Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2009

01-09-2009 | Original Paper

microRNA Regulation of Synaptic Plasticity

Authors: Neil R. Smalheiser, Giovanni Lugli

Published in: NeuroMolecular Medicine | Issue 3/2009

Login to get access

Abstract

microRNAs play an important role in regulating synaptic plasticity. For example, microRNAs target (and are targeted by) plasticity mediators such as CREB, MECP2, and FMRP. As well, specific microRNAs have been shown to be expressed within dendrites, where they regulate protein translation of targets mediating dendritic growth. Components of the RISC machinery have been implicated in long-term memory in Drosophila. Here, we review evidence from studies of adult mouse forebrain supporting a model wherein synaptic stimulation (above a threshold value) increases calcium within dendritic spines, activates calpain, and activates and releases dicer from the postsynaptic density. Dicer processes local pre-miRs into mature miRNAs that are incorporated into RISC complexes within or near the dendritic spine, and that bind available target mRNAs in the vicinity. These may repress protein translation under resting conditions, yet permit a phasic burst of translation to occur transiently following subsequent synaptic activity. Loaded RISC complexes that are not bound to local mRNAs may serve to bind and trap mRNAs that are being transported down dendrites. Thus, locally formed microRNAs may mark the location of previously activated synapses and perform a type of synaptic tagging and capture.
Literature
go back to reference Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., et al. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 17, 1156–1168. doi:10.1093/hmg/ddn005.PubMedCrossRef Beveridge, N. J., Tooney, P. A., Carroll, A. P., Gardiner, E., Bowden, N., Scott, R. J., et al. (2008). Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Human Molecular Genetics, 17, 1156–1168. doi:10.​1093/​hmg/​ddn005.PubMedCrossRef
go back to reference Bourne, J. N., Sorra, K. E., Hurlburt, J., & Harris, K. M. (2007). Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices. Hippocampus, 2007(17), 1–4. doi:10.1002/hipo.20238.CrossRef Bourne, J. N., Sorra, K. E., Hurlburt, J., & Harris, K. M. (2007). Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices. Hippocampus, 2007(17), 1–4. doi:10.​1002/​hipo.​20238.CrossRef
go back to reference Dincbas-Renqvist, V., Pépin, G., Rakonjac, M., Plante, I., Ouellet, D. L., Hermansson, A., et al. (2009). Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochimica et Biophysica Acta, 1789, 99–108.PubMed Dincbas-Renqvist, V., Pépin, G., Rakonjac, M., Plante, I., Ouellet, D. L., Hermansson, A., et al. (2009). Human Dicer C-terminus functions as a 5-lipoxygenase binding domain. Biochimica et Biophysica Acta, 1789, 99–108.PubMed
go back to reference Eis, P. S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M. F., et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proceedings of the National Academy of Sciences of the United States of America, 102, 3627–3632. doi:10.1073/pnas.0500613102.PubMedCrossRef Eis, P. S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M. F., et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proceedings of the National Academy of Sciences of the United States of America, 102, 3627–3632. doi:10.​1073/​pnas.​0500613102.PubMedCrossRef
go back to reference Glanzer, J., Miyashiro, K. Y., Sul, J. Y., Barrett, L., Belt, B., Haydon, P., et al. (2005). RNA splicing capability of live neuronal dendrites. Proceedings of the National Academy of Sciences of the United States of America, 102, 16859–16864. doi:10.1073/pnas.0503783102.PubMedCrossRef Glanzer, J., Miyashiro, K. Y., Sul, J. Y., Barrett, L., Belt, B., Haydon, P., et al. (2005). RNA splicing capability of live neuronal dendrites. Proceedings of the National Academy of Sciences of the United States of America, 102, 16859–16864. doi:10.​1073/​pnas.​0503783102.PubMedCrossRef
go back to reference Khan, A. A., Betel, D., Sander, C., Leslie, C. S., & Marks, D. S. (2009). Nature Biotechnology, (in press). Khan, A. A., Betel, D., Sander, C., Leslie, C. S., & Marks, D. S. (2009). Nature Biotechnology, (in press).
