Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2009

01-09-2009 | Original Paper

MicroRNAs in Mental Health: From Biological Underpinnings to Potential Therapies

Authors: Joshua G. Hunsberger, Daniel R. Austin, Guang Chen, Husseini K. Manji

Published in: NeuroMolecular Medicine | Issue 3/2009

Login to get access

Abstract

Psychiatric illnesses are disabling disorders with poorly understood underlying pathophysiologies. However, it is becoming increasingly evident that these illnesses result from disruptions across whole cellular networks rather than any particular monoamine system. Recent evidence continues to support the hypothesis that these illnesses arise from impairments in cellular plasticity cascades, which lead to aberrant information processing in the circuits that regulate mood, cognition, and neurovegetative functions (sleep, appetite, energy, etc.). As a result, many have begun to consider future therapies that would be capable of affecting global changes in cellular plasticity to restore appropriate synaptic function and neuronal connectivity. MicroRNAs (miRNAs) are non-coding RNAs that can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. Here, we review some properties of miRNAs and show they are altered by stress, glucocorticoids, mood stabilizers, and in a particular psychiatric disorder, schizophrenia. While this field is still in its infancy, we consider their potential for regulating behavioral phenotypes and targeting key predicted signaling cascades that are implicated in psychiatric illness. Clearly, considerable research is required to better determine any therapeutic potential of targeting miRNAs; however, these agents may provide the next generation of effective therapies for psychiatric illnesses.
Literature
go back to reference Belmaker, R. H., & Agam, G. (2008). Major depressive disorder. New England Journal of Medicine, 358(1), 55–68.PubMedCrossRef Belmaker, R. H., & Agam, G. (2008). Major depressive disorder. New England Journal of Medicine, 358(1), 55–68.PubMedCrossRef
go back to reference Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., et al. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 17(8), 1156–1168.PubMedCrossRef Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., et al. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 17(8), 1156–1168.PubMedCrossRef
go back to reference Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I., & Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell, 125(6), 1111–1124.PubMedCrossRef Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I., & Filipowicz, W. (2006). Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell, 125(6), 1111–1124.PubMedCrossRef
go back to reference Bremner, J. D., Elzinga, B., Schmahl, C., & Vermetten, E. (2008). Structural and functional plasticity of the human brain in posttraumatic stress disorder. Progress in Brain Research, 167, 171–186.PubMedCrossRef Bremner, J. D., Elzinga, B., Schmahl, C., & Vermetten, E. (2008). Structural and functional plasticity of the human brain in posttraumatic stress disorder. Progress in Brain Research, 167, 171–186.PubMedCrossRef
go back to reference Cerqueira, J. J., Pego, J. M., Taipa, R., Bessa, J. M., Almeida, O. F., & Sousa, N. (2005). Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. Journal of Neuroscience, 25(34), 7792–7800.PubMedCrossRef Cerqueira, J. J., Pego, J. M., Taipa, R., Bessa, J. M., Almeida, O. F., & Sousa, N. (2005). Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors. Journal of Neuroscience, 25(34), 7792–7800.PubMedCrossRef
go back to reference Chaudhuri, K., & Chatterjee, R. (2007). MicroRNA detection and target prediction: Integration of computational and experimental approaches. DNA and Cell Biology, 26(5), 321–337.PubMedCrossRef Chaudhuri, K., & Chatterjee, R. (2007). MicroRNA detection and target prediction: Integration of computational and experimental approaches. DNA and Cell Biology, 26(5), 321–337.PubMedCrossRef
go back to reference Chen, G., & Manji, H. K. (2006). The extracellular signal-regulated kinase pathway: An emerging promising target for mood stabilizers. Current Opinion in Psychiatry, 19(3), 313–323.PubMedCrossRef Chen, G., & Manji, H. K. (2006). The extracellular signal-regulated kinase pathway: An emerging promising target for mood stabilizers. Current Opinion in Psychiatry, 19(3), 313–323.PubMedCrossRef
go back to reference Cheng, H. Y., Papp, J. W., Varlamova, O., Dziema, H., Russell, B., Curfman, J. P., et al. (2007). MicroRNA modulation of circadian-clock period and entrainment. Neuron, 54(5), 813–829.PubMedCrossRef Cheng, H. Y., Papp, J. W., Varlamova, O., Dziema, H., Russell, B., Curfman, J. P., et al. (2007). MicroRNA modulation of circadian-clock period and entrainment. Neuron, 54(5), 813–829.PubMedCrossRef
go back to reference Coyle, J. T., & Duman, R. S. (2003). Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron, 38(2), 157–160.PubMedCrossRef Coyle, J. T., & Duman, R. S. (2003). Finding the intracellular signaling pathways affected by mood disorder treatments. Neuron, 38(2), 157–160.PubMedCrossRef
go back to reference Crosby, M. E., Kulshreshtha, R., Ivan, M., & Glazer, P. M. (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research, 69(3), 1221–1229.PubMedCrossRef Crosby, M. E., Kulshreshtha, R., Ivan, M., & Glazer, P. M. (2009). MicroRNA regulation of DNA repair gene expression in hypoxic stress. Cancer Research, 69(3), 1221–1229.PubMedCrossRef
go back to reference Cryan, J. F., Kelly, P. H., Neijt, H. C., Sansig, G., Flor, P. J., & van Der Putten, H. (2003). Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. European Journal of Neuroscience, 17(11), 2409–2417.PubMedCrossRef Cryan, J. F., Kelly, P. H., Neijt, H. C., Sansig, G., Flor, P. J., & van Der Putten, H. (2003). Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. European Journal of Neuroscience, 17(11), 2409–2417.PubMedCrossRef
go back to reference Czeh, B., Perez-Cruz, C., Fuchs, E., & Flugge, G. (2008). Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: Does hemisphere location matter? Behavioural Brain Research, 190(1), 1–13.PubMedCrossRef Czeh, B., Perez-Cruz, C., Fuchs, E., & Flugge, G. (2008). Chronic stress-induced cellular changes in the medial prefrontal cortex and their potential clinical implications: Does hemisphere location matter? Behavioural Brain Research, 190(1), 1–13.PubMedCrossRef
go back to reference Diorio, D., Viau, V., & Meaney, M. J. (1993). The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. Journal of Neuroscience, 13(9), 3839–3847.PubMed Diorio, D., Viau, V., & Meaney, M. J. (1993). The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. Journal of Neuroscience, 13(9), 3839–3847.PubMed
go back to reference Drevets, W. C. (2000). Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Progress in Brain Research, 126, 413–431.PubMedCrossRef Drevets, W. C. (2000). Functional anatomical abnormalities in limbic and prefrontal cortical structures in major depression. Progress in Brain Research, 126, 413–431.PubMedCrossRef
go back to reference Drevets, W. C., Ongur, D., & Price, J. L. (1998). Neuroimaging abnormalities in the subgenual prefrontal cortex: Implications for the pathophysiology of familial mood disorders. Molecular Psychiatry, 3(3), 220–226, 190–221.PubMedCrossRef Drevets, W. C., Ongur, D., & Price, J. L. (1998). Neuroimaging abnormalities in the subgenual prefrontal cortex: Implications for the pathophysiology of familial mood disorders. Molecular Psychiatry, 3(3), 220–226, 190–221.PubMedCrossRef
go back to reference Drevets, W. C., Price, J. L., Simpson, J. R., Jr., Todd, R. D., Reich, T., Vannier, M., et al. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386(6627), 824–827.PubMedCrossRef Drevets, W. C., Price, J. L., Simpson, J. R., Jr., Todd, R. D., Reich, T., Vannier, M., et al. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386(6627), 824–827.PubMedCrossRef
go back to reference Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13(8), 663–681.PubMed Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13(8), 663–681.PubMed
go back to reference Duman, R. S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine, 5(1), 11–25.PubMedCrossRef Duman, R. S. (2004). Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Medicine, 5(1), 11–25.PubMedCrossRef
go back to reference Fish, E. W., Shahrokh, D., Bagot, R., Caldji, C., Bredy, T., Szyf, M., et al. (2004). Epigenetic programming of stress responses through variations in maternal care. Annals of the New York Academy of Sciences, 1036, 167–180.PubMedCrossRef Fish, E. W., Shahrokh, D., Bagot, R., Caldji, C., Bredy, T., Szyf, M., et al. (2004). Epigenetic programming of stress responses through variations in maternal care. Annals of the New York Academy of Sciences, 1036, 167–180.PubMedCrossRef
go back to reference Goodwin, F. K., & Jamison, K. R. (2007). Manic-depressive illness: Bipolar disorders and recurrent depression (2nd ed.). Oxford; New York: Oxford University Press. Goodwin, F. K., & Jamison, K. R. (2007). Manic-depressive illness: Bipolar disorders and recurrent depression (2nd ed.). Oxford; New York: Oxford University Press.
go back to reference Grippo, A. J., & Johnson, A. K. (2009). Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress, 12(1), 1–21.PubMedCrossRef Grippo, A. J., & Johnson, A. K. (2009). Stress, depression and cardiovascular dysregulation: A review of neurobiological mechanisms and the integration of research from preclinical disease models. Stress, 12(1), 1–21.PubMedCrossRef
go back to reference Hansen, T., Olsen, L., Lindow, M., Jakobsen, K. D., Ullum, H., Jonsson, E., et al. (2007). Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE, 2(9), e873.PubMedCrossRef Hansen, T., Olsen, L., Lindow, M., Jakobsen, K. D., Ullum, H., Jonsson, E., et al. (2007). Brain expressed microRNAs implicated in schizophrenia etiology. PLoS ONE, 2(9), e873.PubMedCrossRef
go back to reference Hasler, G., Drevets, W. C., Gould, T. D., Gottesman, I. I., & Manji, H. K. (2006). Toward constructing an behaviroal phenotype strategy for bipolar disorders. Biological Psychiatry, 60(2), 93–105.PubMedCrossRef Hasler, G., Drevets, W. C., Gould, T. D., Gottesman, I. I., & Manji, H. K. (2006). Toward constructing an behaviroal phenotype strategy for bipolar disorders. Biological Psychiatry, 60(2), 93–105.PubMedCrossRef
go back to reference Kato, T. (2008). Molecular neurobiology of bipolar disorder: A disease of ‘mood-stabilizing neurons’? Trends in Neurosciences, 31(10), 495–503.PubMedCrossRef Kato, T. (2008). Molecular neurobiology of bipolar disorder: A disease of ‘mood-stabilizing neurons’? Trends in Neurosciences, 31(10), 495–503.PubMedCrossRef
go back to reference Keck, P. E., Jr., McElroy, S. L., Strakowski, S. M., Stanton, S. P., Kizer, D. L., Balistreri, T. M., et al. (1996). Factors associated with pharmacologic noncompliance in patients with mania. Journal of Clinical Psychiatry, 57(7), 292–297.PubMed Keck, P. E., Jr., McElroy, S. L., Strakowski, S. M., Stanton, S. P., Kizer, D. L., Balistreri, T. M., et al. (1996). Factors associated with pharmacologic noncompliance in patients with mania. Journal of Clinical Psychiatry, 57(7), 292–297.PubMed
go back to reference Kocerha, J., Faghihi, M. A., Lopez-Toledano, M. A., Huang, J., Ramsey, A. J., Caron, M. G., et al. (2009). MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proceedings of the National Academy of Science USA, 106, 3507–3512.CrossRef Kocerha, J., Faghihi, M. A., Lopez-Toledano, M. A., Huang, J., Ramsey, A. J., Caron, M. G., et al. (2009). MicroRNA-219 modulates NMDA receptor-mediated neurobehavioral dysfunction. Proceedings of the National Academy of Science USA, 106, 3507–3512.CrossRef
go back to reference Kupfer, D. J. (2005). The increasing medical burden in bipolar disorder. JAMA, 293(20), 2528–2530.PubMedCrossRef Kupfer, D. J. (2005). The increasing medical burden in bipolar disorder. JAMA, 293(20), 2528–2530.PubMedCrossRef
go back to reference Lang, U. E., Puls, I., Muller, D. J., Strutz-Seebohm, N., & Gallinat, J. (2007). Molecular mechanisms of schizophrenia. Cellular Physiology and Biochemistry, 20(6), 687–702.PubMedCrossRef Lang, U. E., Puls, I., Muller, D. J., Strutz-Seebohm, N., & Gallinat, J. (2007). Molecular mechanisms of schizophrenia. Cellular Physiology and Biochemistry, 20(6), 687–702.PubMedCrossRef
go back to reference Leung, A. K., Calabrese, J. M., & Sharp, P. A. (2006). Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proceedings of the National Academy of Science USA, 103(48), 18125–18130.CrossRef Leung, A. K., Calabrese, J. M., & Sharp, P. A. (2006). Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proceedings of the National Academy of Science USA, 103(48), 18125–18130.CrossRef
go back to reference Leung, A. K., & Sharp, P. A. (2007). microRNAs: A safeguard against turmoil? Cell, 130(4), 581–585.PubMedCrossRef Leung, A. K., & Sharp, P. A. (2007). microRNAs: A safeguard against turmoil? Cell, 130(4), 581–585.PubMedCrossRef
go back to reference Malleret, G., Haditsch, U., Genoux, D., Jones, M. W., Bliss, T. V., Vanhoose, A. M., et al. (2001). Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell, 104(5), 675–686.PubMed Malleret, G., Haditsch, U., Genoux, D., Jones, M. W., Bliss, T. V., Vanhoose, A. M., et al. (2001). Inducible and reversible enhancement of learning, memory, and long-term potentiation by genetic inhibition of calcineurin. Cell, 104(5), 675–686.PubMed
go back to reference Manji, H. K., Gottesman, I. I., & Gould, T. D. (2003). Signal transduction and genes-to-behaviors pathways in psychiatric diseases. Science STKE, 2003(207), pe49.CrossRef Manji, H. K., Gottesman, I. I., & Gould, T. D. (2003). Signal transduction and genes-to-behaviors pathways in psychiatric diseases. Science STKE, 2003(207), pe49.CrossRef
go back to reference Marsit, C. J., Eddy, K., & Kelsey, K. T. (2006). MicroRNA responses to cellular stress. Cancer Research, 66(22), 10843–10848.PubMedCrossRef Marsit, C. J., Eddy, K., & Kelsey, K. T. (2006). MicroRNA responses to cellular stress. Cancer Research, 66(22), 10843–10848.PubMedCrossRef
go back to reference McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–348.PubMedCrossRef McGowan, P. O., Sasaki, A., D’Alessio, A. C., Dymov, S., Labonte, B., Szyf, M., et al. (2009). Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nature Neuroscience, 12(3), 342–348.PubMedCrossRef
go back to reference Miller, M. M., & McEwen, B. S. (2006). Establishing an agenda for translational research on PTSD. Annals of the New York Academy of Sciences, 1071, 294–312.PubMedCrossRef Miller, M. M., & McEwen, B. S. (2006). Establishing an agenda for translational research on PTSD. Annals of the New York Academy of Sciences, 1071, 294–312.PubMedCrossRef
go back to reference Mitsukawa, K., Mombereau, C., Lotscher, E., Uzunov, D. P., van der Putten, H., Flor, P. J., et al. (2006). Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: Implications for stress-related psychiatric disorders. Neuropsychopharmacology, 31(6), 1112–1122.PubMed Mitsukawa, K., Mombereau, C., Lotscher, E., Uzunov, D. P., van der Putten, H., Flor, P. J., et al. (2006). Metabotropic glutamate receptor subtype 7 ablation causes dysregulation of the HPA axis and increases hippocampal BDNF protein levels: Implications for stress-related psychiatric disorders. Neuropsychopharmacology, 31(6), 1112–1122.PubMed
go back to reference Mulkey, R. M., Endo, S., Shenolikar, S., & Malenka, R. C. (1994). Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 369(6480), 486–488.PubMedCrossRef Mulkey, R. M., Endo, S., Shenolikar, S., & Malenka, R. C. (1994). Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature, 369(6480), 486–488.PubMedCrossRef
go back to reference Neumeister, A., Wood, S., Bonne, O., Nugent, A. C., Luckenbaugh, D. A., Young, T., et al. (2005). Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biological Psychiatry, 57(8), 935–937.PubMedCrossRef Neumeister, A., Wood, S., Bonne, O., Nugent, A. C., Luckenbaugh, D. A., Young, T., et al. (2005). Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biological Psychiatry, 57(8), 935–937.PubMedCrossRef
go back to reference Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8(2), R27.PubMedCrossRef Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8(2), R27.PubMedCrossRef
