Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2021

Open Access 01-12-2021 | Myocardial Infarction | Research

Association between fibrinogen-to-albumin ratio and the presence and severity of coronary artery disease in patients with acute coronary syndrome

Authors: Zhenzhen Duan, Chaodi Luo, Bowen Fu, Dan Han

Published in: BMC Cardiovascular Disorders | Issue 1/2021

Login to get access

Abstract

Objective

Although the levels of plasma fibrinogen and albumin have been proven to be in relation to coronary heart disease (CHD), the association between fibrinogen-to-albumin ratio (FAR) and acute coronary syndrome (ACS) has not been adequately investigated. The aim of this study is to investigate the relationship between FAR and the presence and severity of CHD in patients with ACS.

Methods and results

A total of 1575 individuals who received coronary angiography (CAG) were enrolled. Patients were divided into the ACS group and the control group. The severity of ACS was determined by Gensini score, number of diseased coronary artery and the presence of myocardial infarction (MI). Data showed that the level of FAR in ACS group was higher than in the control group (81.20 ± 35.45 vs. 72.89 ± 20.24, P < 0.001). The results from subgroup analysis indicated that the values of FAR in the high Gensini score group, MI group and multiple-vessel stenosis group were higher than the matched subgroups. After adjustment for confounders, FAR was still independently related to the presence and severity of ACS (MI OR 2.097, 95%CI 1.430–3.076; High GS: OR 2.335, 95%CI 1.567–3.479; multiple-vessel disease: OR 2.088, 95%CI 1.439–3.030; P < 0.05).

Conclusion

The levels of FAR are independently associated with the presence and the severity of coronary artery disease in patients with ACS. Furthermore, FAR, as a more convenient and rapid biological indicator, may provide a new idea for predicting the presence and severity of ACS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Virani SS, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(90):e139–596.PubMed Virani SS, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(90):e139–596.PubMed
2.
go back to reference Gao Y, Li H, Zhou Y, Lv H, Chen Y. PDCD4 expression in coronary atherosclerosis rat models and its mechanism. Exp Therap Med. 2019;17(4):3150–4. Gao Y, Li H, Zhou Y, Lv H, Chen Y. PDCD4 expression in coronary atherosclerosis rat models and its mechanism. Exp Therap Med. 2019;17(4):3150–4.
3.
go back to reference Björk J, Forberg JL, Ohlsson M, Edenbrandt L, Öhlin H, Ekelund U. A simple statistical model for prediction of acute coronary syndrome in chest pain patients in the emergency department. BMC Med Inform Decision Making. 2006;6(1):28.CrossRef Björk J, Forberg JL, Ohlsson M, Edenbrandt L, Öhlin H, Ekelund U. A simple statistical model for prediction of acute coronary syndrome in chest pain patients in the emergency department. BMC Med Inform Decision Making. 2006;6(1):28.CrossRef
4.
go back to reference Zhang HW, Zhao X, Guo YL, et al. Elevated lipoprotein (a) levels are associated with the presence and severity of coronary artery disease in patients with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2018;28(10):980–6.CrossRef Zhang HW, Zhao X, Guo YL, et al. Elevated lipoprotein (a) levels are associated with the presence and severity of coronary artery disease in patients with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis. 2018;28(10):980–6.CrossRef
5.
go back to reference Kurtul A, Yarlioglues M, Murat SN, et al. The association of plasma fibrinogen with the extent and complexity of coronary lesions in patients with acute coronary syndrome. Kardiologia Polska (Polish Heart Journal). 2016;74(4):338–45.CrossRef Kurtul A, Yarlioglues M, Murat SN, et al. The association of plasma fibrinogen with the extent and complexity of coronary lesions in patients with acute coronary syndrome. Kardiologia Polska (Polish Heart Journal). 2016;74(4):338–45.CrossRef
6.
go back to reference Wan K, Zhao J, Huang H, et al. The association between triglyceride/high-density lipoprotein cholesterol ratio and all-cause mortality in acute coronary syndrome after coronary revascularization. PLoS ONE. 2015;10(4):e0123521.CrossRef Wan K, Zhao J, Huang H, et al. The association between triglyceride/high-density lipoprotein cholesterol ratio and all-cause mortality in acute coronary syndrome after coronary revascularization. PLoS ONE. 2015;10(4):e0123521.CrossRef
7.
go back to reference Turin TC, Okamura T, Afzal AR, et al. Impact of hypertension on the lifetime risk of coronary heart disease. Hypertens Res. 2016;39(7):548–51.CrossRef Turin TC, Okamura T, Afzal AR, et al. Impact of hypertension on the lifetime risk of coronary heart disease. Hypertens Res. 2016;39(7):548–51.CrossRef
8.
go back to reference Newman JD, Rockman CB, Kosiborod M, et al. Diabetes mellitus is a coronary heart disease risk equivalent for peripheral vascular disease. Am Heart J. 2017;184:114–20.CrossRef Newman JD, Rockman CB, Kosiborod M, et al. Diabetes mellitus is a coronary heart disease risk equivalent for peripheral vascular disease. Am Heart J. 2017;184:114–20.CrossRef
9.
go back to reference Tabakcı MM, Gerin F, Sunbul M, et al. Relation of plasma fibrinogen level with the presence, severity, and complexity of coronary artery disease. Clin Appl Thromb/Hemost. 2017;23(6):638–44.CrossRef Tabakcı MM, Gerin F, Sunbul M, et al. Relation of plasma fibrinogen level with the presence, severity, and complexity of coronary artery disease. Clin Appl Thromb/Hemost. 2017;23(6):638–44.CrossRef
10.
go back to reference Toss H, Lindahl B, Siegbahn A, et al. Prognostic influence of increased fibrinogen and C-reactive protein levels in unstable coronary artery disease. Circulation. 1997;96(12):4204–10.CrossRef Toss H, Lindahl B, Siegbahn A, et al. Prognostic influence of increased fibrinogen and C-reactive protein levels in unstable coronary artery disease. Circulation. 1997;96(12):4204–10.CrossRef
11.
go back to reference Shi Y, Wu Y, Bian C, et al. Predictive value of plasma fibrinogen levels in patients admitted for acute coronary syndrome. Texas Heart Inst J. 2010;37(2):178. Shi Y, Wu Y, Bian C, et al. Predictive value of plasma fibrinogen levels in patients admitted for acute coronary syndrome. Texas Heart Inst J. 2010;37(2):178.
12.
go back to reference Don BR, Kaysen G. Serum albumin: relationship to inflammation and nutrition. Semin Dial. 2004;17(6):432–7.CrossRef Don BR, Kaysen G. Serum albumin: relationship to inflammation and nutrition. Semin Dial. 2004;17(6):432–7.CrossRef
13.
go back to reference Gresele P, Deckmyn H, Huybrechts E, et al. Serum albumin enhances the impairment of platelet aggregation with thromboxane synthase inhibition by increasing the formation of prostaglandin D2. Biochem Pharmacol. 1984;33(13):2083–8.CrossRef Gresele P, Deckmyn H, Huybrechts E, et al. Serum albumin enhances the impairment of platelet aggregation with thromboxane synthase inhibition by increasing the formation of prostaglandin D2. Biochem Pharmacol. 1984;33(13):2083–8.CrossRef
14.
go back to reference Ang L, Behnamfar O, Palakodeti S, et al. Elevated baseline serum fibrinogen: effect on 2-year major adverse cardiovascular events following percutaneous coronary intervention. J Am Heart Assoc. 2017;6(11):e006580.CrossRef Ang L, Behnamfar O, Palakodeti S, et al. Elevated baseline serum fibrinogen: effect on 2-year major adverse cardiovascular events following percutaneous coronary intervention. J Am Heart Assoc. 2017;6(11):e006580.CrossRef
15.
go back to reference Zhu L, Chen M, Lin X. Serum albumin level for prediction of all-cause mortality in acute coronary syndrome patients: a meta-analysis. Biosci Rep. 2020;40(1):BSR20190881.CrossRef Zhu L, Chen M, Lin X. Serum albumin level for prediction of all-cause mortality in acute coronary syndrome patients: a meta-analysis. Biosci Rep. 2020;40(1):BSR20190881.CrossRef
16.
go back to reference Karahan O, Acet H, Ertaş F, et al. The relationship between fibrinogen to albumin ratio and severity of coronary artery disease in patients with STEMI. Am J Emerg Med. 2016;34(6):1037–42.CrossRef Karahan O, Acet H, Ertaş F, et al. The relationship between fibrinogen to albumin ratio and severity of coronary artery disease in patients with STEMI. Am J Emerg Med. 2016;34(6):1037–42.CrossRef
17.
go back to reference Celebi S, Ozcan Celebi O, Berkalp B, et al. The association between the fibrinogen-to-albumin ratio and coronary artery disease severity in patients with stable coronary artery disease. Coron Artery Dis. 2020;31(6):512–7.CrossRef Celebi S, Ozcan Celebi O, Berkalp B, et al. The association between the fibrinogen-to-albumin ratio and coronary artery disease severity in patients with stable coronary artery disease. Coron Artery Dis. 2020;31(6):512–7.CrossRef
18.
go back to reference Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39(33):3021–104.CrossRef Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39(33):3021–104.CrossRef
19.
go back to reference American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care. 2010;33(Supplement 1):S11–61.CrossRef American Diabetes Association. Standards of medical care in diabetes—2010. Diabetes Care. 2010;33(Supplement 1):S11–61.CrossRef
20.
go back to reference Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267–315.CrossRef Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: task force for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(3):267–315.CrossRef
21.
go back to reference Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606.CrossRef Gensini GG. A more meaningful scoring system for determining the severity of coronary heart disease. Am J Cardiol. 1983;51:606.CrossRef
22.
go back to reference Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.CrossRef Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost. 2005;3(8):1894–904.CrossRef
23.
go back to reference Collaboration ERF. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367(14):1310–20.CrossRef Collaboration ERF. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367(14):1310–20.CrossRef
24.
go back to reference Sabater-Lleal M, Huang J, Chasman D, et al. Multiethnic meta-analysis of genome-wide association studies in > 100000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation. 2013;128(12):1310–24.CrossRef Sabater-Lleal M, Huang J, Chasman D, et al. Multiethnic meta-analysis of genome-wide association studies in > 100000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation. 2013;128(12):1310–24.CrossRef
25.
go back to reference Joles JA, Willekes-Koolschijn N, Koomans HA. Hypoalbuminemia causes high blood viscosity by increasing red cell lysophosphatidylcholine. Kidney Int. 1997;52(3):761–70.CrossRef Joles JA, Willekes-Koolschijn N, Koomans HA. Hypoalbuminemia causes high blood viscosity by increasing red cell lysophosphatidylcholine. Kidney Int. 1997;52(3):761–70.CrossRef
26.
go back to reference Chien SC, Chen CY, Leu HB, et al. Association of low serum albumin concentration and adverse cardiovascular events in stable coronary heart disease. Int J Cardiol. 2017;241:1–5.CrossRef Chien SC, Chen CY, Leu HB, et al. Association of low serum albumin concentration and adverse cardiovascular events in stable coronary heart disease. Int J Cardiol. 2017;241:1–5.CrossRef
27.
go back to reference Xiao L, Jia Y, Wang X, et al. The impact of preoperative fibrinogen-albumin ratio on mortality in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Clin Chim Acta. 2019;493:8–13.CrossRef Xiao L, Jia Y, Wang X, et al. The impact of preoperative fibrinogen-albumin ratio on mortality in patients with acute ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention. Clin Chim Acta. 2019;493:8–13.CrossRef
28.
go back to reference Zhao YP, Ji YY, Wang FY, et al. Value of fibrinogen to albumin ratio on predicting spontaneous recanalization of infarct-related artery in patients with acute ST-segment elevation myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi. 2019;47(2):123–8.PubMed Zhao YP, Ji YY, Wang FY, et al. Value of fibrinogen to albumin ratio on predicting spontaneous recanalization of infarct-related artery in patients with acute ST-segment elevation myocardial infarction. Zhonghua Xin Xue Guan Bing Za Zhi. 2019;47(2):123–8.PubMed
Metadata
Title
Association between fibrinogen-to-albumin ratio and the presence and severity of coronary artery disease in patients with acute coronary syndrome
Authors
Zhenzhen Duan
Chaodi Luo
Bowen Fu
Dan Han
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2021
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-021-02400-z

Other articles of this Issue 1/2021

BMC Cardiovascular Disorders 1/2021 Go to the issue