go back to reference Kim, S. H., Markham, J. A., Weiler, I. J., & Greenough, W. T. (2008). Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 105, 4429–4434. doi:10.1073/pnas.0800257105.PubMedCrossRef Kim, S. H., Markham, J. A., Weiler, I. J., & Greenough, W. T. (2008). Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 105, 4429–4434. doi:10.​1073/​pnas.​0800257105.PubMedCrossRef
go back to reference Kiyosawa, H., Mise, N., Iwase, S., Hayashizaki, Y., & Abe, K. (2005). Disclosing hidden transcripts: mouse natural sense–antisense transcripts tend to be poly(A) negative and nuclear localized. Genome Research, 15, 463–474. doi:10.1101/gr.3155905.PubMedCrossRef Kiyosawa, H., Mise, N., Iwase, S., Hayashizaki, Y., & Abe, K. (2005). Disclosing hidden transcripts: mouse natural sense–antisense transcripts tend to be poly(A) negative and nuclear localized. Genome Research, 15, 463–474. doi:10.​1101/​gr.​3155905.PubMedCrossRef
go back to reference Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10, 1513–1514. doi:10.1038/nn2010.PubMedCrossRef Klein, M. E., Lioy, D. T., Ma, L., Impey, S., Mandel, G., & Goodman, R. H. (2007). Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA. Nature Neuroscience, 10, 1513–1514. doi:10.​1038/​nn2010.PubMedCrossRef
go back to reference Kye, M. J., Liu, T., Levy, S. F., Xu, N. L., Groves, B. B., Bonneau, R., et al. (2007). Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA, 13, 1224–1234. doi:10.1261/rna.480407.PubMedCrossRef Kye, M. J., Liu, T., Levy, S. F., Xu, N. L., Groves, B. B., Bonneau, R., et al. (2007). Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA, 13, 1224–1234. doi:10.​1261/​rna.​480407.PubMedCrossRef
go back to reference Li, Y., Lin, L., & Jin, P. (2008). The microRNA pathway and fragile X mental retardation protein. Biochimica et Biophysica Acta, 1779, 702–705.PubMed Li, Y., Lin, L., & Jin, P. (2008). The microRNA pathway and fragile X mental retardation protein. Biochimica et Biophysica Acta, 1779, 702–705.PubMed
go back to reference Lugli, G., Larson, J., Martone, M. E., Jones, Y., & Smalheiser, N. R. (2005). Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. Journal of Neurochemistry, 94, 896–905. doi:10.1111/j.1471-4159.2005.03224.x.PubMedCrossRef Lugli, G., Larson, J., Martone, M. E., Jones, Y., & Smalheiser, N. R. (2005). Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. Journal of Neurochemistry, 94, 896–905. doi:10.​1111/​j.​1471-4159.​2005.​03224.​x.PubMedCrossRef
go back to reference Narayanan, U., Nalavadi, V., Nakamoto, M., Pallas, D. C., Ceman, S., Bassell, G. J., et al. (2007). FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. Journal of Neuroscience, 27, 14349–14357. doi:10.1523/JNEUROSCI.2969-07.2007.PubMedCrossRef Narayanan, U., Nalavadi, V., Nakamoto, M., Pallas, D. C., Ceman, S., Bassell, G. J., et al. (2007). FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. Journal of Neuroscience, 27, 14349–14357. doi:10.​1523/​JNEUROSCI.​2969-07.​2007.PubMedCrossRef
go back to reference Nomura, T., Kimura, M., Horii, T., Morita, S., Soejima, H., Kudo, S., et al. (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Human Molecular Genetics, 17, 1192–1199. doi:10.1093/hmg/ddn011.PubMedCrossRef Nomura, T., Kimura, M., Horii, T., Morita, S., Soejima, H., Kudo, S., et al. (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Human Molecular Genetics, 17, 1192–1199. doi:10.​1093/​hmg/​ddn011.PubMedCrossRef
go back to reference Park, S., Park, J. M., Kim, S., Kim, J. A., Shepherd, J. D., Smith-Hicks, C. L., et al. (2008). Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron, 59, 70–83. doi:10.1016/j.neuron.2008.05.023.PubMedCrossRef Park, S., Park, J. M., Kim, S., Kim, J. A., Shepherd, J. D., Smith-Hicks, C. L., et al. (2008). Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron, 59, 70–83. doi:10.​1016/​j.​neuron.​2008.​05.​023.PubMedCrossRef
go back to reference Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8, R27. doi:10.1186/gb-2007-8-2-r27.PubMedCrossRef Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8, R27. doi:10.​1186/​gb-2007-8-2-r27.PubMedCrossRef
go back to reference Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. doi:10.1038/nature04367.PubMedCrossRef Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. doi:10.​1038/​nature04367.PubMedCrossRef
go back to reference Smalheiser, N. R. (2008a). Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization. Biochimica et Biophysica Acta, 1779, 678–681.PubMed Smalheiser, N. R. (2008a). Regulation of mammalian microRNA processing and function by cellular signaling and subcellular localization. Biochimica et Biophysica Acta, 1779, 678–681.PubMed
go back to reference Smalheiser, N. R., Lugli, G., Lenon, A. L., & Larson, J. (manuscript submitted). Smalheiser, N. R., Lugli, G., Lenon, A. L., & Larson, J. (manuscript submitted).
go back to reference Smalheiser, N. R., Lugli, G., Rizavi, H. S., Turecki, D., Torvik, V. I., & Dwivedi, Y. (2009). (manuscript submitted). Smalheiser, N. R., Lugli, G., Rizavi, H. S., Turecki, D., Torvik, V. I., & Dwivedi, Y. (2009). (manuscript submitted).
go back to reference Velleca, M. A., Wallace, M. C., & Merlie, J. P. (1994). A novel synapse-associated noncoding RNA. Molecular and Cellular Biology, 14, 7095–7104.PubMed Velleca, M. A., Wallace, M. C., & Merlie, J. P. (1994). A novel synapse-associated noncoding RNA. Molecular and Cellular Biology, 14, 7095–7104.PubMed
go back to reference Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 16426–16431. doi:10.1073/pnas.0508448102.PubMedCrossRef Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 16426–16431. doi:10.​1073/​pnas.​0508448102.PubMedCrossRef
go back to reference Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H. Y., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the United States of America, 105, 9093–9098. doi:10.1073/pnas.0803072105.PubMedCrossRef Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., Cheng, H. Y., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the United States of America, 105, 9093–9098. doi:10.​1073/​pnas.​0803072105.PubMedCrossRef
go back to reference Weiler, I. J., Spangler, C. C., Klintsova, A. Y., Grossman, A. W., Kim, S. H., Bertaina-Anglade, V., et al. (2004). Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proceedings of the National Academy of Sciences of the United States of America, 101, 17504–17509. doi:10.1073/pnas.0407533101.PubMedCrossRef Weiler, I. J., Spangler, C. C., Klintsova, A. Y., Grossman, A. W., Kim, S. H., Bertaina-Anglade, V., et al. (2004). Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proceedings of the National Academy of Sciences of the United States of America, 101, 17504–17509. doi:10.​1073/​pnas.​0407533101.PubMedCrossRef
go back to reference Zeng, Y., Sankala, H., Zhang, X., & Graves, P. R. (2008). Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochemical Journal, 413, 429–436. doi:10.1042/BJ20080599.PubMedCrossRef Zeng, Y., Sankala, H., Zhang, X., & Graves, P. R. (2008). Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochemical Journal, 413, 429–436. doi:10.​1042/​BJ20080599.PubMedCrossRef
go back to reference Zhang, H., Kolb, F. A., Brondani, V., Billy, E., & Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO Journal, 21, 5875–5885. doi:10.1093/emboj/cdf582.PubMedCrossRef Zhang, H., Kolb, F. A., Brondani, V., Billy, E., & Filipowicz, W. (2002). Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO Journal, 21, 5875–5885. doi:10.​1093/​emboj/​cdf582.PubMedCrossRef
go back to reference Zhou, R., Yuan, P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., et al. (2009). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34, 1395–1405. doi:10.1038/npp.2008.131.PubMedCrossRef Zhou, R., Yuan, P., Wang, Y., Hunsberger, J. G., Elkahloun, A., Wei, Y., et al. (2009). Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology, 34, 1395–1405. doi:10.​1038/​npp.​2008.​131.PubMedCrossRef
Metadata
Title
microRNA Regulation of Synaptic Plasticity
Authors
Neil R. Smalheiser
Giovanni Lugli
Publication date
01-09-2009
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 3/2009
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-009-8065-2

Other articles of this Issue 3/2009

NeuroMolecular Medicine 3/2009 Go to the issue