go back to reference Pittenger, C., & Duman, R. S. (2008). Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 33(1), 88–109.PubMedCrossRef Pittenger, C., & Duman, R. S. (2008). Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 33(1), 88–109.PubMedCrossRef
go back to reference Pulkkinen, K., Malm, T., Turunen, M., Koistinaho, J., & Yla-Herttuala, S. (2008). Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Letters, 582(16), 2397–2401.PubMedCrossRef Pulkkinen, K., Malm, T., Turunen, M., Koistinaho, J., & Yla-Herttuala, S. (2008). Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Letters, 582(16), 2397–2401.PubMedCrossRef
go back to reference Rainer, J., Ploner, C., Jesacher, S., Ploner, A., Eduardoff, M., Mansha, M., et al. (2009). Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia, 23, 746–752.PubMedCrossRef Rainer, J., Ploner, C., Jesacher, S., Ploner, A., Eduardoff, M., Mansha, M., et al. (2009). Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia, 23, 746–752.PubMedCrossRef
go back to reference Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89.PubMedCrossRef Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21(1), 55–89.PubMedCrossRef
go back to reference Sethupathy, P., Megraw, M., & Hatzigeorgiou, A. G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods, 3(11), 881–886.PubMedCrossRef Sethupathy, P., Megraw, M., & Hatzigeorgiou, A. G. (2006). A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods, 3(11), 881–886.PubMedCrossRef
go back to reference Shaltiel, G., Chen, G., & Manji, H. K. (2007). Neurotrophic signaling cascades in the pathophysiology and treatment of bipolar disorder. Current Opinion in Pharmacology, 7(1), 22–26.PubMedCrossRef Shaltiel, G., Chen, G., & Manji, H. K. (2007). Neurotrophic signaling cascades in the pathophysiology and treatment of bipolar disorder. Current Opinion in Pharmacology, 7(1), 22–26.PubMedCrossRef
go back to reference Sklar, P., Smoller, J. W., Fan, J., Ferreira, M. A., Perlis, R. H., Chambert, K., et al. (2008). Whole-genome association study of bipolar disorder. Molecular Psychiatry, 13(6), 558–569.PubMedCrossRef Sklar, P., Smoller, J. W., Fan, J., Ferreira, M. A., Perlis, R. H., Chambert, K., et al. (2008). Whole-genome association study of bipolar disorder. Molecular Psychiatry, 13(6), 558–569.PubMedCrossRef
go back to reference Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., Hsu, R., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40(6), 751–760.PubMedCrossRef Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., Hsu, R., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40(6), 751–760.PubMedCrossRef
go back to reference Tabares-Seisdedos, R., & Rubenstein, J. L. (2009). Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: Implications for schizophrenia, autism and cancer. Molecular Psychiatry, 14, 563–589.PubMedCrossRef Tabares-Seisdedos, R., & Rubenstein, J. L. (2009). Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: Implications for schizophrenia, autism and cancer. Molecular Psychiatry, 14, 563–589.PubMedCrossRef
go back to reference Uchida, S., Nishida, A., Hara, K., Kamemoto, T., Suetsugi, M., Fujimoto, M., et al. (2008). Characterization of the vulnerability to repeated stress in Fischer 344 rats: Possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. European Journal of Neuroscience, 27(9), 2250–2261.PubMedCrossRef Uchida, S., Nishida, A., Hara, K., Kamemoto, T., Suetsugi, M., Fujimoto, M., et al. (2008). Characterization of the vulnerability to repeated stress in Fischer 344 rats: Possible involvement of microRNA-mediated down-regulation of the glucocorticoid receptor. European Journal of Neuroscience, 27(9), 2250–2261.PubMedCrossRef
go back to reference Vreugdenhil, E., Verissimo, C. S., Mariman, R., Kamphorst, J. T., Barbosa, J. S., Zweers, T., et al. (2009). MicroRNAs miR-18 and miR-124a downregulate the glucocorticoid receptor: Implications for glucocorticoid responsiveness in the brain. Endocrinology, 150, 2220–2228.PubMedCrossRef Vreugdenhil, E., Verissimo, C. S., Mariman, R., Kamphorst, J. T., Barbosa, J. S., Zweers, T., et al. (2009). MicroRNAs miR-18 and miR-124a downregulate the glucocorticoid receptor: Implications for glucocorticoid responsiveness in the brain. Endocrinology, 150, 2220–2228.PubMedCrossRef
go back to reference Wang, J. H., & Kelly, P. T. (1997). Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. Journal of Neuroscience, 17(12), 4600–4611.PubMed Wang, J. H., & Kelly, P. T. (1997). Postsynaptic calcineurin activity downregulates synaptic transmission by weakening intracellular Ca2+ signaling mechanisms in hippocampal CA1 neurons. Journal of Neuroscience, 17(12), 4600–4611.PubMed
go back to reference Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.PubMedCrossRef Weaver, I. C., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., et al. (2004). Epigenetic programming by maternal behavior. Nature Neuroscience, 7(8), 847–854.PubMedCrossRef
go back to reference Wellman, C. L. (2001). Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. Journal of Neurobiology, 49(3), 245–253.PubMedCrossRef Wellman, C. L. (2001). Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. Journal of Neurobiology, 49(3), 245–253.PubMedCrossRef
go back to reference Winder, D. G., Mansuy, I. M., Osman, M., Moallem, T. M., & Kandel, E. R. (1998). Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell, 92(1), 25–37.PubMedCrossRef Winder, D. G., Mansuy, I. M., Osman, M., Moallem, T. M., & Kandel, E. R. (1998). Genetic and pharmacological evidence for a novel, intermediate phase of long-term potentiation suppressed by calcineurin. Cell, 92(1), 25–37.PubMedCrossRef
go back to reference Yang, M., Lee, J. E., Padgett, R. W., & Edery, I. (2008). Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics, 9, 83.PubMedCrossRef Yang, M., Lee, J. E., Padgett, R. W., & Edery, I. (2008). Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics, 9, 83.PubMedCrossRef
go back to reference Zhou, R., Yuan, P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., et al. (2008). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34, 1395–1405.PubMedCrossRef Zhou, R., Yuan, P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., et al. (2008). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34, 1395–1405.PubMedCrossRef
go back to reference Zhu, Y., Kalbfleisch, T., Brennan, M. D., & Li, Y. (2009). A microRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophrenia Research, 109, 86–89.PubMedCrossRef Zhu, Y., Kalbfleisch, T., Brennan, M. D., & Li, Y. (2009). A microRNA gene is hosted in an intron of a schizophrenia-susceptibility gene. Schizophrenia Research, 109, 86–89.PubMedCrossRef
Metadata
Title
MicroRNAs in Mental Health: From Biological Underpinnings to Potential Therapies
Authors
Joshua G. Hunsberger
Daniel R. Austin
Guang Chen
Husseini K. Manji
Publication date
01-09-2009
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 3/2009
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-009-8070-5

Other articles of this Issue 3/2009

NeuroMolecular Medicine 3/2009 Go to the issue