Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2020

01-03-2020 | osteosarcoma

New insights into antimetastatic signaling pathways of melatonin in skeletomuscular sarcoma of childhood and adolescence

Authors: Ko-Hsiu Lu, Chiao-Wen Lin, Yi-Hsien Hsieh, Shih-Chi Su, Russel J. Reiter, Shun-Fa Yang

Published in: Cancer and Metastasis Reviews | Issue 1/2020

Login to get access

Abstract

Melatonin is an indole produced by the pineal gland at night under normal light or dark conditions, and its levels, which are higher in children than in adults, begin to decrease prior to the onset of puberty and continue to decline thereafter. Apart from circadian regulatory actions, melatonin has significant apoptotic, angiogenic, oncostatic, and antiproliferative effects on various cancer cells. Particularly, the ability of melatonin to inhibit skeletomuscular sarcoma, which most commonly affects children, teenagers, and young adults, is substantial. In the past few decades, the vast majority of references have focused on the concept of epithelial–mesenchymal transition involvement in invasion and migration to allow carcinoma cells to dissociate from each other and to degrade the extracellular matrix. Recently, researchers have applied this idea to sarcoma cells of mesenchymal origin, e.g., osteosarcoma and Ewing sarcoma, with their ability to initiate the invasion-metastasis cascade. Similarly, interest of the effects of melatonin has shifted from carcinomas to sarcomas. Herein, in this state-of-the-art review, we compiled the knowledge related to the molecular mechanism of antimetastatic actions of melatonin on skeletomuscular sarcoma as in childhood and during adolescence. Utilization of melatonin as an adjuvant with chemotherapeutic drugs for synergy and fortification of the antimetastatic effects for the reinforcement of therapeutic actions are considered.
Literature
8.
10.
go back to reference Karasek, M., & Winczyk, K. (2006). Melatonin in humans. Journal of Physiology and Pharmacology, 57(Suppl 5), 19–39.PubMed Karasek, M., & Winczyk, K. (2006). Melatonin in humans. Journal of Physiology and Pharmacology, 57(Suppl 5), 19–39.PubMed
15.
go back to reference Kierszenbaum, A., & Tres, L. (2012). Histology and cell biology. An introduction to pathology (3rd ed.). Kierszenbaum, A., & Tres, L. (2012). Histology and cell biology. An introduction to pathology (3rd ed.).
18.
go back to reference Reiter, R. J., Rosales-Corral, S. A., Tan, D. X., Acuna-Castroviejo, D., Qin, L., Yang, S. F., et al. (2017). Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. International Journal of Molecular Sciences, 18(4). https://doi.org/10.3390/ijms18040843. Reiter, R. J., Rosales-Corral, S. A., Tan, D. X., Acuna-Castroviejo, D., Qin, L., Yang, S. F., et al. (2017). Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. International Journal of Molecular Sciences, 18(4). https://​doi.​org/​10.​3390/​ijms18040843.
24.
26.
go back to reference Mackay, A. R., Corbitt, R. H., Hartzler, J. L., & Thorgeirsson, U. P. (1990). Basement membrane type IV collagen degradation: Evidence for the involvement of a proteolytic cascade independent of metalloproteinases. Cancer Research, 50(18), 5997–6001.PubMed Mackay, A. R., Corbitt, R. H., Hartzler, J. L., & Thorgeirsson, U. P. (1990). Basement membrane type IV collagen degradation: Evidence for the involvement of a proteolytic cascade independent of metalloproteinases. Cancer Research, 50(18), 5997–6001.PubMed
29.
go back to reference Johnsen, M., Lund, L. R., Romer, J., Almholt, K., & Dano, K. (1998). Cancer invasion and tissue remodeling: Common themes in proteolytic matrix degradation. Current Opinion in Cell Biology, 10(5), 667–671.CrossRefPubMed Johnsen, M., Lund, L. R., Romer, J., Almholt, K., & Dano, K. (1998). Cancer invasion and tissue remodeling: Common themes in proteolytic matrix degradation. Current Opinion in Cell Biology, 10(5), 667–671.CrossRefPubMed
30.
go back to reference Liabakk, N. B., Talbot, I., Smith, R. A., Wilkinson, K., & Balkwill, F. (1996). Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Research, 56(1), 190–196.PubMed Liabakk, N. B., Talbot, I., Smith, R. A., Wilkinson, K., & Balkwill, F. (1996). Matrix metalloprotease 2 (MMP-2) and matrix metalloprotease 9 (MMP-9) type IV collagenases in colorectal cancer. Cancer Research, 56(1), 190–196.PubMed
31.
33.
go back to reference Lu, K. H., Chen, P. N., Hsieh, Y. H., Lin, C. Y., Cheng, F. Y., Chiu, P. C., et al. (2016). 3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food and Chemical Toxicology, 97, 177–186. https://doi.org/10.1016/j.fct.2016.09.006.CrossRefPubMed Lu, K. H., Chen, P. N., Hsieh, Y. H., Lin, C. Y., Cheng, F. Y., Chiu, P. C., et al. (2016). 3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food and Chemical Toxicology, 97, 177–186. https://​doi.​org/​10.​1016/​j.​fct.​2016.​09.​006.CrossRefPubMed
35.
36.
go back to reference Lu, K. H., Su, S. C., Lin, C. W., Hsieh, Y. H., Lin, Y. C., Chien, M. H., et al. (2018). Melatonin attenuates osteosarcoma cell invasion by suppression of C-C motif chemokine ligand 24 through inhibition of the c-Jun N-terminal kinase pathway. Journal of Pineal Research, 35(3), e12507. https://doi.org/10.1111/jpi.12507.CrossRef Lu, K. H., Su, S. C., Lin, C. W., Hsieh, Y. H., Lin, Y. C., Chien, M. H., et al. (2018). Melatonin attenuates osteosarcoma cell invasion by suppression of C-C motif chemokine ligand 24 through inhibition of the c-Jun N-terminal kinase pathway. Journal of Pineal Research, 35(3), e12507. https://​doi.​org/​10.​1111/​jpi.​12507.CrossRef
38.
go back to reference Gonzalez-Gonzalez, A., Rueda-Revilla, N., & Sanchez-Barcelo, E. J. (2019). Clinical uses of melatonin: Evaluation of human clinical trials on cancer treatment. Melatonin Research, 2, 47–69.CrossRef Gonzalez-Gonzalez, A., Rueda-Revilla, N., & Sanchez-Barcelo, E. J. (2019). Clinical uses of melatonin: Evaluation of human clinical trials on cancer treatment. Melatonin Research, 2, 47–69.CrossRef
40.
go back to reference Tan, D. X., Manchester, L. C., Liu, X., Rosales-Corral, S. A., Acuna-Castroviejo, D., & Reiter, R. J. (2013). Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. Journal of Pineal Research, 54(2), 127–138. https://doi.org/10.1111/jpi.12026.CrossRefPubMed Tan, D. X., Manchester, L. C., Liu, X., Rosales-Corral, S. A., Acuna-Castroviejo, D., & Reiter, R. J. (2013). Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin’s primary function and evolution in eukaryotes. Journal of Pineal Research, 54(2), 127–138. https://​doi.​org/​10.​1111/​jpi.​12026.CrossRefPubMed
41.
go back to reference Suofu, Y., Li, W., Jean-Alphonse, F. G., Jia, J., Khattar, N. K., Li, J., et al. (2017). Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proceedings of the National Academy of Sciences of the United States of America, 19;114(38), E7997–E8006. https://doi.org/10.1073/pnas.1705768114.CrossRef Suofu, Y., Li, W., Jean-Alphonse, F. G., Jia, J., Khattar, N. K., Li, J., et al. (2017). Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proceedings of the National Academy of Sciences of the United States of America, 19;114(38), E7997–E8006. https://​doi.​org/​10.​1073/​pnas.​1705768114.CrossRef
43.
go back to reference Reiter, R. J., Sharma, R., Ma, Q., Rosales-Corral, S., Acuna-Castroviejo, D., & Escames, G. (2019). Inhibition of mitochondrial pyruvate dehydrogenase kinase: A proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Research, 2(3), 105–119. https://doi.org/10.32794/mr11250033.CrossRef Reiter, R. J., Sharma, R., Ma, Q., Rosales-Corral, S., Acuna-Castroviejo, D., & Escames, G. (2019). Inhibition of mitochondrial pyruvate dehydrogenase kinase: A proposed mechanism by which melatonin causes cancer cells to overcome cytosolic glycolysis, reduce tumor biomass and reverse insensitivity to chemotherapy. Melatonin Research, 2(3), 105–119. https://​doi.​org/​10.​32794/​mr11250033.CrossRef
48.
go back to reference Tast, A., Love, R. J., Evans, G., Telsfer, S., Giles, R., Nicholls, P., et al. (2001). The pattern of melatonin secretion is rhythmic in the domestic pig and responds rapidly to changes in daylength. Journal of Pineal Research, 31(4), 294–300.CrossRefPubMed Tast, A., Love, R. J., Evans, G., Telsfer, S., Giles, R., Nicholls, P., et al. (2001). The pattern of melatonin secretion is rhythmic in the domestic pig and responds rapidly to changes in daylength. Journal of Pineal Research, 31(4), 294–300.CrossRefPubMed
49.
go back to reference Tan, D. X., Hardeland, R., Back, K., Manchester, L. C., Alatorre-Jimenez, M. A., & Reiter, R. J. (2016). On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: Comparisons across species. Journal of Pineal Research, 61(1), 27–40. https://doi.org/10.1111/jpi.12336.CrossRefPubMed Tan, D. X., Hardeland, R., Back, K., Manchester, L. C., Alatorre-Jimenez, M. A., & Reiter, R. J. (2016). On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: Comparisons across species. Journal of Pineal Research, 61(1), 27–40. https://​doi.​org/​10.​1111/​jpi.​12336.CrossRefPubMed
55.
go back to reference Dawson, D., & Encel, N. (1993). Melatonin and sleep in humans. Journal of Pineal Research, 15(1), 1–12.CrossRefPubMed Dawson, D., & Encel, N. (1993). Melatonin and sleep in humans. Journal of Pineal Research, 15(1), 1–12.CrossRefPubMed
62.
go back to reference Tan, D. X., Manchester, L. C., Reiter, R. J., Qi, W., Hanes, M. A., & Farley, N. J. (1999). High physiological levels of melatonin in the bile of mammals. Life Sciences, 65(23), 2523–2529.CrossRefPubMed Tan, D. X., Manchester, L. C., Reiter, R. J., Qi, W., Hanes, M. A., & Farley, N. J. (1999). High physiological levels of melatonin in the bile of mammals. Life Sciences, 65(23), 2523–2529.CrossRefPubMed
65.
go back to reference Stehle, J. H., von Gall, C., & Korf, H. W. (2003). Melatonin: A clock-output, a clock-input. Journal of Neuroendocrinology, 15(4), 383–389.CrossRefPubMed Stehle, J. H., von Gall, C., & Korf, H. W. (2003). Melatonin: A clock-output, a clock-input. Journal of Neuroendocrinology, 15(4), 383–389.CrossRefPubMed
69.
go back to reference Montilla, P., Cruz, A., Padillo, F. J., Tunez, I., Gascon, F., Munoz, M. C., et al. (2001). Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. Journal of Pineal Research, 31(2), 138–144.CrossRefPubMed Montilla, P., Cruz, A., Padillo, F. J., Tunez, I., Gascon, F., Munoz, M. C., et al. (2001). Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. Journal of Pineal Research, 31(2), 138–144.CrossRefPubMed
71.
go back to reference Reppert, S. M., Weaver, D. R., & Ebisawa, T. (1994). Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron, 13(5), 1177–1185.CrossRefPubMed Reppert, S. M., Weaver, D. R., & Ebisawa, T. (1994). Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron, 13(5), 1177–1185.CrossRefPubMed
79.
go back to reference Maria, S., Samsonraj, R. M., Munmun, F., Glas, J., Silvestros, M., Kotlarczyk, M. P., et al. (2018). Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. Journal of Pineal Research, 64(3). https://doi.org/10.1111/jpi.12465. Maria, S., Samsonraj, R. M., Munmun, F., Glas, J., Silvestros, M., Kotlarczyk, M. P., et al. (2018). Biological effects of melatonin on osteoblast/osteoclast cocultures, bone, and quality of life: Implications of a role for MT2 melatonin receptors, MEK1/2, and MEK5 in melatonin-mediated osteoblastogenesis. Journal of Pineal Research, 64(3). https://​doi.​org/​10.​1111/​jpi.​12465.
80.
go back to reference Kadekaro, A. L., Andrade, L. N., Floeter-Winter, L. M., Rollag, M. D., Virador, V., Vieira, W., et al. (2004). MT-1 melatonin receptor expression increases the antiproliferative effect of melatonin on S-91 murine melanoma cells. Journal of Pineal Research, 36(3), 204–211.CrossRefPubMed Kadekaro, A. L., Andrade, L. N., Floeter-Winter, L. M., Rollag, M. D., Virador, V., Vieira, W., et al. (2004). MT-1 melatonin receptor expression increases the antiproliferative effect of melatonin on S-91 murine melanoma cells. Journal of Pineal Research, 36(3), 204–211.CrossRefPubMed
89.
go back to reference Kollet, O., Canaani, J., Kalinkovich, A., & Lapidot, T. (2012). Regulatory cross talks of bone cells, hematopoietic stem cells and the nervous system maintain hematopoiesis. Inflammation & Allergy Drug Targets, 11(3), 170–180.CrossRefPubMed Kollet, O., Canaani, J., Kalinkovich, A., & Lapidot, T. (2012). Regulatory cross talks of bone cells, hematopoietic stem cells and the nervous system maintain hematopoiesis. Inflammation & Allergy Drug Targets, 11(3), 170–180.CrossRefPubMed
95.
go back to reference Asghari, M. H., Abdollahi, M., de Oliveira, M. R., & Nabavi, S. M. (2017). A review of the protective role of melatonin during phosphine-induced cardiotoxicity: Focus on mitochondrial dysfunction, oxidative stress and apoptosis. The Journal of Pharmacy and Pharmacology, 69(3), 236–243. https://doi.org/10.1111/jphp.12682.CrossRefPubMed Asghari, M. H., Abdollahi, M., de Oliveira, M. R., & Nabavi, S. M. (2017). A review of the protective role of melatonin during phosphine-induced cardiotoxicity: Focus on mitochondrial dysfunction, oxidative stress and apoptosis. The Journal of Pharmacy and Pharmacology, 69(3), 236–243. https://​doi.​org/​10.​1111/​jphp.​12682.CrossRefPubMed
97.
go back to reference Li, W., Fan, M., Chen, Y., Zhao, Q., Song, C., Yan, Y., et al. (2015). Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-kappa B: A novel therapeutic implication for gastric cancer. Cellular Physiology and Biochemistry, 37(6), 2323–2338. https://doi.org/10.1159/000438587.CrossRefPubMed Li, W., Fan, M., Chen, Y., Zhao, Q., Song, C., Yan, Y., et al. (2015). Melatonin induces cell apoptosis in AGS cells through the activation of JNK and P38 MAPK and the suppression of nuclear factor-kappa B: A novel therapeutic implication for gastric cancer. Cellular Physiology and Biochemistry, 37(6), 2323–2338. https://​doi.​org/​10.​1159/​000438587.CrossRefPubMed
98.
go back to reference Li, W., Wu, J., Li, Z., Zhou, Z., Zheng, C., Lin, L., et al. (2016). Melatonin induces cell apoptosis in Mia PaCa-2 cells via the suppression of nuclear factor-kappaB and activation of ERK and JNK: A novel therapeutic implication for pancreatic cancer. Oncology Reports, 36(5), 2861–2867. https://doi.org/10.3892/or.2016.5100.CrossRefPubMed Li, W., Wu, J., Li, Z., Zhou, Z., Zheng, C., Lin, L., et al. (2016). Melatonin induces cell apoptosis in Mia PaCa-2 cells via the suppression of nuclear factor-kappaB and activation of ERK and JNK: A novel therapeutic implication for pancreatic cancer. Oncology Reports, 36(5), 2861–2867. https://​doi.​org/​10.​3892/​or.​2016.​5100.CrossRefPubMed
102.
go back to reference Hill, S. M., & Blask, D. E. (1988). Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Research, 48(21), 6121–6126.PubMed Hill, S. M., & Blask, D. E. (1988). Effects of the pineal hormone melatonin on the proliferation and morphological characteristics of human breast cancer cells (MCF-7) in culture. Cancer Research, 48(21), 6121–6126.PubMed
107.
go back to reference Cutando, A., Lopez-Valverde, A., Arias-Santiago, S., DE Vicente, J., & DE Diego, R. G. (2012). Role of melatonin in cancer treatment. Anticancer Research, 32(7), 2747–2753.PubMed Cutando, A., Lopez-Valverde, A., Arias-Santiago, S., DE Vicente, J., & DE Diego, R. G. (2012). Role of melatonin in cancer treatment. Anticancer Research, 32(7), 2747–2753.PubMed
114.
go back to reference Hardeland, R. (2019). Melatonin and chromatin. Melatonin Research, 2, 67–93.CrossRef Hardeland, R. (2019). Melatonin and chromatin. Melatonin Research, 2, 67–93.CrossRef
118.
go back to reference Peng, T. I., Hsiao, C. W., Reiter, R. J., Tanaka, M., Lai, Y. K., & Jou, M. J. (2012). mtDNA T8993G mutation-induced mitochondrial complex V inhibition augments cardiolipin-dependent alterations in mitochondrial dynamics during oxidative, Ca(2+), and lipid insults in NARP cybrids: A potential therapeutic target for melatonin. Journal of Pineal Research, 52(1), 93–106. https://doi.org/10.1111/j.1600-079X.2011.00923.x.CrossRefPubMed Peng, T. I., Hsiao, C. W., Reiter, R. J., Tanaka, M., Lai, Y. K., & Jou, M. J. (2012). mtDNA T8993G mutation-induced mitochondrial complex V inhibition augments cardiolipin-dependent alterations in mitochondrial dynamics during oxidative, Ca(2+), and lipid insults in NARP cybrids: A potential therapeutic target for melatonin. Journal of Pineal Research, 52(1), 93–106. https://​doi.​org/​10.​1111/​j.​1600-079X.​2011.​00923.​x.CrossRefPubMed
119.
go back to reference Panzer, A., Lottering, M. L., Bianchi, P., Glencross, D. K., Stark, J. H., & Seegers, J. C. (1998). Melatonin has no effect on the growth, morphology or cell cycle of human breast cancer (MCF-7), cervical cancer (HeLa), osteosarcoma (MG-63) or lymphoblastoid (TK6) cells. Cancer Letters, 122(1–2), 17–23. https://doi.org/10.1016/s0304-3835(97)00360-1.CrossRefPubMed Panzer, A., Lottering, M. L., Bianchi, P., Glencross, D. K., Stark, J. H., & Seegers, J. C. (1998). Melatonin has no effect on the growth, morphology or cell cycle of human breast cancer (MCF-7), cervical cancer (HeLa), osteosarcoma (MG-63) or lymphoblastoid (TK6) cells. Cancer Letters, 122(1–2), 17–23. https://​doi.​org/​10.​1016/​s0304-3835(97)00360-1.CrossRefPubMed
121.
go back to reference Liu, L., Xu, Y., Reiter, R. J., Pan, Y., Chen, D., Liu, Y., et al. (2016). Inhibition of ERK1/2 signaling pathway is involved in melatonin’s antiproliferative effect on human MG-63 osteosarcoma cells. Cellular Physiology and Biochemistry, 39(6), 2297–2307. https://doi.org/10.1159/000447922.CrossRefPubMed Liu, L., Xu, Y., Reiter, R. J., Pan, Y., Chen, D., Liu, Y., et al. (2016). Inhibition of ERK1/2 signaling pathway is involved in melatonin’s antiproliferative effect on human MG-63 osteosarcoma cells. Cellular Physiology and Biochemistry, 39(6), 2297–2307. https://​doi.​org/​10.​1159/​000447922.CrossRefPubMed
126.
go back to reference Wu, S. M., Lin, W. Y., Shen, C. C., Pan, H. C., Keh-Bin, W., Chen, Y. C., et al. (2016). Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPbeta and NFkappaB cleavage. Journal of Pineal Research, 60(2), 142–154. https://doi.org/10.1111/jpi.12295.CrossRefPubMed Wu, S. M., Lin, W. Y., Shen, C. C., Pan, H. C., Keh-Bin, W., Chen, Y. C., et al. (2016). Melatonin set out to ER stress signaling thwarts epithelial mesenchymal transition and peritoneal dissemination via calpain-mediated C/EBPbeta and NFkappaB cleavage. Journal of Pineal Research, 60(2), 142–154. https://​doi.​org/​10.​1111/​jpi.​12295.CrossRefPubMed
129.
go back to reference Cos, S., Fernandez, R., Guezmes, A., & Sanchez-Barcelo, E. J. (1998). Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Research, 58(19), 4383–4390.PubMed Cos, S., Fernandez, R., Guezmes, A., & Sanchez-Barcelo, E. J. (1998). Influence of melatonin on invasive and metastatic properties of MCF-7 human breast cancer cells. Cancer Research, 58(19), 4383–4390.PubMed
132.
134.
go back to reference Lin, Y. W., Lee, L. M., Lee, W. J., Chu, C. Y., Tan, P., Yang, Y. C., et al. (2016). Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-kappaB DNA-binding activity. Journal of Pineal Research, 60(3), 277–290. https://doi.org/10.1111/jpi.12308.CrossRefPubMed Lin, Y. W., Lee, L. M., Lee, W. J., Chu, C. Y., Tan, P., Yang, Y. C., et al. (2016). Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-kappaB DNA-binding activity. Journal of Pineal Research, 60(3), 277–290. https://​doi.​org/​10.​1111/​jpi.​12308.CrossRefPubMed
137.
158.
go back to reference Dauchy, R. T., Blask, D. E., Dauchy, E. M., Davidson, L. K., Tirrell, P. C., Greene, M. W., et al. (2009). Antineoplastic effects of melatonin on a rare malignancy of mesenchymal origin: Melatonin receptor-mediated inhibition of signal transduction, linoleic acid metabolism and growth in tissue-isolated human leiomyosarcoma xenografts. Journal of Pineal Research, 47(1), 32–42. https://doi.org/10.1111/j.1600-079X.2009.00686.x.CrossRefPubMed Dauchy, R. T., Blask, D. E., Dauchy, E. M., Davidson, L. K., Tirrell, P. C., Greene, M. W., et al. (2009). Antineoplastic effects of melatonin on a rare malignancy of mesenchymal origin: Melatonin receptor-mediated inhibition of signal transduction, linoleic acid metabolism and growth in tissue-isolated human leiomyosarcoma xenografts. Journal of Pineal Research, 47(1), 32–42. https://​doi.​org/​10.​1111/​j.​1600-079X.​2009.​00686.​x.CrossRefPubMed
162.
go back to reference Gibbs Jr., C. P., Weber, K., & Scarborough, M. T. (2002). Malignant bone tumors. Instructional Course Lectures, 51, 413–428.PubMed Gibbs Jr., C. P., Weber, K., & Scarborough, M. T. (2002). Malignant bone tumors. Instructional Course Lectures, 51, 413–428.PubMed
165.
go back to reference Burdach, S., Meyer-Bahlburg, A., Laws, H. J., Haase, R., van Kaik, B., Metzner, B., et al. (2003). High-dose therapy for patients with primary multifocal and early relapsed Ewing's tumors: Results of two consecutive regimens assessing the role of total-body irradiation. Journal of Clinical Oncology, 21(16), 3072–3078. https://doi.org/10.1200/JCO.2003.12.039.CrossRefPubMed Burdach, S., Meyer-Bahlburg, A., Laws, H. J., Haase, R., van Kaik, B., Metzner, B., et al. (2003). High-dose therapy for patients with primary multifocal and early relapsed Ewing's tumors: Results of two consecutive regimens assessing the role of total-body irradiation. Journal of Clinical Oncology, 21(16), 3072–3078. https://​doi.​org/​10.​1200/​JCO.​2003.​12.​039.CrossRefPubMed
166.
go back to reference Grier, H. E., Krailo, M. D., Tarbell, N. J., Link, M. P., Fryer, C. J., Pritchard, D. J., et al. (2003). Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. The New England Journal of Medicine, 348(8), 694–701. https://doi.org/10.1056/NEJMoa020890.CrossRefPubMed Grier, H. E., Krailo, M. D., Tarbell, N. J., Link, M. P., Fryer, C. J., Pritchard, D. J., et al. (2003). Addition of ifosfamide and etoposide to standard chemotherapy for Ewing’s sarcoma and primitive neuroectodermal tumor of bone. The New England Journal of Medicine, 348(8), 694–701. https://​doi.​org/​10.​1056/​NEJMoa020890.CrossRefPubMed
168.
go back to reference Miser, J. S., Goldsby, R. E., Chen, Z., Krailo, M. D., Tarbell, N. J., Link, M. P., et al. (2007). Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: Evaluation of increasing the dose intensity of chemotherapy--a report from the Children’s Oncology Group. Pediatric Blood & Cancer, 49(7), 894–900. https://doi.org/10.1002/pbc.21233.CrossRef Miser, J. S., Goldsby, R. E., Chen, Z., Krailo, M. D., Tarbell, N. J., Link, M. P., et al. (2007). Treatment of metastatic Ewing sarcoma/primitive neuroectodermal tumor of bone: Evaluation of increasing the dose intensity of chemotherapy--a report from the Children’s Oncology Group. Pediatric Blood & Cancer, 49(7), 894–900. https://​doi.​org/​10.​1002/​pbc.​21233.CrossRef
169.
go back to reference Maheshwari, A. V., & Cheng, E. Y. (2010). Ewing sarcoma family of tumors. The Journal of the American Academy of Orthopaedic Surgeons, 18(2), 94–107.CrossRefPubMed Maheshwari, A. V., & Cheng, E. Y. (2010). Ewing sarcoma family of tumors. The Journal of the American Academy of Orthopaedic Surgeons, 18(2), 94–107.CrossRefPubMed
173.
go back to reference Schwartz, L., Supuran, C. T., & Alfarouk, K. O. (2017). The Warburg effect and the hallmarks of cancer. Anti-Cancer Agents in Medicinal Chemistry, 17(2), 164–170.CrossRefPubMed Schwartz, L., Supuran, C. T., & Alfarouk, K. O. (2017). The Warburg effect and the hallmarks of cancer. Anti-Cancer Agents in Medicinal Chemistry, 17(2), 164–170.CrossRefPubMed
177.
Metadata
Title
New insights into antimetastatic signaling pathways of melatonin in skeletomuscular sarcoma of childhood and adolescence
Authors
Ko-Hsiu Lu
Chiao-Wen Lin
Yi-Hsien Hsieh
Shih-Chi Su
Russel J. Reiter
Shun-Fa Yang
Publication date
01-03-2020
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2020
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09845-2

Other articles of this Issue 1/2020

Cancer and Metastasis Reviews 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine