Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration

Abstract

Erythropoietin (Epo) is upregulated by hypoxia and provides protection against apoptosis of erythroid progenitors in bone marrow and brain neurons. Here we show in the adult mouse retina that acute hypoxia dose-dependently stimulates expression of Epo, fibroblast growth factor 2 and vascular endothelial growth factor via hypoxia-inducible factor-1α (HIF-1α) stabilization. Hypoxic preconditioning protects retinal morphology and function against light-induced apoptosis by interfering with caspase-1 activation, a downstream event in the intracellular death cascade. In contrast, induction of activator protein-1, an early event in the light-stressed retina, is not affected by hypoxia. The Epo receptor required for Epo signaling localizes to photoreceptor cells. The protective effect of hypoxic preconditioning is mimicked by systemically applied Epo that crosses the blood–retina barrier and prevents apoptosis even when given therapeutically after light insult. Application of Epo may, through the inhibition of apoptosis, be beneficial for the treatment of different forms of retinal disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypoxia protects retinal morphology and function after light insult (5,800 lx).
Figure 2: Hypoxic preconditioning interferes with a late step in the apoptotic signaling cascade.
Figure 3: Hypoxic exposure induces HIF-1α, VEGF, Epo and FGF-2 in a dose- and time-dependent manner.
Figure 4: EpoR (red staining) localizes to inner segments of photoreceptors and to the region of synaptic complexes in the outer plexiform layer.
Figure 5: Systemic administration of hrEpo protects photoreceptors against light damage.
Figure 6: Intracellular signaling molecules after hypoxic preconditioning and light exposure.

Similar content being viewed by others

References

  1. Honig, L.S. & Rosenberg, R.N. Apoptosis and neurologic disease. Am. J. Med. 108, 317–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Nickells, R.W. Apoptosis of retinal ganglion cells in glaucoma: an update of the molecular pathways involved in cell death. Surv. Ophthalmol. 43, S151–161 (1999).

    Article  PubMed  Google Scholar 

  3. Adler, R., Curcio, C., Hicks, D., Price, D. & Wong, F. Cell death in age-related macular degeneration. Mol. Vis. 5, 31 (1999).

    CAS  PubMed  Google Scholar 

  4. van Soest, S., Westerveld, A., de Jong, P.T., Bleeker-Wagemakers, E.M. & Bergen, A.A. Retinitis pigmentosa: Defined from a molecular point of view. Surv. Ophthalmol. 43, 321–334 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Cruickshanks, K.J., Klein, R., Klein, B.E. & Nondahl, D.M. Sunlight and the 5-year incidence of early age-related maculopathy: The Beaver Dam Eye Study. Arch. Ophthalmol. 119, 246–250 (2001).

    CAS  PubMed  Google Scholar 

  6. Reme, C.E., Grimm, C., Hafezi, F., Marti, A. & Wenzel, A. Apoptotic cell death in retinal degenerations. Prog. Retin. Eye Res. 17, 443–464 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Grimm, C. et al. Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-induced retinal degeneration. Nature Genet. 25, 63–66 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Wenzel, A., Reme, C.E., Williams, T.P., Hafezi, F. & Grimm, C. The Rpe65 Leu450Met variation increases retinal resistance against light-induced degeneration by slowing rhodopsin regeneration. J. Neurosci. 21, 53–58 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saari, J.C. et al. Visual cycle impairment in cellular retinaldehyde binding protein (CRALBP) knockout mice results in delayed dark adaptation. Neuron 29, 739–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Wenzel, A. et al. Prevention of photoreceptor apoptosis by activation of the glucocorticoid receptor. Invest. Ophthalmol. Vis. Sci. 42, 1653–1659 (2001).

    CAS  PubMed  Google Scholar 

  11. Grimm, C., Wenzel, A., Hafezi, F. & Reme, C.E. Gene expression in the mouse retina: The effect of damaging light. Mol. Vis. 6, 252–260 (2000).

    CAS  PubMed  Google Scholar 

  12. Jelkmann, W., Erythropoietin: Structure, control of production, and function. Physiol. Rev. 72, 449–489 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Siren, A.L. et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc. Natl. Acad. Sci. USA 98, 4044–4049 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brines, M.L. et al. Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proc. Natl. Acad. Sci. USA 97, 10526–10531 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaman, K. et al. Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J. Neurosci. 19, 9821–9830 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hofer, T., Wenger, H. & Gassmann, M. Oxygen sensing, HIF-1α stabilization and potential therapeutic strategies. Pflugers Arch. 443, 503–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Semenza, G.L. HIF-1, O(2), and the 3 phds. How animal cells signal hypoxia to the nucleus. Cell 107, 1–3 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Barbe, M.F., Tytell, M., Gower, D.J. & Welch, W.J. Hyperthermia protects against light damage in the rat retina. Science 241, 1817–1820 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Stroka, D.M. et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J. 15, 2445–2453 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Fandrey, J. & Bunn, H.F. In vivo and in vitro regulation of erythropoietin mRNA: Measurement by competitive polymerase chain reaction. Blood 81, 617–623 (1993).

    CAS  PubMed  Google Scholar 

  21. Steinberg, R.H. Monitoring communications between photoreceptors and pigment epithelial cells: Effects of “mild” systemic hypoxia. Invest. Ophthalmol. Vis. Sci. 28, 1888–1904 (1987).

    CAS  PubMed  Google Scholar 

  22. Chilov, D., Hofer, T., Bauer, C., Wenger, R.H. & Gassmann, M. Hypoxia affects expression of circadian genes PER1 and CLOCK in mouse brain. FASEB J. 15, 2613–2622 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Coffer, P.J., Jin, J. & Woodgett, J.R. Protein kinase B (c-Akt): A multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 335, 1–13 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Miura, Y., Miura, O., Ihle, J.N. & Aoki, N. Activation of the mitogen-activated protein kinase pathway by the erythropoietin receptor. J. Biol. Chem. 269, 29962–29969 (1994).

    CAS  PubMed  Google Scholar 

  25. Ozaki, H. et al. Hypoxia inducible factor-1α is increased in ischemic retina: Temporal and spatial correlation with VEGF expression. Invest. Ophthalmol. Vis. Sci. 40, 182–189 (1999).

    CAS  PubMed  Google Scholar 

  26. Siren, A.L. & Ehrenreich, H. Erythropoietin—a novel concept for neuroprotection. Eur. Arch. Psychiatry Clin. Neurosci. 251, 179–184 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Robinson, G.S. et al. Nonvascular role for VEGF: VEGFR-1, 2 activity is critical for neural retinal development. FASEB J. 15, 1215–1217 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Faktorovich, E.G., Steinberg, R.H., Yasumura, D., Matthes, M.T. & LaVail, M.M. Photoreceptor degeneration in inherited retinal dystrophy delayed by basic fibroblast growth factor. Nature 347, 83–86 (1990).

    Article  CAS  PubMed  Google Scholar 

  29. Faktorovich, E.G., Steinberg, R.H., Yasumura, D., Matthes, M.T. & LaVail, M.M. Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J. Neurosci. 12, 3554–3567 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamada, H. et al. Fibroblast growth factor-2 decreases hyperoxia-induced photoreceptor cell death in mice. Am. J. Pathol. 159, 1113–1120 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. LaVail, M.W. et al. Protection of mouse photoreceptors by survival factors in retinal degenerations. Invest. Ophthalmol. Vis. Sci. 39, 592–602 (1998).

    CAS  PubMed  Google Scholar 

  32. Spencer, B., Agarwala, S., Gentry, L. & Brandt, C.R. HSV-1 vector-delivered FGF2 to the retina is neuroprotective but does not preserve functional responses. Mol. Ther. 3, 746–756 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Wenzel, A. et al. c-fos controls the “private pathway” of light-induced apoptosis of retinal photoreceptors. J. Neurosci. 20, 81–88 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chattopadhyay, A., Choudhury, T.D., Bandyopadhyay, D. & Datta, A.G. Protective effect of erythropoietin on the oxidative damage of erythrocyte membrane by hydroxyl radical. Biochem. Pharmacol. 59, 419–425 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Keller, C., Grimm, C., Wenzel, A., Hafezi, F. & Reme, C. Protective effect of halothane anesthesia on retinal light damage: Inhibition of metabolic rhodopsin regeneration. Invest. Ophthalmol. Vis. Sci. 42, 476–480 (2001).

    CAS  PubMed  Google Scholar 

  36. Ostroy, S.E., Gaitatzes, C.G. & Friedmann, A.L. Hypoxia inhibits rhodopsin regeneration in the excised mouse eye. Invest. Ophthalmol. Vis. Sci. 34, 447–452 (1993).

    CAS  PubMed  Google Scholar 

  37. Bowers, F. et al. Effects of oxygen and bFGF on the vulnerability of photoreceptors to light damage. Invest. Ophthalmol. Vis. Sci. 42, 804–815 (2001).

    CAS  PubMed  Google Scholar 

  38. Lip, P.L., Blann, A.D., Hope-Ross, M., Gibson, J.M. & Lip, G.Y. Age-related macular degeneration is associated with increased vascular endothelial growth factor, hemorheology and endothelial dysfunction. Ophthalmology 108, 705–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Pierce, E.A. et al. Mutations in a gene encoding a new oxygen-regulated photoreceptor protein cause dominant retinitis pigmentosa. Nature Genet. 22, 248–254 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Seeliger, M.W. et al. New views on RPE65 deficiency: The rod system is the source of vision in a mouse model of Leber congenital amaurosis. Nature Genet. 29, 70–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Camenisch, G. et al. General applicability of chicken egg yolk antibodies: the performance of IgY immunoglobulins raised against the hypoxia-inducible factor 1α. Faseb J. 13, 81–88 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Kueng-Hitz, N. et al. The retina of c-fos−/− mice: Electrophysiologic, morphologic and biochemical aspects. Invest. Ophthalmol. Vis. Sci. 41, 909–916 (2000).

    CAS  PubMed  Google Scholar 

  43. Fry, J. Biological data analysis: A practical approach (IRL Press, Oxford, 1993).

    Google Scholar 

  44. Toutenberg, H. Experimental Design and Model Choice. (Physica, Berlin, 1995).

    Book  Google Scholar 

Download references

Acknowledgements

We thank D. Greuter, G. Hoegger, C. Imsand and S. Keller for technical assistance; I. Desbaillets for discussion; F. Valeri for statistical analysis; U. Busse for administrative help; and T. Seiler and K. Landau for continuous support of our work. This study was supported by the Swiss National Science Foundation, Theodore Ott Foundation Switzerland, Hartmann-Müller Foundation Switzerland, Velux Foundation, Switzerland and the German Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Grimm.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, C., Wenzel, A., Groszer, M. et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 8, 718–724 (2002). https://doi.org/10.1038/nm723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm723

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing