Skip to main content
Top
Published in: Current Cardiovascular Imaging Reports 1/2010

01-02-2010

Nanomedicine and Cardiovascular Disease

Author: Jason R. McCarthy

Published in: Current Cardiovascular Imaging Reports | Issue 1/2010

Login to get access

Abstract

Nanomedicine has become an important tool in the imaging and therapy of numerous diseases. This is due, in large part, to the ability to generate multifunctional nanoagents bearing combinations of targeting, diagnostic, and therapeutic moieties, allowing for the tailoring of the properties of the synthesized nanomaterials. With respect to cardiovascular disease and its sequelae, nanomedicine has the potential to detect and treat some of the leading causes of death and disability in the developed world, including atherosclerosis, thrombosis, and myocardial infarction. As such, this review focuses on some of the most poignant examples of the utility of nanomedicine in the detection and treatment of cardiovascular disease that have been recently reported.
Literature
1.
go back to reference Cormode DP, Skajaa T, Fayad ZA, Mulder WJ: Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009, 29:992–1000.CrossRefPubMed Cormode DP, Skajaa T, Fayad ZA, Mulder WJ: Nanotechnology in medical imaging: probe design and applications. Arterioscler Thromb Vasc Biol 2009, 29:992–1000.CrossRefPubMed
2.
go back to reference Jaffer FA, Libby P, Weissleder R: Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1017–1024.CrossRefPubMed Jaffer FA, Libby P, Weissleder R: Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 2009, 29:1017–1024.CrossRefPubMed
3.
go back to reference McCarthy JR, Kelly KA, Sun EY, Weissleder R: Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2007, 2:153–167.CrossRef McCarthy JR, Kelly KA, Sun EY, Weissleder R: Targeted delivery of multifunctional magnetic nanoparticles. Nanomed 2007, 2:153–167.CrossRef
4.
go back to reference McCarthy JR, Weissleder R: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008, 60:1241–1251.CrossRefPubMed McCarthy JR, Weissleder R: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008, 60:1241–1251.CrossRefPubMed
5.
go back to reference Skajaa T, Cormode DP, Falk E, et al.: High-Density Lipoprotein-Based Contrast Agents for Multimodal Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol 2009, In press. Skajaa T, Cormode DP, Falk E, et al.: High-Density Lipoprotein-Based Contrast Agents for Multimodal Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol 2009, In press.
6.
go back to reference Nahrendorf M, Sosnovik DE, French BA, et al.: Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2009, 2:56–70.CrossRefPubMed Nahrendorf M, Sosnovik DE, French BA, et al.: Multimodality cardiovascular molecular imaging, Part II. Circ Cardiovasc Imaging 2009, 2:56–70.CrossRefPubMed
7.
go back to reference Sinusas AJ, Bengel F, Nahrendorf M, et al.: Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 2008, 1:244–256.CrossRefPubMed Sinusas AJ, Bengel F, Nahrendorf M, et al.: Multimodality cardiovascular molecular imaging, part I. Circ Cardiovasc Imaging 2008, 1:244–256.CrossRefPubMed
8.
go back to reference • Nahrendorf M, Zhang H, Hembrador S, et al.: Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117:379–387. The trimodal nanoagent utilized in this study was able to correlate macrophage burden with PET signal. It was also able to demonstrate localization to atherosclerotic lesions by both MRI and fluorescence imaging.CrossRefPubMed • Nahrendorf M, Zhang H, Hembrador S, et al.: Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation 2008, 117:379–387. The trimodal nanoagent utilized in this study was able to correlate macrophage burden with PET signal. It was also able to demonstrate localization to atherosclerotic lesions by both MRI and fluorescence imaging.CrossRefPubMed
9.
go back to reference Nahrendorf M, Waterman P, Thurber G, et al.: Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 2009, 29:1444–1451.CrossRefPubMed Nahrendorf M, Waterman P, Thurber G, et al.: Hybrid in vivo FMT-CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 2009, 29:1444–1451.CrossRefPubMed
10.
go back to reference Hyafil F, Cornily JC, Feig JE, et al.: Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 2007, 13:636–641.CrossRefPubMed Hyafil F, Cornily JC, Feig JE, et al.: Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nat Med 2007, 13:636–641.CrossRefPubMed
11.
go back to reference Hyafil F, Cornily JC, Rudd JH et al.: Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med 2009, 50:959–965.CrossRefPubMed Hyafil F, Cornily JC, Rudd JH et al.: Quantification of inflammation within rabbit atherosclerotic plaques using the macrophage-specific CT contrast agent N1177: a comparison with 18F-FDG PET/CT and histology. J Nucl Med 2009, 50:959–965.CrossRefPubMed
12.
go back to reference McCarthy JR, Jaffer FA, Weissleder R: Imaging and therapy of atherosclerotic lesions with theranostic nanoparticles. In Methods in Bioengineering: Nanoscale Bioengineering and Nanomedicine. Edited by Rege K, Medintz IL. Boston: Artec House; 2009:137–151. McCarthy JR, Jaffer FA, Weissleder R: Imaging and therapy of atherosclerotic lesions with theranostic nanoparticles. In Methods in Bioengineering: Nanoscale Bioengineering and Nanomedicine. Edited by Rege K, Medintz IL. Boston: Artec House; 2009:137–151.
13.
go back to reference McCarthy JR, Jaffer FA, Weissleder R: A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2006, 2:983–987.CrossRefPubMed McCarthy JR, Jaffer FA, Weissleder R: A macrophage-targeted theranostic nanoparticle for biomedical applications. Small 2006, 2:983–987.CrossRefPubMed
14.
go back to reference Flaumenhaft R, Tanaka E, Graham GJ, et al.: Localization and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging. Circulation 2007, 115:84–93.CrossRefPubMed Flaumenhaft R, Tanaka E, Graham GJ, et al.: Localization and quantification of platelet-rich thrombi in large blood vessels with near-infrared fluorescence imaging. Circulation 2007, 115:84–93.CrossRefPubMed
15.
go back to reference Frenette PS, Johnson RC, Hynes RO, Wagner DD: Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A 1995, 92:7450–7454.CrossRefPubMed Frenette PS, Johnson RC, Hynes RO, Wagner DD: Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A 1995, 92:7450–7454.CrossRefPubMed
16.
go back to reference Massberg S, Sausbier M, Klatt P, et al.: Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J Exp Med 1999, 189:1255–1264.CrossRefPubMed Massberg S, Sausbier M, Klatt P, et al.: Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J Exp Med 1999, 189:1255–1264.CrossRefPubMed
17.
go back to reference Sim DS, Merrill-Skoloff G, Furie BC, et al.: Initial accumulation of platelets during arterial thrombus formation in vivo is inhibited by elevation of basal cAMP levels. Blood 2004, 103:2127–2134.CrossRefPubMed Sim DS, Merrill-Skoloff G, Furie BC, et al.: Initial accumulation of platelets during arterial thrombus formation in vivo is inhibited by elevation of basal cAMP levels. Blood 2004, 103:2127–2134.CrossRefPubMed
18.
go back to reference Balasubramanian V, Grabowski E, Bini A, Nemerson Y: Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: real-time fluorescence images of thrombus formation and propagation under defined flow conditions. Blood 2002, 100:2787–2792.CrossRefPubMed Balasubramanian V, Grabowski E, Bini A, Nemerson Y: Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: real-time fluorescence images of thrombus formation and propagation under defined flow conditions. Blood 2002, 100:2787–2792.CrossRefPubMed
19.
go back to reference Falati S, Gross P, Merrill-Skoloff G, et al.: Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002, 8:1175–1181.CrossRefPubMed Falati S, Gross P, Merrill-Skoloff G, et al.: Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 2002, 8:1175–1181.CrossRefPubMed
20.
go back to reference Knight LC, Maurer AH, Ammar IA, et al.: Evaluation of indium-111-labeled anti-fibrin antibody for imaging vascular thrombi. J Nucl Med 1988, 29:494–502.PubMed Knight LC, Maurer AH, Ammar IA, et al.: Evaluation of indium-111-labeled anti-fibrin antibody for imaging vascular thrombi. J Nucl Med 1988, 29:494–502.PubMed
21.
go back to reference Stratton JR, Cerqueira MD, Dewhurst TA, Kohler TR: Imaging arterial thrombosis: comparison of technetium-99 m-labeled monoclonal antifibrin antibodies and indium-111-platelets. J Nucl Med 1994, 35:1731–1737.PubMed Stratton JR, Cerqueira MD, Dewhurst TA, Kohler TR: Imaging arterial thrombosis: comparison of technetium-99 m-labeled monoclonal antifibrin antibodies and indium-111-platelets. J Nucl Med 1994, 35:1731–1737.PubMed
22.
go back to reference Jaffer FA, Tung CH, Wykrzykowska JJ, et al.: Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 2004, 110:170–176.CrossRefPubMed Jaffer FA, Tung CH, Wykrzykowska JJ, et al.: Molecular imaging of factor XIIIa activity in thrombosis using a novel, near-infrared fluorescent contrast agent that covalently links to thrombi. Circulation 2004, 110:170–176.CrossRefPubMed
23.
go back to reference Tung CH, Ho NH, Zeng Q, et al.: Novel factor XIII probes for blood coagulation imaging. Chembiochem 2003, 4:897–899.CrossRefPubMed Tung CH, Ho NH, Zeng Q, et al.: Novel factor XIII probes for blood coagulation imaging. Chembiochem 2003, 4:897–899.CrossRefPubMed
24.
go back to reference McCarthy JR, Patel P, Botnaru I, et al.: Multimodal nanoagents for the detection of intravascular thrombi. Bioconjug Chem 2009, 20:1251–1255.CrossRefPubMed McCarthy JR, Patel P, Botnaru I, et al.: Multimodal nanoagents for the detection of intravascular thrombi. Bioconjug Chem 2009, 20:1251–1255.CrossRefPubMed
25.
go back to reference Aruva MR, Daviau J, Sharma SS, Thakur ML: Imaging thromboembolism with fibrin-avid 99mTc-peptide: evaluation in swine. J Nucl Med 2006, 47:155–162.PubMed Aruva MR, Daviau J, Sharma SS, Thakur ML: Imaging thromboembolism with fibrin-avid 99mTc-peptide: evaluation in swine. J Nucl Med 2006, 47:155–162.PubMed
26.
go back to reference Kawasaki K, Miyano M, Hirase K, Iwamoto M: Amino acids and peptides. XVIII. Synthetic peptides related to N-terminal portion of fibrin alpha-chain and their inhibitory effect on fibrinogen/thrombin clotting. Chem Pharm Bull (Tokyo) 1993, 41:975–977. Kawasaki K, Miyano M, Hirase K, Iwamoto M: Amino acids and peptides. XVIII. Synthetic peptides related to N-terminal portion of fibrin alpha-chain and their inhibitory effect on fibrinogen/thrombin clotting. Chem Pharm Bull (Tokyo) 1993, 41:975–977.
27.
go back to reference Thakur ML, Pallela VR, Consigny PM, et al.: Imaging vascular thrombosis with 99mTc-labeled fibrin alpha-chain peptide. J Nucl Med 2000, 41:161–168.PubMed Thakur ML, Pallela VR, Consigny PM, et al.: Imaging vascular thrombosis with 99mTc-labeled fibrin alpha-chain peptide. J Nucl Med 2000, 41:161–168.PubMed
28.
go back to reference Ma YH, Wu SY, Wu T, et al.: Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials 2009, 30:3343–3351.CrossRefPubMed Ma YH, Wu SY, Wu T, et al.: Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials 2009, 30:3343–3351.CrossRefPubMed
29.
go back to reference Bi F, Zhang J, Su Y, et al.: Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009, 30:5125–5130.CrossRefPubMed Bi F, Zhang J, Su Y, et al.: Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 2009, 30:5125–5130.CrossRefPubMed
30.
go back to reference Sosnovik DE, Nahrendorf M, Deliolanis N, et al.: Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 2007, 115:1384–1391.CrossRefPubMed Sosnovik DE, Nahrendorf M, Deliolanis N, et al.: Fluorescence tomography and magnetic resonance imaging of myocardial macrophage infiltration in infarcted myocardium in vivo. Circulation 2007, 115:1384–1391.CrossRefPubMed
31.
go back to reference Nahrendorf M, Sosnovik DE, Waterman P, et al.: Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 2007, 100:1218–1225.CrossRefPubMed Nahrendorf M, Sosnovik DE, Waterman P, et al.: Dual channel optical tomographic imaging of leukocyte recruitment and protease activity in the healing myocardial infarct. Circ Res 2007, 100:1218–1225.CrossRefPubMed
32.
go back to reference Nahrendorf M, Sosnovik D, Chen JW, et al.: Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008, 117:1153–1160.CrossRefPubMed Nahrendorf M, Sosnovik D, Chen JW, et al.: Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008, 117:1153–1160.CrossRefPubMed
33.
go back to reference • Panizzi P, Nahrendorf M, Wildgruber M, et al.: Oxazine conjugated nanoparticle detects in vivo hypochlorous acid and peroxynitrite generation. J Am Chem Soc 2009, 131:15739–15744. This is the first example of a long circulating nanoparticulate construct for the detection of MPO activity in vivo. Although used in MI, this probe will demonstrate utility in a number of conditions with inflammatory components, such as atherosclerosis, diabetes, and cancer.CrossRefPubMed • Panizzi P, Nahrendorf M, Wildgruber M, et al.: Oxazine conjugated nanoparticle detects in vivo hypochlorous acid and peroxynitrite generation. J Am Chem Soc 2009, 131:15739–15744. This is the first example of a long circulating nanoparticulate construct for the detection of MPO activity in vivo. Although used in MI, this probe will demonstrate utility in a number of conditions with inflammatory components, such as atherosclerosis, diabetes, and cancer.CrossRefPubMed
34.
go back to reference •• Christen T, Nahrendorf M, Wildgruber M, et al.: Molecular imaging of innate immune cell function in transplant rejection. Circulation 2009, 119:1925–1932. This article establishes that the detection of transplant rejection need not be an invasive procedure. Instead, noninvasive determination of macrophage infiltration may serve a diagnostic/prognostic role.CrossRefPubMed •• Christen T, Nahrendorf M, Wildgruber M, et al.: Molecular imaging of innate immune cell function in transplant rejection. Circulation 2009, 119:1925–1932. This article establishes that the detection of transplant rejection need not be an invasive procedure. Instead, noninvasive determination of macrophage infiltration may serve a diagnostic/prognostic role.CrossRefPubMed
Metadata
Title
Nanomedicine and Cardiovascular Disease
Author
Jason R. McCarthy
Publication date
01-02-2010
Publisher
Current Science Inc.
Published in
Current Cardiovascular Imaging Reports / Issue 1/2010
Print ISSN: 1941-9066
Electronic ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-009-9002-3

Other articles of this Issue 1/2010

Current Cardiovascular Imaging Reports 1/2010 Go to the issue