–451. doi:10.1038/nm1388.PubMed Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., et al. (2006). Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. [Comparative Study Research Support, Non-U.S. Gov't]. Nature Medicine, 12(4), 446–451. doi:10.​1038/​nm1388.PubMed
217.
go back to reference Hole, P. S., Pearn, L., Tonks, A. J., James, P. E., Burnett, A. K., Darley, R. L., et al. (2010). Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. [Research Support, Non-U.S. Gov't]. Blood, 115(6), 1238–1246. doi:10.1182/blood-2009-06-222869.PubMed Hole, P. S., Pearn, L., Tonks, A. J., James, P. E., Burnett, A. K., Darley, R. L., et al. (2010). Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. [Research Support, Non-U.S. Gov't]. Blood, 115(6), 1238–1246. doi:10.​1182/​blood-2009-06-222869.PubMed
218.
go back to reference Macip, S., Igarashi, M., Berggren, P., Yu, J., Lee, S. W., & Aaronson, S. A. (2003). Influence of induced reactive oxygen species in p53-mediated cell fate decisions. [Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 23(23), 8576–8585.PubMedCentralPubMed Macip, S., Igarashi, M., Berggren, P., Yu, J., Lee, S. W., & Aaronson, S. A. (2003). Influence of induced reactive oxygen species in p53-mediated cell fate decisions. [Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 23(23), 8576–8585.PubMedCentralPubMed
219.
go back to reference Ferbeyre, G., de Stanchina, E., Lin, A. W., Querido, E., McCurrach, M. E., Hannon, G. J., et al. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 22(10), 3497–3508.PubMedCentralPubMed Ferbeyre, G., de Stanchina, E., Lin, A. W., Querido, E., McCurrach, M. E., Hannon, G. J., et al. (2002). Oncogenic ras and p53 cooperate to induce cellular senescence. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Molecular and Cellular Biology, 22(10), 3497–3508.PubMedCentralPubMed
220.
go back to reference Heiss, E. H., Schilder, Y. D., & Dirsch, V. M. (2007). Chronic treatment with resveratrol induces redox stress- and ataxia telangiectasia-mutated (ATM)-dependent senescence in p53-positive cancer cells. Journal of Biological Chemistry, 282(37), 26759–26766. doi:10.1074/jbc.M703229200.PubMed Heiss, E. H., Schilder, Y. D., & Dirsch, V. M. (2007). Chronic treatment with resveratrol induces redox stress- and ataxia telangiectasia-mutated (ATM)-dependent senescence in p53-positive cancer cells. Journal of Biological Chemistry, 282(37), 26759–26766. doi:10.​1074/​jbc.​M703229200.PubMed
221.
go back to reference Zhang, X., Li, J., Sejas, D. P., & Pang, Q. (2005). The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. [In Vitro Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 280(20), 19635–19640. doi:10.1074/jbc.M502262200.PubMed Zhang, X., Li, J., Sejas, D. P., & Pang, Q. (2005). The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. [In Vitro Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 280(20), 19635–19640. doi:10.​1074/​jbc.​M502262200.PubMed
222.
go back to reference Sasaki, M., Ikeda, H., Sato, Y., & Nakanuma, Y. (2008). Proinflammatory cytokine-induced cellular senescence of biliary epithelial cells is mediated via oxidative stress and activation of ATM pathway: a culture study. [Research Support, Non-U.S. Gov't]. Free Radical Research, 42(7), 625–632. doi:10.1080/10715760802244768.PubMed Sasaki, M., Ikeda, H., Sato, Y., & Nakanuma, Y. (2008). Proinflammatory cytokine-induced cellular senescence of biliary epithelial cells is mediated via oxidative stress and activation of ATM pathway: a culture study. [Research Support, Non-U.S. Gov't]. Free Radical Research, 42(7), 625–632. doi:10.​1080/​1071576080224476​8.PubMed
223.
go back to reference Deng, Y., Chan, S. S., & Chang, S. (2008). Telomere dysfunction and tumour suppression: the senescence connection. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Nature Reviews Cancer, 8(6), 450–458. doi:10.1038/nrc2393.PubMedCentralPubMed Deng, Y., Chan, S. S., & Chang, S. (2008). Telomere dysfunction and tumour suppression: the senescence connection. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Nature Reviews Cancer, 8(6), 450–458. doi:10.​1038/​nrc2393.PubMedCentralPubMed
224.
go back to reference Alcorta, D. A., Xiong, Y., Phelps, D., Hannon, G., Beach, D., & Barrett, J. C. (1996). Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13742–13747.PubMedCentralPubMed Alcorta, D. A., Xiong, Y., Phelps, D., Hannon, G., Beach, D., & Barrett, J. C. (1996). Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13742–13747.PubMedCentralPubMed
225.
go back to reference Jeanblanc, M., Ragu, S., Gey, C., Contrepois, K., Courbeyrette, R., Thuret, J. Y., et al. (2012). Parallel pathways in RAF-induced senescence and conditions for its reversion. Oncogene, 31(25), 3072–3085. doi:10.1038/onc.2011.481.PubMed Jeanblanc, M., Ragu, S., Gey, C., Contrepois, K., Courbeyrette, R., Thuret, J. Y., et al. (2012). Parallel pathways in RAF-induced senescence and conditions for its reversion. Oncogene, 31(25), 3072–3085. doi:10.​1038/​onc.​2011.​481.PubMed
226.
go back to reference Sherr, C. J., & McCormick, F. (2002). The RB and p53 pathways in cancer. [Review]. Cancer Cell, 2(2), 103–112.PubMed Sherr, C. J., & McCormick, F. (2002). The RB and p53 pathways in cancer. [Review]. Cancer Cell, 2(2), 103–112.PubMed
227.
go back to reference Bell, E. L., Klimova, T. A., Eisenbart, J., Schumacker, P. T., & Chandel, N. S. (2007). Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 27(16), 5737–5745. doi:10.1128/MCB.02265-06.PubMedCentralPubMed Bell, E. L., Klimova, T. A., Eisenbart, J., Schumacker, P. T., & Chandel, N. S. (2007). Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Molecular and Cellular Biology, 27(16), 5737–5745. doi:10.​1128/​MCB.​02265-06.PubMedCentralPubMed
228.
go back to reference Davy, P., & Allsopp, R. (2011). Hypoxia: are stem cells in it for the long run? Cell Cycle, 10(2), 206–211.PubMed Davy, P., & Allsopp, R. (2011). Hypoxia: are stem cells in it for the long run? Cell Cycle, 10(2), 206–211.PubMed
229.
go back to reference Coussens, M., Davy, P., Brown, L., Foster, C., Andrews, W. H., Nagata, M., et al. (2010). RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1alpha as critical for telomerase function in murine embryonic stem cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13842–13847. doi:10.1073/pnas.0913834107.PubMedCentralPubMed Coussens, M., Davy, P., Brown, L., Foster, C., Andrews, W. H., Nagata, M., et al. (2010). RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1alpha as critical for telomerase function in murine embryonic stem cells. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13842–13847. doi:10.​1073/​pnas.​0913834107.PubMedCentralPubMed
231.
go back to reference Young, A. P., Schlisio, S., Minamishima, Y. A., Zhang, Q., Li, L., Grisanzio, C., et al. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nature Cell Biology, 10(3), 361–369. doi:10.1038/ncb1699.PubMed Young, A. P., Schlisio, S., Minamishima, Y. A., Zhang, Q., Li, L., Grisanzio, C., et al. (2008). VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Nature Cell Biology, 10(3), 361–369. doi:10.​1038/​ncb1699.PubMed
233.
go back to reference Oh, S., Lee, E., Lee, J., Lim, Y., Kim, J., & Woo, S. (2008). Comparison of the effects of 40 % oxygen and two atmospheric absolute air pressure conditions on stress-induced premature senescence of normal human diploid fibroblasts. [Comparative Study Research Support, Non-U.S. Gov't]. Cell Stress & Chaperones, 13(4), 447–458. doi:10.1007/s12192-008-0041-5. Oh, S., Lee, E., Lee, J., Lim, Y., Kim, J., & Woo, S. (2008). Comparison of the effects of 40 % oxygen and two atmospheric absolute air pressure conditions on stress-induced premature senescence of normal human diploid fibroblasts. [Comparative Study Research Support, Non-U.S. Gov't]. Cell Stress & Chaperones, 13(4), 447–458. doi:10.​1007/​s12192-008-0041-5.
234.
go back to reference Napier, C. E., Veas, L. A., Kan, C. Y., Taylor, L. M., Yuan, J., Wen, V. W., et al. (2010). Mild hyperoxia limits hTR levels, telomerase activity, and telomere length maintenance in hTERT-transduced bone marrow endothelial cells. [Research Support, Non-U.S. Gov't]. Biochimica et Biophysica Acta, 1803(10), 1142–1153. doi:10.1016/j.bbamcr.2010.06.010.PubMed Napier, C. E., Veas, L. A., Kan, C. Y., Taylor, L. M., Yuan, J., Wen, V. W., et al. (2010). Mild hyperoxia limits hTR levels, telomerase activity, and telomere length maintenance in hTERT-transduced bone marrow endothelial cells. [Research Support, Non-U.S. Gov't]. Biochimica et Biophysica Acta, 1803(10), 1142–1153. doi:10.​1016/​j.​bbamcr.​2010.​06.​010.PubMed
235.
go back to reference Londhe, V. A., Sundar, I. K., Lopez, B., Maisonet, T. M., Yu, Y., Aghai, Z. H., et al. (2011). Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Pediatric Research, 69(5 Pt 1), 371–377. doi:10.1203/PDR.0b013e318211c917.PubMedCentralPubMed Londhe, V. A., Sundar, I. K., Lopez, B., Maisonet, T. M., Yu, Y., Aghai, Z. H., et al. (2011). Hyperoxia impairs alveolar formation and induces senescence through decreased histone deacetylase activity and up-regulation of p21 in neonatal mouse lung. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Pediatric Research, 69(5 Pt 1), 371–377. doi:10.​1203/​PDR.​0b013e318211c917​.PubMedCentralPubMed
236.
go back to reference Klimova, T. A., Bell, E. L., Shroff, E. H., Weinberg, F. D., Snyder, C. M., Dimri, G. P., et al. (2009). Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. FASEB Journal, 23(3), 783–794. doi:10.1096/fj.08-114256.PubMedCentralPubMed Klimova, T. A., Bell, E. L., Shroff, E. H., Weinberg, F. D., Snyder, C. M., Dimri, G. P., et al. (2009). Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. FASEB Journal, 23(3), 783–794. doi:10.​1096/​fj.​08-114256.PubMedCentralPubMed
237.
go back to reference Wu, W. S., Wu, J. R., & Hu, C. T. (2008). Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. [Research Support, Non-U.S. Gov't Review]. Cancer Metastasis Reviews, 27(2), 303–314. doi:10.1007/s10555-008-9112-4.PubMed Wu, W. S., Wu, J. R., & Hu, C. T. (2008). Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. [Research Support, Non-U.S. Gov't Review]. Cancer Metastasis Reviews, 27(2), 303–314. doi:10.​1007/​s10555-008-9112-4.PubMed
238.
go back to reference Schelter, F., Gerg, M., Halbgewachs, B., Schaten, S., Gorlach, A., Schrotzlmair, F., et al. (2010). Identification of a survival-independent metastasis-enhancing role of hypoxia-inducible factor-1alpha with a hypoxia-tolerant tumor cell line. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(34), 26182–26189. doi:10.1074/jbc.M110.140608.PubMedCentralPubMed Schelter, F., Gerg, M., Halbgewachs, B., Schaten, S., Gorlach, A., Schrotzlmair, F., et al. (2010). Identification of a survival-independent metastasis-enhancing role of hypoxia-inducible factor-1alpha with a hypoxia-tolerant tumor cell line. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(34), 26182–26189. doi:10.​1074/​jbc.​M110.​140608.PubMedCentralPubMed
239.
go back to reference Nishida, C., Kusubata, K., Tashiro, Y., Gritli, I., Sato, A., Ohki-Koizumi, M., et al. (2012). MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood, 119(23), 5405–5416. doi:10.1182/blood-2011-11-390849.PubMed Nishida, C., Kusubata, K., Tashiro, Y., Gritli, I., Sato, A., Ohki-Koizumi, M., et al. (2012). MT1-MMP plays a critical role in hematopoiesis by regulating HIF-mediated chemokine/cytokine gene transcription within niche cells. Blood, 119(23), 5405–5416. doi:10.​1182/​blood-2011-11-390849.PubMed
241.
go back to reference Incorvaia, L., Badalamenti, G., Rini, G., Arcara, C., Fricano, S., Sferrazza, C., et al. (2007). MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. [Research Support, Non-U.S. Gov't]. Anticancer Research, 27(3B), 1519–1525.PubMed Incorvaia, L., Badalamenti, G., Rini, G., Arcara, C., Fricano, S., Sferrazza, C., et al. (2007). MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. [Research Support, Non-U.S. Gov't]. Anticancer Research, 27(3B), 1519–1525.PubMed
242.
go back to reference Zhu, S., Zhou, Y., Wang, L., Zhang, J., Wu, H., Xiong, J., et al. (2011). Transcriptional upregulation of MT2-MMP in response to hypoxia is promoted by HIF-1alpha in cancer cells. Molecular Carcinogenesis, 50(10), 770–780. doi:10.1002/mc.20678.PubMed Zhu, S., Zhou, Y., Wang, L., Zhang, J., Wu, H., Xiong, J., et al. (2011). Transcriptional upregulation of MT2-MMP in response to hypoxia is promoted by HIF-1alpha in cancer cells. Molecular Carcinogenesis, 50(10), 770–780. doi:10.​1002/​mc.​20678.PubMed
243.
go back to reference Canning, M. T., Postovit, L. M., Clarke, S. H., & Graham, C. H. (2001). Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. [Research Support, Non-U.S. Gov't]. Experimental Cell Research, 267(1), 88–94. doi:10.1006/excr.2001.5243.PubMed Canning, M. T., Postovit, L. M., Clarke, S. H., & Graham, C. H. (2001). Oxygen-mediated regulation of gelatinase and tissue inhibitor of metalloproteinases-1 expression by invasive cells. [Research Support, Non-U.S. Gov't]. Experimental Cell Research, 267(1), 88–94. doi:10.​1006/​excr.​2001.​5243.PubMed
244.
go back to reference Moen, I., Oyan, A. M., Kalland, K. H., Tronstad, K. J., Akslen, L. A., Chekenya, M., et al. (2009). Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. [Research Support, Non-U.S. Gov't]. PLoS One, 4(7), e6381. doi:10.1371/journal.pone.0006381.PubMedCentralPubMed Moen, I., Oyan, A. M., Kalland, K. H., Tronstad, K. J., Akslen, L. A., Chekenya, M., et al. (2009). Hyperoxic treatment induces mesenchymal-to-epithelial transition in a rat adenocarcinoma model. [Research Support, Non-U.S. Gov't]. PLoS One, 4(7), e6381. doi:10.​1371/​journal.​pone.​0006381.PubMedCentralPubMed
245.
go back to reference Zhao, J. H., Luo, Y., Jiang, Y. G., He, D. L., & Wu, C. T. (2011). Knockdown of beta-catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1alpha. [Research Support, Non-U.S. Gov't]. Cancer Investigation, 29(6), 377–382. doi:10.3109/07357907.2010.512595.PubMed Zhao, J. H., Luo, Y., Jiang, Y. G., He, D. L., & Wu, C. T. (2011). Knockdown of beta-catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1alpha. [Research Support, Non-U.S. Gov't]. Cancer Investigation, 29(6), 377–382. doi:10.​3109/​07357907.​2010.​512595.PubMed
246.
go back to reference Schietke, R., Warnecke, C., Wacker, I., Schodel, J., Mole, D. R., Campean, V., et al. (2010). The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(9), 6658–6669. doi:10.1074/jbc.M109.042424.PubMedCentralPubMed Schietke, R., Warnecke, C., Wacker, I., Schodel, J., Mole, D. R., Campean, V., et al. (2010). The lysyl oxidases LOX and LOXL2 are necessary and sufficient to repress E-cadherin in hypoxia: insights into cellular transformation processes mediated by HIF-1. [Research Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(9), 6658–6669. doi:10.​1074/​jbc.​M109.​042424.PubMedCentralPubMed
247.
go back to reference Chang, L. H., Chen, C. H., Huang, D. Y., Pai, H. C., Pan, S. L., & Teng, C. M. (2011). Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1alpha translational pathway in colorectal cancer cells. [Research Support, Non-U.S. Gov't]. Journal of Cellular Physiology, 226(4), 1060–1068. doi:10.1002/jcp.22428.PubMed Chang, L. H., Chen, C. H., Huang, D. Y., Pai, H. C., Pan, S. L., & Teng, C. M. (2011). Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1alpha translational pathway in colorectal cancer cells. [Research Support, Non-U.S. Gov't]. Journal of Cellular Physiology, 226(4), 1060–1068. doi:10.​1002/​jcp.​22428.PubMed
248.
go back to reference Binker, M. G., Binker-Cosen, A. A., Richards, D., Gaisano, H. Y., de Cosen, R. H., & Cosen-Binker, L. I. (2010). Hypoxia–reoxygenation increase invasiveness of PANC-1 cells through Rac1/MMP-2. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 393(3), 371–376. doi:10.1016/j.bbrc.2010.01.125.PubMed Binker, M. G., Binker-Cosen, A. A., Richards, D., Gaisano, H. Y., de Cosen, R. H., & Cosen-Binker, L. I. (2010). Hypoxia–reoxygenation increase invasiveness of PANC-1 cells through Rac1/MMP-2. [Research Support, Non-U.S. Gov't]. Biochemical and Biophysical Research Communications, 393(3), 371–376. doi:10.​1016/​j.​bbrc.​2010.​01.​125.PubMed
249.
go back to reference Kokura, S., Yoshida, N., Imamoto, E., Ueda, M., Ishikawa, T., Uchiyama, K., et al. (2004). Anoxia/reoxygenation down-regulates the expression of E-cadherin in human colon cancer cell lines. Cancer Letters, 211(1), 79–87. doi:10.1016/j.canlet.2004.01.030.PubMed Kokura, S., Yoshida, N., Imamoto, E., Ueda, M., Ishikawa, T., Uchiyama, K., et al. (2004). Anoxia/reoxygenation down-regulates the expression of E-cadherin in human colon cancer cell lines. Cancer Letters, 211(1), 79–87. doi:10.​1016/​j.​canlet.​2004.​01.​030.PubMed
250.
go back to reference Crandall, D. L., Busler, D. E., McHendry-Rinde, B., Groeling, T. M., & Kral, J. G. (2000). Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. Journal of Clinical Endocrinology and Metabolism, 85(7), 2609–2614.PubMed Crandall, D. L., Busler, D. E., McHendry-Rinde, B., Groeling, T. M., & Kral, J. G. (2000). Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. Journal of Clinical Endocrinology and Metabolism, 85(7), 2609–2614.PubMed
251.
go back to reference Sprague, L. D., Mengele, K., Schilling, D., Geurts-Moespot, A., Sweep, F. C., Stadler, P., et al. (2006). Effect of reoxygenation on the hypoxia-induced up-regulation of serine protease inhibitor PAI-1 in head and neck cancer cells. [Research Support, Non-U.S. Gov't]. Oncology, 71(3–4), 282–291. doi:10.1159/000106789.PubMed Sprague, L. D., Mengele, K., Schilling, D., Geurts-Moespot, A., Sweep, F. C., Stadler, P., et al. (2006). Effect of reoxygenation on the hypoxia-induced up-regulation of serine protease inhibitor PAI-1 in head and neck cancer cells. [Research Support, Non-U.S. Gov't]. Oncology, 71(3–4), 282–291. doi:10.​1159/​000106789.PubMed
252.
go back to reference Postovit, L. M., Abbott, D. E., Payne, S. L., Wheaton, W. W., Margaryan, N. V., Sullivan, R., et al. (2008). Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cellular Biochemistry, 103(5), 1369–1378. doi:10.1002/jcb.21517.PubMed Postovit, L. M., Abbott, D. E., Payne, S. L., Wheaton, W. W., Margaryan, N. V., Sullivan, R., et al. (2008). Hypoxia/reoxygenation: a dynamic regulator of lysyl oxidase-facilitated breast cancer migration. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cellular Biochemistry, 103(5), 1369–1378. doi:10.​1002/​jcb.​21517.PubMed
253.
go back to reference An, W. G., Kanekal, M., Simon, M. C., Maltepe, E., Blagosklonny, M. V., & Neckers, L. M. (1998). Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature, 392(6674), 405–408. doi:10.1038/32925.PubMed An, W. G., Kanekal, M., Simon, M. C., Maltepe, E., Blagosklonny, M. V., & Neckers, L. M. (1998). Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature, 392(6674), 405–408. doi:10.​1038/​32925.PubMed
254.
go back to reference Wenger, R. H., Camenisch, G., Desbaillets, I., Chilov, D., & Gassmann, M. (1998). Up-regulation of hypoxia-inducible factor-1alpha is not sufficient for hypoxic/anoxic p53 induction. [Research Support, Non-U.S. Gov't]. Cancer Research, 58(24), 5678–5680.PubMed Wenger, R. H., Camenisch, G., Desbaillets, I., Chilov, D., & Gassmann, M. (1998). Up-regulation of hypoxia-inducible factor-1alpha is not sufficient for hypoxic/anoxic p53 induction. [Research Support, Non-U.S. Gov't]. Cancer Research, 58(24), 5678–5680.PubMed
255.
go back to reference Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Genes and Development, 14(1), 34–44.PubMedCentralPubMed Ravi, R., Mookerjee, B., Bhujwalla, Z. M., Sutter, C. H., Artemov, D., Zeng, Q., et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Genes and Development, 14(1), 34–44.PubMedCentralPubMed
256.
go back to reference Feig, D. I., & Loeb, L. A. (1993). Mechanisms of mutation by oxidative DNA damage: reduced fidelity of mammalian DNA polymerase beta. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Biochemistry, 32(16), 4466–4473.PubMed Feig, D. I., & Loeb, L. A. (1993). Mechanisms of mutation by oxidative DNA damage: reduced fidelity of mammalian DNA polymerase beta. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Biochemistry, 32(16), 4466–4473.PubMed
257.
go back to reference Martinet, W., de Meyer, G. R., Herman, A. G., & Kockx, M. M. (2004). Reactive oxygen species induce RNA damage in human atherosclerosis. [Research Support, Non-U.S. Gov't]. European Journal of Clinical Investigation, 34(5), 323–327. doi:10.1111/j.1365-2362.2004.01343.x.PubMed Martinet, W., de Meyer, G. R., Herman, A. G., & Kockx, M. M. (2004). Reactive oxygen species induce RNA damage in human atherosclerosis. [Research Support, Non-U.S. Gov't]. European Journal of Clinical Investigation, 34(5), 323–327. doi:10.​1111/​j.​1365-2362.​2004.​01343.​x.PubMed
258.
go back to reference Bindra, R. S., Schaffer, P. J., Meng, A., Woo, J., Maseide, K., Roth, M. E., et al. (2005). Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Annals of the New York Academy of Sciences, 1059, 184–195. doi:10.1196/annals.1339.049.PubMed Bindra, R. S., Schaffer, P. J., Meng, A., Woo, J., Maseide, K., Roth, M. E., et al. (2005). Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability. Annals of the New York Academy of Sciences, 1059, 184–195. doi:10.​1196/​annals.​1339.​049.PubMed
259.
go back to reference Kumareswaran, R., Ludkovski, O., Meng, A., Sykes, J., Pintilie, M., & Bristow, R. G. (2012). Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. [Research Support, Non-U.S. Gov't]. Journal of Cell Science, 125(Pt 1), 189–199. doi:10.1242/jcs.092262.PubMed Kumareswaran, R., Ludkovski, O., Meng, A., Sykes, J., Pintilie, M., & Bristow, R. G. (2012). Chronic hypoxia compromises repair of DNA double-strand breaks to drive genetic instability. [Research Support, Non-U.S. Gov't]. Journal of Cell Science, 125(Pt 1), 189–199. doi:10.​1242/​jcs.​092262.PubMed
260.
go back to reference Hammond, E. M., & Giaccia, A. J. (2004). The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. [Research Support, U.S. Gov't, P.H.S. Review]. DNA Repair (Amst), 3(8–9), 1117–1122. doi:10.1016/j.dnarep.2004.03.035. Hammond, E. M., & Giaccia, A. J. (2004). The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. [Research Support, U.S. Gov't, P.H.S. Review]. DNA Repair (Amst), 3(8–9), 1117–1122. doi:10.​1016/​j.​dnarep.​2004.​03.​035.
261.
go back to reference Bristow, R. G., & Hill, R. P. (2008). Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. [Research Support, Non-U.S. Gov't Review]. Nature Reviews Cancer, 8(3), 180–192. doi:10.1038/nrc2344.PubMed Bristow, R. G., & Hill, R. P. (2008). Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. [Research Support, Non-U.S. Gov't Review]. Nature Reviews Cancer, 8(3), 180–192. doi:10.​1038/​nrc2344.PubMed
262.
go back to reference Das, K. C., & Dashnamoorthy, R. (2004). Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(1), L87–L97. doi:10.1152/ajplung.00203.2002.PubMed Das, K. C., & Dashnamoorthy, R. (2004). Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. [Research Support, Non-U.S. Gov't]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 286(1), L87–L97. doi:10.​1152/​ajplung.​00203.​2002.PubMed
263.
go back to reference Kulkarni, A., & Das, K. C. (2008). Differential roles of ATR and ATM in p53, Chk1, and histone H2AX phosphorylation in response to hyperoxia: ATR-dependent ATM activation. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294(5), L998–L1006. doi:10.1152/ajplung.00004.2008.PubMed Kulkarni, A., & Das, K. C. (2008). Differential roles of ATR and ATM in p53, Chk1, and histone H2AX phosphorylation in response to hyperoxia: ATR-dependent ATM activation. [Research Support, N.I.H., Extramural]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 294(5), L998–L1006. doi:10.​1152/​ajplung.​00004.​2008.PubMed
264.
go back to reference Gewandter, J. S., Bambara, R. A., & O'Reilly, M. A. (2011). The RNA surveillance protein SMG1 activates p53 in response to DNA double-strand breaks but not exogenously oxidized mRNA. [Research Support, N.I.H., Extramural]. Cell Cycle, 10(15), 2561–2567.PubMedCentralPubMed Gewandter, J. S., Bambara, R. A., & O'Reilly, M. A. (2011). The RNA surveillance protein SMG1 activates p53 in response to DNA double-strand breaks but not exogenously oxidized mRNA. [Research Support, N.I.H., Extramural]. Cell Cycle, 10(15), 2561–2567.PubMedCentralPubMed
265.
go back to reference Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Nature, 389(6648), 300–305. doi:10.1038/38525.PubMed Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. Nature, 389(6648), 300–305. doi:10.​1038/​38525.PubMed
266.
go back to reference Rivera, A., & Maxwell, S. A. (2005). The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. Journal of Biological Chemistry, 280(32), 29346–29354. doi:10.1074/jbc.M504852200.PubMed Rivera, A., & Maxwell, S. A. (2005). The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. Journal of Biological Chemistry, 280(32), 29346–29354. doi:10.​1074/​jbc.​M504852200.PubMed
267.
go back to reference Liu, Z., Lu, H., Shi, H., Du, Y., Yu, J., Gu, S., et al. (2005). PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. [Research Support, Non-U.S. Gov't]. Cancer Research, 65(5), 1647–1654. doi:10.1158/0008-5472.CAN-04-1754.PubMed Liu, Z., Lu, H., Shi, H., Du, Y., Yu, J., Gu, S., et al. (2005). PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. [Research Support, Non-U.S. Gov't]. Cancer Research, 65(5), 1647–1654. doi:10.​1158/​0008-5472.​CAN-04-1754.PubMed
268.
go back to reference Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. [Research Support, N.I.H., Intramural]. Science, 312(5780), 1650–1653. doi:10.1126/science.1126863.PubMed Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., et al. (2006). p53 regulates mitochondrial respiration. [Research Support, N.I.H., Intramural]. Science, 312(5780), 1650–1653. doi:10.​1126/​science.​1126863.PubMed
269.
go back to reference Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. [Research Support, Non-U.S. Gov't]. Cell, 126(1), 107–120. doi:10.1016/j.cell.2006.05.036.PubMed Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. [Research Support, Non-U.S. Gov't]. Cell, 126(1), 107–120. doi:10.​1016/​j.​cell.​2006.​05.​036.PubMed
270.
go back to reference Brand, K. A., & Hermfisse, U. (1997). Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. [Comparative Study Research Support, Non-U.S. Gov't]. FASEB Journal, 11(5), 388–395.PubMed Brand, K. A., & Hermfisse, U. (1997). Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. [Comparative Study Research Support, Non-U.S. Gov't]. FASEB Journal, 11(5), 388–395.PubMed
272.
273.
go back to reference Naito, A. T., Okada, S., Minamino, T., Iwanaga, K., Liu, M. L., Sumida, T., et al. (2010). Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. [Research Support, Non-U.S. Gov't]. Circulation Research, 106(11), 1692–1702. doi:10.1161/CIRCRESAHA.109.214346.PubMed Naito, A. T., Okada, S., Minamino, T., Iwanaga, K., Liu, M. L., Sumida, T., et al. (2010). Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. [Research Support, Non-U.S. Gov't]. Circulation Research, 106(11), 1692–1702. doi:10.​1161/​CIRCRESAHA.​109.​214346.PubMed
274.
276.
go back to reference Brooks, C. L., & Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Current Opinion in Cell Biology, 15(2), 164–171.PubMed Brooks, C. L., & Gu, W. (2003). Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. Review]. Current Opinion in Cell Biology, 15(2), 164–171.PubMed
277.
go back to reference Lee, S. J., Lim, C. J., Min, J. K., Lee, J. K., Kim, Y. M., Lee, J. Y., et al. (2007). Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2. [Research Support, N.I.H., Extramural]. Cell Death and Differentiation, 14(6), 1106–1116. doi:10.1038/sj.cdd.4402111.PubMed Lee, S. J., Lim, C. J., Min, J. K., Lee, J. K., Kim, Y. M., Lee, J. Y., et al. (2007). Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2. [Research Support, N.I.H., Extramural]. Cell Death and Differentiation, 14(6), 1106–1116. doi:10.​1038/​sj.​cdd.​4402111.PubMed
278.
280.
go back to reference Ruas, J. L., Berchner-Pfannschmidt, U., Malik, S., Gradin, K., Fandrey, J., Roeder, R. G., et al. (2010). Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. [Research Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(4), 2601–2609. doi:10.1074/jbc.M109.021824.PubMedCentralPubMed Ruas, J. L., Berchner-Pfannschmidt, U., Malik, S., Gradin, K., Fandrey, J., Roeder, R. G., et al. (2010). Complex regulation of the transactivation function of hypoxia-inducible factor-1 alpha by direct interaction with two distinct domains of the CREB-binding protein/p300. [Research Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov't]. Journal of Biological Chemistry, 285(4), 2601–2609. doi:10.​1074/​jbc.​M109.​021824.PubMedCentralPubMed
282.
go back to reference MacLaine, N. J., & Hupp, T. R. (2011). How phosphorylation controls p53. Cell Cycle, 10(6), 916–921.PubMed MacLaine, N. J., & Hupp, T. R. (2011). How phosphorylation controls p53. Cell Cycle, 10(6), 916–921.PubMed
284.
go back to reference Peck, B., Chen, C. Y., Ho, K. K., Di Fruscia, P., Myatt, S. S., Coombes, R. C., et al. (2010). SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. [Research Support, Non-U.S. Gov't]. Molecular Cancer Therapeutics, 9(4), 844–855. doi:10.1158/1535-7163.MCT-09-0971.PubMed Peck, B., Chen, C. Y., Ho, K. K., Di Fruscia, P., Myatt, S. S., Coombes, R. C., et al. (2010). SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. [Research Support, Non-U.S. Gov't]. Molecular Cancer Therapeutics, 9(4), 844–855. doi:10.​1158/​1535-7163.​MCT-09-0971.PubMed
285.
go back to reference Cao, C., Lu, S., Kivlin, R., Wallin, B., Card, E., Bagdasarian, A., et al. (2009). SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cellular and Molecular Medicine, 13(9B), 3632–3643. doi:10.1111/j.1582-4934.2008.00453.x.PubMed Cao, C., Lu, S., Kivlin, R., Wallin, B., Card, E., Bagdasarian, A., et al. (2009). SIRT1 confers protection against UVB- and H2O2-induced cell death via modulation of p53 and JNK in cultured skin keratinocytes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Journal of Cellular and Molecular Medicine, 13(9B), 3632–3643. doi:10.​1111/​j.​1582-4934.​2008.​00453.​x.PubMed
286.
287.
288.
go back to reference Scoumanne, A., & Chen, X. (2008). Protein methylation: a new mechanism of p53 tumor suppressor regulation. [Review]. Histology and Histopathology, 23(9), 1143–1149.PubMedCentralPubMed Scoumanne, A., & Chen, X. (2008). Protein methylation: a new mechanism of p53 tumor suppressor regulation. [Review]. Histology and Histopathology, 23(9), 1143–1149.PubMedCentralPubMed
Metadata
Title
Oxygen regulates molecular mechanisms of cancer progression and metastasis
Authors
Kartik Gupta
Esha Madan
Muzzammil Sayyid
Hugo Arias-Pulido
Eduardo Moreno
Periannan Kuppusamy
Rajan Gogna
Publication date
01-03-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9464-2

Other articles of this Issue 1/2014

Cancer and Metastasis Reviews 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine