Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Myocardial Infarction | Research

Coenzyme Q10 mitigates macrophage mediated inflammation in heart following myocardial infarction via the NLRP3/IL1β pathway

Authors: Wenxu Pan, Guiquan Zhou, Meiling Hu, Gaoshan Li, Mingle Zhang, Hao Yang, Kunyan Li, Jingwei Li, Ting Liu, Ying Wang, Jun Jin

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Background

The protective effect of Coenzyme Q10 (CoQ10) on the cardiovascular system has been reported, however, whether it can promote early recovery of cardiac function and alleviate cardiac remodeling after myocardial infarction (MI) remains to be elucidated. Whether CoQ10 may regulate the macrophage-mediated pro-inflammatory response after MI and its potential mechanism are worth further exploration.

Methods

To determine the baseline plasma levels of CoQ10 by LC-MS/MS, healthy controls and MI patients (n = 11 each) with age- and gender-matched were randomly enrolled. Additional MI patients were consecutively enrolled and randomized into the blank control (n = 59) or CoQ10 group (n = 61). Follow-ups were performed at 1- and 3-month to assess cardiac function after percutaneous coronary intervention (PCI). In the animal study, mice were orally administered CoQ10/vehicle daily and were subjected to left anterior descending coronary artery (LAD) ligation or sham operation. Echocardiography and serum BNP measured by ELISA were analyzed to evaluate cardiac function. Masson staining and WGA staining were performed to analyze the myocardial fibrosis and cardiomyocyte hypertrophy, respectively. Immunofluorescence staining was performed to assess the infiltration of IL1β/ROS-positive macrophages into the ischemic myocardium. Flow cytometry was employed to analyze the recruitment of myeloid immune cells to the ischemic myocardium post-MI. The expression of inflammatory indicators was assessed through RNA-seq, qPCR, and western blotting (WB).

Results

Compared to controls, MI patients showed a plasma deficiency of CoQ10 (0.76 ± 0.31 vs. 0.46 ± 0.10 µg/ml). CoQ10 supplementation significantly promoted the recovery of cardiac function in MI patients at 1 and 3 months after PCI. In mice study, compared to vehicle-treated MI mice, CoQ10-treated MI mice showed a favorable trend in survival rate (42.85% vs. 61.90%), as well as significantly alleviated cardiac dysfunction, myocardial fibrosis, and cardiac hypertrophy. Notably, CoQ10 administration significantly suppressed the recruitment of pro-inflammatory CCR2+ macrophages into infarct myocardium and their mediated inflammatory response, partially by attenuating the activation of the NLR family pyrin domain containing 3 (NLRP3)/Interleukin-1 beta (IL1β) signaling pathway.

Conclusions

These findings suggest that CoQ10 can significantly promote early recovery of cardiac function after MI. CoQ10 may function by inhibiting the recruitment of CCR2+ macrophages and suppressing the activation of the NLRP3/IL1β pathway in macrophages.

Trial registration

Date of registration 09/04/2021 (number: ChiCTR2100045256).
Appendix
Available only for authorised users
Literature
1.
go back to reference Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular diseases and Risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.PubMedPubMedCentralCrossRef Roth GA, Mensah GA, Johnson CO, et al. Global Burden of Cardiovascular diseases and Risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.PubMedPubMedCentralCrossRef
2.
3.
go back to reference Bahit MC, Kochar A, Granger CB. Post-myocardial infarction heart failure. JACC Heart Fail. 2018;6(3):179–86.PubMedCrossRef Bahit MC, Kochar A, Granger CB. Post-myocardial infarction heart failure. JACC Heart Fail. 2018;6(3):179–86.PubMedCrossRef
4.
go back to reference Jenča D, Melenovský V, Stehlik J, et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021;8(1):222–37.PubMedCrossRef Jenča D, Melenovský V, Stehlik J, et al. Heart failure after myocardial infarction: incidence and predictors. ESC Heart Fail. 2021;8(1):222–37.PubMedCrossRef
5.
go back to reference Desta L, Jernberg T, Löfman I, et al. Incidence, temporal trends, and prognostic impact of heart failure complicating acute myocardial infarction. The SWEDEHEART Registry (Swedish web-system for enhancement and development of evidence-based care in Heart Disease evaluated according to recommended therapies): a study of 199,851 patients admitted with index acute myocardial infarctions, 1996 to 2008. JACC Heart Fail. 2015;3(3):234–42.PubMedCrossRef Desta L, Jernberg T, Löfman I, et al. Incidence, temporal trends, and prognostic impact of heart failure complicating acute myocardial infarction. The SWEDEHEART Registry (Swedish web-system for enhancement and development of evidence-based care in Heart Disease evaluated according to recommended therapies): a study of 199,851 patients admitted with index acute myocardial infarctions, 1996 to 2008. JACC Heart Fail. 2015;3(3):234–42.PubMedCrossRef
6.
go back to reference Nahrendorf M, Swirski FK. Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction. Eur Heart J. 2016;37(11):868–72.PubMedCrossRef Nahrendorf M, Swirski FK. Innate immune cells in ischaemic heart disease: does myocardial infarction beget myocardial infarction. Eur Heart J. 2016;37(11):868–72.PubMedCrossRef
7.
go back to reference Bajpai G, Bredemeyer A, Li W, et al. Tissue Resident CCR2- and CCR2 + Cardiac macrophages differentially orchestrate Monocyte Recruitment and Fate Specification following myocardial Injury. Circ Res. 2019;124(2):263–78.PubMedPubMedCentralCrossRef Bajpai G, Bredemeyer A, Li W, et al. Tissue Resident CCR2- and CCR2 + Cardiac macrophages differentially orchestrate Monocyte Recruitment and Fate Specification following myocardial Injury. Circ Res. 2019;124(2):263–78.PubMedPubMedCentralCrossRef
8.
go back to reference Minutoli L, Puzzolo D, Rinaldi M et al. ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. Oxid Med Cell Longev. 2016. 2016: 2183026. Minutoli L, Puzzolo D, Rinaldi M et al. ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. Oxid Med Cell Longev. 2016. 2016: 2183026.
9.
go back to reference Jabaut J, Ather JL, Taracanova A, Poynter ME, Ckless K. Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL-1β secretion in association with alterations in cellular redox and energy status. Free Radic Biol Med. 2013;60:233–45.PubMedPubMedCentralCrossRef Jabaut J, Ather JL, Taracanova A, Poynter ME, Ckless K. Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL-1β secretion in association with alterations in cellular redox and energy status. Free Radic Biol Med. 2013;60:233–45.PubMedPubMedCentralCrossRef
10.
go back to reference Dominic A, Le NT, Takahashi M. Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid Redox Signal. 2022;36(10–12):784–96.PubMedCrossRef Dominic A, Le NT, Takahashi M. Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid Redox Signal. 2022;36(10–12):784–96.PubMedCrossRef
11.
go back to reference Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–505.PubMedCrossRef Tardif JC, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497–505.PubMedCrossRef
12.
go back to reference Nidorf SM, Fiolet A, Mosterd A, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47.PubMedCrossRef Nidorf SM, Fiolet A, Mosterd A, et al. Colchicine in patients with chronic coronary disease. N Engl J Med. 2020;383(19):1838–47.PubMedCrossRef
