Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2009

01-09-2009 | Review Paper

Macro Role(s) of MicroRNAs in Fragile X Syndrome?

Authors: Xuekun Li, Peng Jin

Published in: NeuroMolecular Medicine | Issue 3/2009

Login to get access

Abstract

Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA-binding protein that can regulate the translation of specific mRNAs. It is known to regulate synaptic development through the regulation of local protein synthesis in synapses. MicroRNAs (miRNAs) are a class of small noncoding RNAs involved in almost every biological process. They exhibit spatiotemporal expression during brain development, and some miRNAs play important roles in neural development. A growing body of evidence now implicates the miRNA pathway in the molecular pathogenesis of FXS. Here we review the current state of knowledge about the microRNA pathway in neural development and the emergence of possible roles for miRNAs in FXS.
Literature
go back to reference Abbott, A. L., Alvarez-Saavedra, E., Miska, E. A., Lau, N. C., Bartel, D. P., Horvitz, H. R., et al. (2005). The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental Cell, 9, 403–414.CrossRefPubMed Abbott, A. L., Alvarez-Saavedra, E., Miska, E. A., Lau, N. C., Bartel, D. P., Horvitz, H. R., et al. (2005). The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Developmental Cell, 9, 403–414.CrossRefPubMed
go back to reference Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C., & Bassell, G. J. (2004). Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Journal of Neuroscience, 24, 2648–2655.CrossRefPubMed Antar, L. N., Afroz, R., Dictenberg, J. B., Carroll, R. C., & Bassell, G. J. (2004). Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. Journal of Neuroscience, 24, 2648–2655.CrossRefPubMed
go back to reference Ashley, C. T., Jr., Wilkinson, K. D., Reines, D., & Warren, S. T. (1993). FMR1 protein: conserved RNP family domains and selective RNA binding. Science, 262, 563–566.CrossRefPubMed Ashley, C. T., Jr., Wilkinson, K. D., Reines, D., & Warren, S. T. (1993). FMR1 protein: conserved RNP family domains and selective RNA binding. Science, 262, 563–566.CrossRefPubMed
go back to reference Ashraf, S. I., McLoon, A. L., Sclarsic, S. M., & Kunes, S. (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell, 124, 191–205.CrossRefPubMed Ashraf, S. I., McLoon, A. L., Sclarsic, S. M., & Kunes, S. (2006). Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell, 124, 191–205.CrossRefPubMed
go back to reference Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., & Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature, 455, 64–71.CrossRefPubMed Baek, D., Villen, J., Shin, C., Camargo, F. D., Gygi, S. P., & Bartel, D. P. (2008). The impact of microRNAs on protein output. Nature, 455, 64–71.CrossRefPubMed
go back to reference Bailey, D. B., Jr., Hatton, D. D., Tassone, F., Skinner, M., & Taylor, A. K. (2001). Variability in FMRP and early development in males with fragile X syndrome. American Journal of Mental Retardation, 106, 16–27.CrossRefPubMed Bailey, D. B., Jr., Hatton, D. D., Tassone, F., Skinner, M., & Taylor, A. K. (2001). Variability in FMRP and early development in males with fragile X syndrome. American Journal of Mental Retardation, 106, 16–27.CrossRefPubMed
go back to reference Baltimore, D., Boldin, M. P., O’Connell, R. M., Rao, D. S., & Taganov, K. D. (2008). MicroRNAs: new regulators of immune cell development and function. Nature Immunology, 9, 839–845.CrossRefPubMed Baltimore, D., Boldin, M. P., O’Connell, R. M., Rao, D. S., & Taganov, K. D. (2008). MicroRNAs: new regulators of immune cell development and function. Nature Immunology, 9, 839–845.CrossRefPubMed
go back to reference Barbee, S. A., Estes, P. S., Cziko, A. M., Hillebrand, J., Luedeman, R. A., Coller, J. M., et al. (2006). Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron, 52, 997–1009.CrossRefPubMed Barbee, S. A., Estes, P. S., Cziko, A. M., Hillebrand, J., Luedeman, R. A., Coller, J. M., et al. (2006). Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies. Neuron, 52, 997–1009.CrossRefPubMed
go back to reference Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.CrossRefPubMed Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.CrossRefPubMed
go back to reference Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233.CrossRefPubMed Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136, 215–233.CrossRefPubMed
go back to reference Bassell, G. J., & Warren, S. T. (2008). Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron, 60, 201–214.CrossRefPubMed Bassell, G. J., & Warren, S. T. (2008). Fragile X syndrome: Loss of local mRNA regulation alters synaptic development and function. Neuron, 60, 201–214.CrossRefPubMed
go back to reference Berdnik, D., Fan, A. P., Potter, C. J., & Luo, L. (2008). MicroRNA processing pathway regulates olfactory neuron morphogenesis. Current Biology, 18, 1754–1759.CrossRefPubMed Berdnik, D., Fan, A. P., Potter, C. J., & Luo, L. (2008). MicroRNA processing pathway regulates olfactory neuron morphogenesis. Current Biology, 18, 1754–1759.CrossRefPubMed
go back to reference Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35, 215–217.CrossRefPubMed Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35, 215–217.CrossRefPubMed
go back to reference Bolduc, F. V., Bell, K., Cox, H., Broadie, K. S., & Tully, T. (2008). Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nature Neuroscience, 11, 1143–1145.CrossRefPubMed Bolduc, F. V., Bell, K., Cox, H., Broadie, K. S., & Tully, T. (2008). Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nature Neuroscience, 11, 1143–1145.CrossRefPubMed
go back to reference Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., & Cohen, S. M. (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113, 25–36.CrossRefPubMed Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B., & Cohen, S. M. (2003). Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell, 113, 25–36.CrossRefPubMed
go back to reference Bushati, N., & Cohen, S. M. (2008). MicroRNAs in neurodegeneration. Current Opinion in Neurobiology, 18, 292–296.CrossRefPubMed Bushati, N., & Cohen, S. M. (2008). MicroRNAs in neurodegeneration. Current Opinion in Neurobiology, 18, 292–296.CrossRefPubMed
go back to reference Cao, X., Yeo, G., Muotri, A. R., Kuwabara, T., & Gage, F. H. (2006). Noncoding RNAs in the mammalian central nervous system. Annual Review of Neuroscience, 29, 77–103.CrossRefPubMed Cao, X., Yeo, G., Muotri, A. R., Kuwabara, T., & Gage, F. H. (2006). Noncoding RNAs in the mammalian central nervous system. Annual Review of Neuroscience, 29, 77–103.CrossRefPubMed
go back to reference Caudy, A. A., Myers, M., Hannon, G. J., & Hammond, S. M. (2002). Fragile X-related protein and VIG associate with the RNA interference machinery. Genes and Development, 16, 2491–2496.CrossRefPubMed Caudy, A. A., Myers, M., Hannon, G. J., & Hammond, S. M. (2002). Fragile X-related protein and VIG associate with the RNA interference machinery. Genes and Development, 16, 2491–2496.CrossRefPubMed
go back to reference Chang, T. C., & Mendell, J. T. (2007). microRNAs in vertebrate physiology and human disease. Annual Review of Genomics and Human Genetics, 8, 215–239.CrossRefPubMed Chang, T. C., & Mendell, J. T. (2007). microRNAs in vertebrate physiology and human disease. Annual Review of Genomics and Human Genetics, 8, 215–239.CrossRefPubMed
go back to reference Chang, S., Wen, S., Chen, D., & Jin, P. (2009). Small regulatory RNAs in neurodevelopmental disorders. Human Molecular Genetics, 18, R18–R26.CrossRefPubMed Chang, S., Wen, S., Chen, D., & Jin, P. (2009). Small regulatory RNAs in neurodevelopmental disorders. Human Molecular Genetics, 18, R18–R26.CrossRefPubMed
go back to reference Choi, P. S., Zakhary, L., Choi, W. Y., Caron, S., Alvarez-Saavedra, E., Miska, E. A., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57, 41–55.CrossRefPubMed Choi, P. S., Zakhary, L., Choi, W. Y., Caron, S., Alvarez-Saavedra, E., Miska, E. A., et al. (2008). Members of the miRNA-200 family regulate olfactory neurogenesis. Neuron, 57, 41–55.CrossRefPubMed
go back to reference Comery, T. A., Harris, J. B., Willems, P. J., Oostra, B. A., Irwin, S. A., Weiler, I. J., et al. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America, 94, 5401–5404.CrossRefPubMed Comery, T. A., Harris, J. B., Willems, P. J., Oostra, B. A., Irwin, S. A., Weiler, I. J., et al. (1997). Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proceedings of the National Academy of Sciences of the United States of America, 94, 5401–5404.CrossRefPubMed
go back to reference Cuellar, T. L., Davis, T. H., Nelson, P. T., Loeb, G. B., Harfe, B. D., Ullian, E., et al. (2008). Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 105, 5614–5619.CrossRefPubMed Cuellar, T. L., Davis, T. H., Nelson, P. T., Loeb, G. B., Harfe, B. D., Ullian, E., et al. (2008). Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 105, 5614–5619.CrossRefPubMed
go back to reference Cziko, A. M., McCann, C. T., Howlett, I. C., Barbee, S. A., Duncan, R. P., Luedemann, R., Zarnescu, D., Zinsmaier, K. E., Parker, R. R., Ramaswami, M. (2009). Genetic modifiers of DFMR1 encode RNA-granule components in Drosophila. Genetics, 182(4) (in press). Cziko, A. M., McCann, C. T., Howlett, I. C., Barbee, S. A., Duncan, R. P., Luedemann, R., Zarnescu, D., Zinsmaier, K. E., Parker, R. R., Ramaswami, M. (2009). Genetic modifiers of DFMR1 encode RNA-granule components in Drosophila. Genetics, 182(4) (in press).
go back to reference Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuroscience, 28, 4322–4330.CrossRefPubMed Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuroscience, 28, 4322–4330.CrossRefPubMed
go back to reference De Pietri Tonelli, D., Pulvers, J. N., Haffner, C., Murchison, E. P., Hannon, G. J., & Huttner, W. B. (2008). miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development, 135, 3911–3921.CrossRefPubMed De Pietri Tonelli, D., Pulvers, J. N., Haffner, C., Murchison, E. P., Hannon, G. J., & Huttner, W. B. (2008). miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development, 135, 3911–3921.CrossRefPubMed
go back to reference Du, T., & Zamore, P. D. (2005). microPrimer: The biogenesis and function of microRNA. Development, 132, 4645–4652.CrossRefPubMed Du, T., & Zamore, P. D. (2005). microPrimer: The biogenesis and function of microRNA. Development, 132, 4645–4652.CrossRefPubMed
go back to reference Eichler, E. E., Richards, S., Gibbs, R. A., & Nelson, D. L. (1993). Fine structure of the human FMR1 gene. Human Molecular Genetics, 2, 1147–1153.CrossRefPubMed Eichler, E. E., Richards, S., Gibbs, R. A., & Nelson, D. L. (1993). Fine structure of the human FMR1 gene. Human Molecular Genetics, 2, 1147–1153.CrossRefPubMed
go back to reference Feng, Y., Absher, D., Eberhart, D. E., Brown, V., Malter, H. E., & Warren, S. T. (1997a). FMRP associates with polyribosomes as an mRNP, and the I304 N mutation of severe fragile X syndrome abolishes this association. Molecular Cell, 1, 109–118.CrossRefPubMed Feng, Y., Absher, D., Eberhart, D. E., Brown, V., Malter, H. E., & Warren, S. T. (1997a). FMRP associates with polyribosomes as an mRNP, and the I304 N mutation of severe fragile X syndrome abolishes this association. Molecular Cell, 1, 109–118.CrossRefPubMed
go back to reference Feng, Y., Gutekunst, C. A., Eberhart, D. E., Yi, H., Warren, S. T., & Hersch, S. M. (1997b). Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. Journal of Neuroscience, 17, 1539–1547.PubMed Feng, Y., Gutekunst, C. A., Eberhart, D. E., Yi, H., Warren, S. T., & Hersch, S. M. (1997b). Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. Journal of Neuroscience, 17, 1539–1547.PubMed
go back to reference Ferretti, E., De Smaele, E., Miele, E., Laneve, P., Po, A., Pelloni, M., et al. (2008). Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. The EMBO Journal, 27, 2616–2627.CrossRefPubMed Ferretti, E., De Smaele, E., Miele, E., Laneve, P., Po, A., Pelloni, M., et al. (2008). Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. The EMBO Journal, 27, 2616–2627.CrossRefPubMed
go back to reference Fiore, R., Khudayberdiev, S., Christensen, M., Siegel, G., Flavell, S. W., Kim, T. K., et al. (2009). Mef2-mediated transcription of the miR379–410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. The EMBO Journal, 28, 697–710.CrossRefPubMed Fiore, R., Khudayberdiev, S., Christensen, M., Siegel, G., Flavell, S. W., Kim, T. K., et al. (2009). Mef2-mediated transcription of the miR379–410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. The EMBO Journal, 28, 697–710.CrossRefPubMed
go back to reference Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.CrossRefPubMed Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., Baskerville, S., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838.CrossRefPubMed
go back to reference Goldblatt, H., Buchbinder, E., Eisikovits, Z., & Arizon-Mesinger, I. (2009). Between the professional and the private: the meaning of working with intimate partner violence in social workers’ private lives. Violence Against Women, 15, 362–384.CrossRefPubMed Goldblatt, H., Buchbinder, E., Eisikovits, Z., & Arizon-Mesinger, I. (2009). Between the professional and the private: the meaning of working with intimate partner violence in social workers’ private lives. Violence Against Women, 15, 362–384.CrossRefPubMed
go back to reference Grossman, A. W., Elisseou, N. M., McKinney, B. C., & Greenough, W. T. (2006). Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Research, 1084, 158–164.CrossRefPubMed Grossman, A. W., Elisseou, N. M., McKinney, B. C., & Greenough, W. T. (2006). Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Research, 1084, 158–164.CrossRefPubMed
go back to reference He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134.CrossRefPubMed He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., Liang, Y., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134.CrossRefPubMed
go back to reference Irwin, S. A., Galvez, R., & Greenough, W. T. (2000). Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cerebral Cortex, 10, 1038–1044.CrossRefPubMed Irwin, S. A., Galvez, R., & Greenough, W. T. (2000). Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cerebral Cortex, 10, 1038–1044.CrossRefPubMed
go back to reference Irwin, S. A., Patel, B., Idupulapati, M., Harris, J. B., Crisostomo, R. A., Larsen, B. P., et al. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. American Journal of Medical Genetics, 98, 161–167.CrossRefPubMed Irwin, S. A., Patel, B., Idupulapati, M., Harris, J. B., Crisostomo, R. A., Larsen, B. P., et al. (2001). Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. American Journal of Medical Genetics, 98, 161–167.CrossRefPubMed
go back to reference Ishizuka, A., Siomi, M. C., & Siomi, H. (2002). A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes and Development, 16, 2497–2508.CrossRefPubMed Ishizuka, A., Siomi, M. C., & Siomi, H. (2002). A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes and Development, 16, 2497–2508.CrossRefPubMed
go back to reference Jin, P., Alisch, R. S., & Warren, S. T. (2004a). RNA and microRNAs in fragile X mental retardation. Nature Cell Biology, 6, 1048–1053.CrossRefPubMed Jin, P., Alisch, R. S., & Warren, S. T. (2004a). RNA and microRNAs in fragile X mental retardation. Nature Cell Biology, 6, 1048–1053.CrossRefPubMed
go back to reference Jin, P., Zarnescu, D. C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T. A., et al. (2004b). Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neuroscience, 7, 113–117.CrossRefPubMed Jin, P., Zarnescu, D. C., Ceman, S., Nakamoto, M., Mowrey, J., Jongens, T. A., et al. (2004b). Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway. Nature Neuroscience, 7, 113–117.CrossRefPubMed
go back to reference Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes and Development, 19, 489–501.CrossRefPubMed Kanellopoulou, C., Muljo, S. A., Kung, A. L., Ganesan, S., Drapkin, R., Jenuwein, T., et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes and Development, 19, 489–501.CrossRefPubMed
go back to reference Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H., & Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology, 8, R173.CrossRefPubMed Kapsimali, M., Kloosterman, W. P., de Bruijn, E., Rosa, F., Plasterk, R. H., & Wilson, S. W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biology, 8, R173.CrossRefPubMed
go back to reference Karp, X., & Ambros, V. (2005). Developmental biology. Encountering microRNAs in cell fate signaling. Science, 310, 1288–1289.CrossRefPubMed Karp, X., & Ambros, V. (2005). Developmental biology. Encountering microRNAs in cell fate signaling. Science, 310, 1288–1289.CrossRefPubMed
go back to reference Kenneson, A., Zhang, F., Hagedorn, C. H., & Warren, S. T. (2001). Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Human Molecular Genetics, 10, 1449–1454.CrossRefPubMed Kenneson, A., Zhang, F., Hagedorn, C. H., & Warren, S. T. (2001). Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Human Molecular Genetics, 10, 1449–1454.CrossRefPubMed
go back to reference Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology, 10, 126–139.CrossRefPubMed Kim, V. N., Han, J., & Siomi, M. C. (2009). Biogenesis of small RNAs in animals. Nature Reviews. Molecular Cell Biology, 10, 126–139.CrossRefPubMed
go back to reference Kim, J., Inoue, K., Ishii, J., Vanti, W. B., Voronov, S. V., Murchison, E., et al. (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317, 1220–1224.CrossRefPubMed Kim, J., Inoue, K., Ishii, J., Vanti, W. B., Voronov, S. V., Murchison, E., et al. (2007). A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 317, 1220–1224.CrossRefPubMed
go back to reference Kim, D. H., Saetrom, P., Snove, O., Jr., & Rossi, J. J. (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 16230–16235.CrossRefPubMed Kim, D. H., Saetrom, P., Snove, O., Jr., & Rossi, J. J. (2008). MicroRNA-directed transcriptional gene silencing in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 16230–16235.CrossRefPubMed
go back to reference Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24, 857–864.CrossRefPubMed Krichevsky, A. M., Sonntag, K. C., Isacson, O., & Kosik, K. S. (2006). Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells, 24, 857–864.CrossRefPubMed
go back to reference Laggerbauer, B., Ostareck, D., Keidel, E. M., Ostareck-Lederer, A., & Fischer, U. (2001). Evidence that fragile X mental retardation protein is a negative regulator of translation. Human Molecular Genetics, 10, 329–338.CrossRefPubMed Laggerbauer, B., Ostareck, D., Keidel, E. M., Ostareck-Lederer, A., & Fischer, U. (2001). Evidence that fragile X mental retardation protein is a negative regulator of translation. Human Molecular Genetics, 10, 329–338.CrossRefPubMed
go back to reference Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.CrossRefPubMed Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843–854.CrossRefPubMed
go back to reference Lee, Y. S., Nakahara, K., Pham, J. W., Kim, K., He, Z., Sontheimer, E. J., et al. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 117, 69–81.CrossRefPubMed Lee, Y. S., Nakahara, K., Pham, J. W., Kim, K., He, Z., Sontheimer, E. J., et al. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell, 117, 69–81.CrossRefPubMed
go back to reference Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., & Bally-Cuif, L. (2008). MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nature Neuroscience, 11, 641–648.CrossRefPubMed Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., & Bally-Cuif, L. (2008). MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nature Neuroscience, 11, 641–648.CrossRefPubMed
go back to reference Li, Y., Wang, F., Lee, J. A., & Gao, F. B. (2006). MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes and Development, 20, 2793–2805.CrossRefPubMed Li, Y., Wang, F., Lee, J. A., & Gao, F. B. (2006). MicroRNA-9a ensures the precise specification of sensory organ precursors in Drosophila. Genes and Development, 20, 2793–2805.CrossRefPubMed
go back to reference Li, Z., Zhang, Y., Ku, L., Wilkinson, K. D., Warren, S. T., & Feng, Y. (2001). The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Research, 29, 2276–2283.CrossRefPubMed Li, Z., Zhang, Y., Ku, L., Wilkinson, K. D., Warren, S. T., & Feng, Y. (2001). The fragile X mental retardation protein inhibits translation via interacting with mRNA. Nucleic Acids Research, 29, 2276–2283.CrossRefPubMed
go back to reference Liao, L., Park, S. K., Xu, T., Vanderklish, P., & Yates, J. R., I. I. I. (2008). Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 15281–15286.CrossRefPubMed Liao, L., Park, S. K., Xu, T., Vanderklish, P., & Yates, J. R., I. I. I. (2008). Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 105, 15281–15286.CrossRefPubMed
go back to reference Lugli, G., Larson, J., Martone, M. E., Jones, Y., & Smalheiser, N. R. (2005). Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. Journal of Neurochemistry, 94, 896–905.CrossRefPubMed Lugli, G., Larson, J., Martone, M. E., Jones, Y., & Smalheiser, N. R. (2005). Dicer and eIF2c are enriched at postsynaptic densities in adult mouse brain and are modified by neuronal activity in a calpain-dependent manner. Journal of Neurochemistry, 94, 896–905.CrossRefPubMed
go back to reference Lugli, G., Torvik, V. I., Larson, J., & Smalheiser, N. R. (2008). Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. Journal of Neurochemistry, 106, 650–661.CrossRefPubMed Lugli, G., Torvik, V. I., Larson, J., & Smalheiser, N. R. (2008). Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. Journal of Neurochemistry, 106, 650–661.CrossRefPubMed
go back to reference Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448.CrossRefPubMed Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448.CrossRefPubMed
go back to reference Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W. L., Thomson, A. M., et al. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell, 126, 1203–1217.CrossRefPubMed Miranda, K. C., Huynh, T., Tay, Y., Ang, Y. S., Tam, W. L., Thomson, A. M., et al. (2006). A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell, 126, 1203–1217.CrossRefPubMed
go back to reference Muddashetty, R. S., Kelic, S., Gross, C., Xu, M., & Bassell, G. J. (2007). Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. Journal of Neuroscience, 27, 5338–5348.CrossRefPubMed Muddashetty, R. S., Kelic, S., Gross, C., Xu, M., & Bassell, G. J. (2007). Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. Journal of Neuroscience, 27, 5338–5348.CrossRefPubMed
go back to reference Nelson, P. T., Wang, W. X., & Rajeev, B. W. (2008). MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathology, 18, 130–138.CrossRefPubMed Nelson, P. T., Wang, W. X., & Rajeev, B. W. (2008). MicroRNAs (miRNAs) in neurodegenerative diseases. Brain Pathology, 18, 130–138.CrossRefPubMed
go back to reference Nimchinsky, E. A., Oberlander, A. M., & Svoboda, K. (2001). Abnormal development of dendritic spines in FMR1 knock-out mice. Journal of Neuroscience, 21, 5139–5146.PubMed Nimchinsky, E. A., Oberlander, A. M., & Svoboda, K. (2001). Abnormal development of dendritic spines in FMR1 knock-out mice. Journal of Neuroscience, 21, 5139–5146.PubMed
go back to reference Obernosterer, G., Leuschner, P. J., Alenius, M., & Martinez, J. (2006). Post-transcriptional regulation of microRNA expression. RNA, 12, 1161–1167.CrossRefPubMed Obernosterer, G., Leuschner, P. J., Alenius, M., & Martinez, J. (2006). Post-transcriptional regulation of microRNA expression. RNA, 12, 1161–1167.CrossRefPubMed
go back to reference Pasquinelli, A. E., & Ruvkun, G. (2002). Control of developmental timing by micrornas and their targets. Annual Review of Cell and Developmental Biology, 18, 495–513.CrossRefPubMed Pasquinelli, A. E., & Ruvkun, G. (2002). Control of developmental timing by micrornas and their targets. Annual Review of Cell and Developmental Biology, 18, 495–513.CrossRefPubMed
go back to reference Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289.CrossRefPubMed Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., Kiebler, M., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289.CrossRefPubMed
go back to reference Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., & Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455, 58–63.CrossRefPubMed Selbach, M., Schwanhausser, B., Thierfelder, N., Fang, Z., Khanin, R., & Rajewsky, N. (2008). Widespread changes in protein synthesis induced by microRNAs. Nature, 455, 58–63.CrossRefPubMed
go back to reference Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., & Aizawa, S. (2008). MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. Journal of Neuroscience, 28, 10415–10421.CrossRefPubMed Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., & Aizawa, S. (2008). MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. Journal of Neuroscience, 28, 10415–10421.CrossRefPubMed
go back to reference Siegel, G., et al. (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biology, 11, 705–716.CrossRefPubMed Siegel, G., et al. (2009). A functional screen implicates microRNA-138-dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nature Cell Biology, 11, 705–716.CrossRefPubMed
go back to reference Siomi, M. C., Siomi, H., Sauer, W. H., Srinivasan, S., Nussbaum, R. L., & Dreyfuss, G. (1995). FXR1, an autosomal homolog of the fragile X mental retardation gene. The EMBO Journal, 14, 2401–2408.PubMed Siomi, M. C., Siomi, H., Sauer, W. H., Srinivasan, S., Nussbaum, R. L., & Dreyfuss, G. (1995). FXR1, an autosomal homolog of the fragile X mental retardation gene. The EMBO Journal, 14, 2401–2408.PubMed
go back to reference Tay, Y., Zhang, J., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124–1128.CrossRefPubMed Tay, Y., Zhang, J., Thomson, A. M., Lim, B., & Rigoutsos, I. (2008). MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature, 455, 1124–1128.CrossRefPubMed
go back to reference Thompson, B. J., & Cohen, S. M. (2006). The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell, 126, 767–774.CrossRefPubMed Thompson, B. J., & Cohen, S. M. (2006). The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell, 126, 767–774.CrossRefPubMed
go back to reference Turner, G., Webb, T., Wake, S., & Robinson, H. (1996). Prevalence of fragile X syndrome. American Journal of Medical Genetics, 64, 196–197.CrossRefPubMed Turner, G., Webb, T., Wake, S., & Robinson, H. (1996). Prevalence of fragile X syndrome. American Journal of Medical Genetics, 64, 196–197.CrossRefPubMed
go back to reference Vasudevan, S., & Steitz, J. A. (2007). AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell, 128, 1105–1118.CrossRefPubMed Vasudevan, S., & Steitz, J. A. (2007). AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell, 128, 1105–1118.CrossRefPubMed
go back to reference Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.CrossRefPubMed Vasudevan, S., Tong, Y., & Steitz, J. A. (2007). Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934.CrossRefPubMed
go back to reference Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–914.CrossRefPubMed Verkerk, A. J., Pieretti, M., Sutcliffe, J. S., Fu, Y. H., Kuhl, D. P., Pizzuti, A., et al. (1991). Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell, 65, 905–914.CrossRefPubMed
go back to reference Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749.CrossRefPubMed Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749.CrossRefPubMed
go back to reference Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 16426–16431.CrossRefPubMed Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 16426–16431.CrossRefPubMed
go back to reference Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., Huang, Q., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28, 1213–1223.CrossRefPubMed Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., Huang, Q., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28, 1213–1223.CrossRefPubMed
go back to reference Warren, S. T., & Nelson, D. L. (1994). Advances in molecular analysis of fragile X syndrome. JAMA, 271, 536–542.CrossRefPubMed Warren, S. T., & Nelson, D. L. (1994). Advances in molecular analysis of fragile X syndrome. JAMA, 271, 536–542.CrossRefPubMed
go back to reference Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., & Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genetics, 35, 217–218.CrossRefPubMed Wienholds, E., Koudijs, M. J., van Eeden, F. J., Cuppen, E., & Plasterk, R. H. (2003). The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nature Genetics, 35, 217–218.CrossRefPubMed
go back to reference Xu, K., Bogert, B. A., Li, W., Su, K., Lee, A., & Gao, F. B. (2004). The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Current Biology, 14, 1025–1034.CrossRefPubMed Xu, K., Bogert, B. A., Li, W., Su, K., Lee, A., & Gao, F. B. (2004). The fragile X-related gene affects the crawling behavior of Drosophila larvae by regulating the mRNA level of the DEG/ENaC protein pickpocket1. Current Biology, 14, 1025–1034.CrossRefPubMed
go back to reference Xu, X. L., Li, Y., Wang, F., & Gao, F. B. (2008). The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. Journal of Neuroscience, 28, 11883–11889.CrossRefPubMed Xu, X. L., Li, Y., Wang, F., & Gao, F. B. (2008). The steady-state level of the nervous-system-specific microRNA-124a is regulated by dFMR1 in Drosophila. Journal of Neuroscience, 28, 11883–11889.CrossRefPubMed
go back to reference Yang, L., Duan, R., Chen, D., Wang, J., & Jin, P. (2007). Fragile X mental retardation protein modulates the fate of germline stem cells in Drosophila. Human Molecular Genetics, 16, 1814–1820.CrossRefPubMed Yang, L., Duan, R., Chen, D., Wang, J., & Jin, P. (2007). Fragile X mental retardation protein modulates the fate of germline stem cells in Drosophila. Human Molecular Genetics, 16, 1814–1820.CrossRefPubMed
go back to reference Zarnescu, D. C., Jin, P., Betschinger, J., Nakamoto, M., Wang, Y., Dockendorff, T. C., et al. (2005). Fragile X protein functions with lgl and the par complex in flies and mice. Developmental Cell, 8, 43–52.CrossRefPubMed Zarnescu, D. C., Jin, P., Betschinger, J., Nakamoto, M., Wang, Y., Dockendorff, T. C., et al. (2005). Fragile X protein functions with lgl and the par complex in flies and mice. Developmental Cell, 8, 43–52.CrossRefPubMed
go back to reference Zhang, Y., O’Connor, J. P., Siomi, M. C., Srinivasan, S., Dutra, A., Nussbaum, R. L., et al. (1995). The fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2. The EMBO Journal, 14, 5358–5366.PubMed Zhang, Y., O’Connor, J. P., Siomi, M. C., Srinivasan, S., Dutra, A., Nussbaum, R. L., et al. (1995). The fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2. The EMBO Journal, 14, 5358–5366.PubMed
Metadata
Title
Macro Role(s) of MicroRNAs in Fragile X Syndrome?
Authors
Xuekun Li
Peng Jin
Publication date
01-09-2009
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 3/2009
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-009-8081-2

Other articles of this Issue 3/2009

NeuroMolecular Medicine 3/2009 Go to the issue