13.
go back to reference Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.PubMedCrossRef Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119–31.PubMedCrossRef
14.
go back to reference Liberale L, Montecucco F, Schwarz L, Lüscher TF, Camici GG. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res. 2021;117(2):411–22.PubMedCrossRef Liberale L, Montecucco F, Schwarz L, Lüscher TF, Camici GG. Inflammation and cardiovascular diseases: lessons from seminal clinical trials. Cardiovasc Res. 2021;117(2):411–22.PubMedCrossRef
15.
go back to reference Ridker PM. Clinician’s guide to reducing inflammation to reduce atherothrombotic risk: JACC Review topic of the Week. J Am Coll Cardiol. 2018;72(25):3320–31.PubMedCrossRef Ridker PM. Clinician’s guide to reducing inflammation to reduce atherothrombotic risk: JACC Review topic of the Week. J Am Coll Cardiol. 2018;72(25):3320–31.PubMedCrossRef
16.
go back to reference Zhou Y, Liu Y, Zeng R, Qiu W, Zhao Y, Zhou Y. Early long-term low-dosage colchicine and major adverse cardiovascular events in patients with acute myocardial infarction: a systematic review and meta-analysis. Front Cardiovasc Med. 2023;10:1194605.PubMedPubMedCentralCrossRef Zhou Y, Liu Y, Zeng R, Qiu W, Zhao Y, Zhou Y. Early long-term low-dosage colchicine and major adverse cardiovascular events in patients with acute myocardial infarction: a systematic review and meta-analysis. Front Cardiovasc Med. 2023;10:1194605.PubMedPubMedCentralCrossRef
17.
go back to reference Martelli A, Testai L, Colletti A, Cicero A. Coenzyme Q(10): clinical applications in Cardiovascular diseases. Antioxid (Basel). 2020. 9(4). Martelli A, Testai L, Colletti A, Cicero A. Coenzyme Q(10): clinical applications in Cardiovascular diseases. Antioxid (Basel). 2020. 9(4).
18.
go back to reference Barcelos IP, Haas RH. CoQ10 and Aging. Biology (Basel). 2019. 8(2). Barcelos IP, Haas RH. CoQ10 and Aging. Biology (Basel). 2019. 8(2).
19.
go back to reference Ernster L, Forsmark-Andrée P. Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig. 1993;71(8 Suppl):60–5. Ernster L, Forsmark-Andrée P. Ubiquinol: an endogenous antioxidant in aerobic organisms. Clin Investig. 1993;71(8 Suppl):60–5.
20.
go back to reference Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7(Suppl):S41–50.PubMedCrossRef Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7(Suppl):S41–50.PubMedCrossRef
21.
go back to reference Willis RA, Folkers K, Tucker JL, Ye CQ, Xia LJ, Tamagawa H. Lovastatin decreases coenzyme Q levels in rats. Proc Natl Acad Sci U S A. 1990;87(22):8928–30.PubMedPubMedCentralCrossRef Willis RA, Folkers K, Tucker JL, Ye CQ, Xia LJ, Tamagawa H. Lovastatin decreases coenzyme Q levels in rats. Proc Natl Acad Sci U S A. 1990;87(22):8928–30.PubMedPubMedCentralCrossRef
23.
go back to reference Mortensen SA, Rosenfeldt F, Kumar A, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2014;2(6):641–9.PubMedCrossRef Mortensen SA, Rosenfeldt F, Kumar A, et al. The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Fail. 2014;2(6):641–9.PubMedCrossRef
24.
go back to reference Alehagen U, Aaseth J, Alexander J, Johansson P. Still reduced cardiovascular mortality 12 years after supplementation with selenium and coenzyme Q10 for four years: a validation of previous 10-year follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly. PLoS ONE. 2018;13(4):e0193120.PubMedPubMedCentralCrossRef Alehagen U, Aaseth J, Alexander J, Johansson P. Still reduced cardiovascular mortality 12 years after supplementation with selenium and coenzyme Q10 for four years: a validation of previous 10-year follow-up results of a prospective randomized double-blind placebo-controlled trial in elderly. PLoS ONE. 2018;13(4):e0193120.PubMedPubMedCentralCrossRef
25.
go back to reference An P, Wan S, Luo Y, et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J Am Coll Cardiol. 2022;80(24):2269–85.PubMedCrossRef An P, Wan S, Luo Y, et al. Micronutrient Supplementation to Reduce Cardiovascular Risk. J Am Coll Cardiol. 2022;80(24):2269–85.PubMedCrossRef
26.
go back to reference Raizner AE, Quiñones MA. Coenzyme Q(10) for patients with Cardiovascular Disease: JACC Focus Seminar. J Am Coll Cardiol. 2021;77(5):609–19.PubMedCrossRef Raizner AE, Quiñones MA. Coenzyme Q(10) for patients with Cardiovascular Disease: JACC Focus Seminar. J Am Coll Cardiol. 2021;77(5):609–19.PubMedCrossRef
27.
go back to reference Ruiz-Jiménez J, Priego-Capote F, Mata-Granados JM, Quesada JM, Luque de Castro MD. Determination of the ubiquinol-10 and ubiquinone-10 (coenzyme Q10) in human serum by liquid chromatography tandem mass spectrometry to evaluate the oxidative stress. J Chromatogr A. 2007;1175(2):242–8.PubMedCrossRef Ruiz-Jiménez J, Priego-Capote F, Mata-Granados JM, Quesada JM, Luque de Castro MD. Determination of the ubiquinol-10 and ubiquinone-10 (coenzyme Q10) in human serum by liquid chromatography tandem mass spectrometry to evaluate the oxidative stress. J Chromatogr A. 2007;1175(2):242–8.PubMedCrossRef
28.
go back to reference Sano S, Oshima K, Wang Y, et al. Tet2-Mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol. 2018;71(8):875–86.PubMedPubMedCentralCrossRef Sano S, Oshima K, Wang Y, et al. Tet2-Mediated clonal hematopoiesis accelerates heart failure through a mechanism involving the IL-1β/NLRP3 inflammasome. J Am Coll Cardiol. 2018;71(8):875–86.PubMedPubMedCentralCrossRef
29.
go back to reference Sano S, Wang Y, Yura Y, et al. JAK2 (V617F) -Mediated clonal hematopoiesis accelerates pathological remodeling in Murine Heart failure. JACC Basic Transl Sci. 2019;4(6):684–97.PubMedPubMedCentralCrossRef Sano S, Wang Y, Yura Y, et al. JAK2 (V617F) -Mediated clonal hematopoiesis accelerates pathological remodeling in Murine Heart failure. JACC Basic Transl Sci. 2019;4(6):684–97.PubMedPubMedCentralCrossRef
30.
go back to reference Wang Y, Sano S, Oshima K, et al. Wnt5a-Mediated Neutrophil Recruitment has an obligatory role in pressure overload-Induced Cardiac Dysfunction. Circulation. 2019;140(6):487–99.PubMedPubMedCentralCrossRef Wang Y, Sano S, Oshima K, et al. Wnt5a-Mediated Neutrophil Recruitment has an obligatory role in pressure overload-Induced Cardiac Dysfunction. Circulation. 2019;140(6):487–99.PubMedPubMedCentralCrossRef
31.
go back to reference Wang Y, Sano S, Yura Y et al. Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight. 2020. 5(6). Wang Y, Sano S, Yura Y et al. Tet2-mediated clonal hematopoiesis in nonconditioned mice accelerates age-associated cardiac dysfunction. JCI Insight. 2020. 5(6).
32.
go back to reference RE, BA, KJ, et al. Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. Mech Ageing Dev. 1985;32(2–3):267–81. RE, BA, KJ, et al. Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. Mech Ageing Dev. 1985;32(2–3):267–81.
33.
go back to reference Anzai A, Choi JL, He S, et al. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J Exp Med. 2017;214(11):3293–310.PubMedPubMedCentralCrossRef Anzai A, Choi JL, He S, et al. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J Exp Med. 2017;214(11):3293–310.PubMedPubMedCentralCrossRef
34.
go back to reference Bajpai G, Schneider C, Wong N, et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med. 2018;24(8):1234–45.PubMedPubMedCentralCrossRef Bajpai G, Schneider C, Wong N, et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med. 2018;24(8):1234–45.PubMedPubMedCentralCrossRef
35.
go back to reference Patel B, Bansal SS, Ismahil MA, et al. CCR2(+) monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl Sci. 2018;3(2):230–44.PubMedPubMedCentralCrossRef Patel B, Bansal SS, Ismahil MA, et al. CCR2(+) monocyte-derived infiltrating macrophages are required for adverse cardiac remodeling during pressure overload. JACC Basic Transl Sci. 2018;3(2):230–44.PubMedPubMedCentralCrossRef
37.
go back to reference Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21(3):263–9.PubMedPubMedCentralCrossRef Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 2015;21(3):263–9.PubMedPubMedCentralCrossRef
40.
go back to reference Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92.PubMedCrossRef Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023;51(D1):D587–92.PubMedCrossRef
41.
go back to reference Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the Inflammasome as therapeutic targets in Cardiovascular Disease. Circ Res. 2020;126(9):1260–80.PubMedPubMedCentralCrossRef Abbate A, Toldo S, Marchetti C, Kron J, Van Tassell BW, Dinarello CA. Interleukin-1 and the Inflammasome as therapeutic targets in Cardiovascular Disease. Circ Res. 2020;126(9):1260–80.PubMedPubMedCentralCrossRef
42.
go back to reference Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018;15(4):203–14.PubMedCrossRef Toldo S, Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018;15(4):203–14.PubMedCrossRef
44.
go back to reference Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.PubMedCrossRef
45.
go back to reference Hoogeveen RC, Ballantyne CM. Residual Cardiovascular risk at low LDL: remnants, Lipoprotein(a), and inflammation. Clin Chem. 2021;67(1):143–53.PubMedCrossRef Hoogeveen RC, Ballantyne CM. Residual Cardiovascular risk at low LDL: remnants, Lipoprotein(a), and inflammation. Clin Chem. 2021;67(1):143–53.PubMedCrossRef
46.
go back to reference Singh RB, Wander GS, Rastogi A, et al. Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infarction. Cardiovasc Drugs Ther. 1998;12(4):347–53.PubMedCrossRef Singh RB, Wander GS, Rastogi A, et al. Randomized, double-blind placebo-controlled trial of coenzyme Q10 in patients with acute myocardial infarction. Cardiovasc Drugs Ther. 1998;12(4):347–53.PubMedCrossRef
47.
go back to reference Singh RB, Neki NS, Kartikey K, et al. Effect of coenzyme Q10 on risk of atherosclerosis in patients with recent myocardial infarction. Mol Cell Biochem. 2003;246(1–2):75–82.PubMedCrossRef Singh RB, Neki NS, Kartikey K, et al. Effect of coenzyme Q10 on risk of atherosclerosis in patients with recent myocardial infarction. Mol Cell Biochem. 2003;246(1–2):75–82.PubMedCrossRef
48.
go back to reference Kalén A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24(7):579–84.PubMedCrossRef Kalén A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24(7):579–84.PubMedCrossRef
49.
go back to reference Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci U S A. 1985;82(3):901–4.PubMedPubMedCentralCrossRef Folkers K, Vadhanavikit S, Mortensen SA. Biochemical rationale and myocardial tissue data on the effective therapy of cardiomyopathy with coenzyme Q10. Proc Natl Acad Sci U S A. 1985;82(3):901–4.PubMedPubMedCentralCrossRef
50.
go back to reference Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol. 2018;18(12):733–44.PubMedCrossRef Swirski FK, Nahrendorf M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat Rev Immunol. 2018;18(12):733–44.PubMedCrossRef
52.
go back to reference Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104.PubMedPubMedCentralCrossRef Epelman S, Lavine KJ, Beaudin AE, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104.PubMedPubMedCentralCrossRef
53.
go back to reference Sacks D, Baxter B, Campbell B, et al. Multisociety Consensus Quality Improvement revised Consensus Statement for Endovascular Therapy of Acute ischemic stroke. Int J Stroke. 2018;13(6):612–32.PubMed Sacks D, Baxter B, Campbell B, et al. Multisociety Consensus Quality Improvement revised Consensus Statement for Endovascular Therapy of Acute ischemic stroke. Int J Stroke. 2018;13(6):612–32.PubMed
54.
go back to reference Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector. Antioxid Redox Signal. 2015;22(13):1111–29.PubMedPubMedCentralCrossRef Abais JM, Xia M, Zhang Y, Boini KM, Li PL. Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector. Antioxid Redox Signal. 2015;22(13):1111–29.PubMedPubMedCentralCrossRef
55.
go back to reference Elliott EI, Miller AN, Banoth B, et al. Cutting Edge: mitochondrial assembly of the NLRP3 Inflammasome Complex is initiated at Priming. J Immunol. 2018;200(9):3047–52.PubMedCrossRef Elliott EI, Miller AN, Banoth B, et al. Cutting Edge: mitochondrial assembly of the NLRP3 Inflammasome Complex is initiated at Priming. J Immunol. 2018;200(9):3047–52.PubMedCrossRef
57.
go back to reference Raghu H, Lepus CM, Wang Q, et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis. 2017;76(5):914–22.PubMedCrossRef Raghu H, Lepus CM, Wang Q, et al. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis. 2017;76(5):914–22.PubMedCrossRef
Metadata
Title
Coenzyme Q10 mitigates macrophage mediated inflammation in heart following myocardial infarction via the NLRP3/IL1β pathway
Authors
Wenxu Pan
Guiquan Zhou
Meiling Hu
Gaoshan Li
Mingle Zhang
Hao Yang
Kunyan Li
Jingwei Li
Ting Liu
Ying Wang
Jun Jin
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-03729-x

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue