Skip to main content
Top
Published in: NeuroMolecular Medicine 3/2009

01-09-2009 | Original Paper

Gene Dysregulation in Huntington’s Disease: REST, MicroRNAs and Beyond

Authors: Rory Johnson, Noel J. Buckley

Published in: NeuroMolecular Medicine | Issue 3/2009

Login to get access

Abstract

Huntington’s disease (HD) is an incurable, fatal neurodegenerative disorder that is caused by a polyglutamine expansion in the huntingtin (Htt) protein. Neuronal death in the striatum—the most obvious manifestation of the disease—is likely to result from widespread dysregulation of gene expression in various brain regions. To date, several potential mechanisms for this have been discovered, including one involving REST (RE1-Silencing Transcription Factor), a master regulator of neuronal genes. Recently, independent studies have demonstrated that post-transcriptional gene regulation by microRNAs is also disrupted in HD. Expression of key neuronal microRNAs—including mir-9/9*, mir-124 and mir-132—is repressed in the brains of human HD patients and mouse models. These changes occur downstream of REST, and are likely to result in major disruption of mRNA regulation and neuronal function. In this study we will discuss these findings and their implications for our understanding of HD. Using updated bioinformatic analysis, we predict 21 new candidate microRNAs in HD. We propose future strategies for unifying large-scale transcriptional and microRNA datasets with the aim of explaining HD aetiology. By way of example, we show how available genomic datasets can be integrated to provide independent, analytical validation for dysregulation of REST and microRNA mir-124 in HD. As a consequence, gene ontology analysis indicates that HD is characterised by a broad-based depression of neural genes in the caudate and motor cortex. Thus, we propose that a combination of REST, microRNAs and possibly other non-coding RNAs profoundly affect the neuronal transcriptome in HD.
Literature
go back to reference Abelson, J. F., Kwan, K. Y., O’Roak, B. J., Baek, D. Y., Stillman, A. A., et al. (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310, 317–320. doi:10.1126/science.1116502.PubMed Abelson, J. F., Kwan, K. Y., O’Roak, B. J., Baek, D. Y., Stillman, A. A., et al. (2005). Sequence variants in SLITRK1 are associated with Tourette’s syndrome. Science, 310, 317–320. doi:10.​1126/​science.​1116502.PubMed
go back to reference Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., & Lai, E. C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 102, 18017–18022. doi:10.1073/pnas.0508823102.PubMed Aboobaker, A. A., Tomancak, P., Patel, N., Rubin, G. M., & Lai, E. C. (2005). Drosophila microRNAs exhibit diverse spatial expression patterns during embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 102, 18017–18022. doi:10.​1073/​pnas.​0508823102.PubMed
go back to reference Altar, C. A., Cai, N., Bliven, T., Juhasz, M., Conner, J. M., et al. (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389, 856–860. doi:10.1038/39885.PubMed Altar, C. A., Cai, N., Bliven, T., Juhasz, M., Conner, J. M., et al. (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature, 389, 856–860. doi:10.​1038/​39885.PubMed
go back to reference Arzberger, T., Krampfl, K., Leimgruber, S., & Weindl, A. (1997). Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease—an in situ hybridization study. Journal of Neuropathology and Experimental Neurology, 56, 440–454. doi:10.1097/00005072-199704000-00013.PubMed Arzberger, T., Krampfl, K., Leimgruber, S., & Weindl, A. (1997). Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington’s disease—an in situ hybridization study. Journal of Neuropathology and Experimental Neurology, 56, 440–454. doi:10.​1097/​00005072-199704000-00013.PubMed
go back to reference Augood, S. J., Faull, R. L., & Emson, P. C. (1997). Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Annals of Neurology, 42, 215–221. doi:10.1002/ana.410420213.PubMed Augood, S. J., Faull, R. L., & Emson, P. C. (1997). Dopamine D1 and D2 receptor gene expression in the striatum in Huntington’s disease. Annals of Neurology, 42, 215–221. doi:10.​1002/​ana.​410420213.PubMed
go back to reference Bak, M., Silahtaroglu, A., Moller, M., Christensen, M., Rath, M. F., et al. (2008). MicroRNA expression in the adult mouse central nervous system. RNA, 14, 432–444. doi:10.1261/rna.783108.PubMed Bak, M., Silahtaroglu, A., Moller, M., Christensen, M., Rath, M. F., et al. (2008). MicroRNA expression in the adult mouse central nervous system. RNA, 14, 432–444. doi:10.​1261/​rna.​783108.PubMed
go back to reference Benn, C. L., Sun, T., Sadri-Vakili, G., McFarland, K. N., DiRocco, D. P., et al. (2008). Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner. Journal of Neuroscience, 28, 10720–10733. doi:10.1523/JNEUROSCI.2126-08.2008.PubMed Benn, C. L., Sun, T., Sadri-Vakili, G., McFarland, K. N., DiRocco, D. P., et al. (2008). Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner. Journal of Neuroscience, 28, 10720–10733. doi:10.​1523/​JNEUROSCI.​2126-08.​2008.PubMed
go back to reference Borovecki, F., Lovrecic, L., Zhou, J., Jeong, H., Then, F., et al. (2005). Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. PNAS, 102, 11023–11028. doi:10.1073/pnas.0504921102.PubMed Borovecki, F., Lovrecic, L., Zhou, J., Jeong, H., Then, F., et al. (2005). Genome-wide expression profiling of human blood reveals biomarkers for Huntington’s disease. PNAS, 102, 11023–11028. doi:10.​1073/​pnas.​0504921102.PubMed
go back to reference Boutell, J. M., Thomas, P., Neal, J. W., Weston, V. J., Duce, J., et al. (1999). Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Human Molecular Genetics, 8, 1647–1655. doi:10.1093/hmg/8.9.1647.PubMed Boutell, J. M., Thomas, P., Neal, J. W., Weston, V. J., Duce, J., et al. (1999). Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, huntingtin. Human Molecular Genetics, 8, 1647–1655. doi:10.​1093/​hmg/​8.​9.​1647.PubMed
go back to reference Bruce, A. W., Donaldson, I. J., Wood, I. C., Yerbury, S. A., Sadowski, M. I., et al. (2004). Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. PNAS, 101, 10458–10463. doi:10.1073/pnas.0401827101.PubMed Bruce, A. W., Donaldson, I. J., Wood, I. C., Yerbury, S. A., Sadowski, M. I., et al. (2004). Genome-wide analysis of repressor element 1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) target genes. PNAS, 101, 10458–10463. doi:10.​1073/​pnas.​0401827101.PubMed
go back to reference Calderone, A., Jover, T., Noh, K.-M., Tanaka, H., Yokota, H., et al. (2003). Ischemic insults derepress the gene silencer REST in neurons destined to die. Journal of Neuroscience, 23, 2112–2121.PubMed Calderone, A., Jover, T., Noh, K.-M., Tanaka, H., Yokota, H., et al. (2003). Ischemic insults derepress the gene silencer REST in neurons destined to die. Journal of Neuroscience, 23, 2112–2121.PubMed
go back to reference Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618. doi:10.1038/nm1582.PubMed Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618. doi:10.​1038/​nm1582.PubMed
go back to reference Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: an alternative approach to Huntington’s disease. Nature Reviews Neuroscience, 6, 919–930. doi:10.1038/nrn1806.PubMed Cattaneo, E., Zuccato, C., & Tartari, M. (2005). Normal huntingtin function: an alternative approach to Huntington’s disease. Nature Reviews Neuroscience, 6, 919–930. doi:10.​1038/​nrn1806.PubMed
go back to reference Chen, J.-F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233. doi:10.1038/ng1725.PubMed Chen, J.-F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., et al. (2006). The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genetics, 38, 228–233. doi:10.​1038/​ng1725.PubMed
go back to reference Chen, Z.-F., Paquette, A. J., & Anderson, D. J. (1998). NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genetics, 20, 136–142. doi:10.1038/2431.PubMed Chen, Z.-F., Paquette, A. J., & Anderson, D. J. (1998). NRSF/REST is required in vivo for repression of multiple neuronal target genes during embryogenesis. Nature Genetics, 20, 136–142. doi:10.​1038/​2431.PubMed
go back to reference Chen-Plotkin, A. S., Sadri-Vakili, G., Yohrling, G. J., Braveman, M. W., Benn, C. L., et al. (2006). Decreased association of the transcription factor Sp1 with genes downregulated in Huntington’s disease. Neurobiology of Disease, 22, 233–241. doi:10.1016/j.nbd.2005.11.001.PubMed Chen-Plotkin, A. S., Sadri-Vakili, G., Yohrling, G. J., Braveman, M. W., Benn, C. L., et al. (2006). Decreased association of the transcription factor Sp1 with genes downregulated in Huntington’s disease. Neurobiology of Disease, 22, 233–241. doi:10.​1016/​j.​nbd.​2005.​11.​001.PubMed
go back to reference Chong, J., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J., Zheng, Y., et al. (1995). REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 80, 949–957. doi:10.1016/0092-8674(95)90298-8.PubMed Chong, J., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J., Zheng, Y., et al. (1995). REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 80, 949–957. doi:10.​1016/​0092-8674(95)90298-8.PubMed
go back to reference Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminger, A. W., Fox, A. H., et al. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 33(6), 717–726.PubMed Clemson, C. M., Hutchinson, J. N., Sara, S. A., Ensminger, A. W., Fox, A. H., et al. (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Molecular Cell, 33(6), 717–726.PubMed
go back to reference Dinger, M. E., Amaral, P. P., Mercer, T. R., Pang, K. C., Bruce, S. J., et al. (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 18, 1433–1445. doi:10.1101/gr.078378.108.PubMed Dinger, M. E., Amaral, P. P., Mercer, T. R., Pang, K. C., Bruce, S. J., et al. (2008). Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Research, 18, 1433–1445. doi:10.​1101/​gr.​078378.​108.PubMed
go back to reference Dunah, A. W., Jeong, H., Griffin, A., Kim, Y. M., Standaert, D. G., et al. (2002). Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science, 296, 2238–2243. doi:10.1126/science.1072613.PubMed Dunah, A. W., Jeong, H., Griffin, A., Kim, Y. M., Standaert, D. G., et al. (2002). Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science, 296, 2238–2243. doi:10.​1126/​science.​1072613.PubMed
go back to reference Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G., et al. (2008). Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nature Medicine, 14, 723–730. doi:10.1038/nm1784.PubMed Faghihi, M. A., Modarresi, F., Khalil, A. M., Wood, D. E., Sahagan, B. G., et al. (2008). Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nature Medicine, 14, 723–730. doi:10.​1038/​nm1784.PubMed
go back to reference Farh, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., et al. (2005). The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science, 310, 1817–1821. doi:10.1126/science.1121158.PubMed Farh, K. K., Grimson, A., Jan, C., Lewis, B. P., Johnston, W. K., et al. (2005). The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science, 310, 1817–1821. doi:10.​1126/​science.​1121158.PubMed
go back to reference Feng, J., Bi, C., Clark, B. S., Mady, R., Shah, P., et al. (2006). The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes and Development, 20, 1470–1484. doi:10.1101/gad.1416106.PubMed Feng, J., Bi, C., Clark, B. S., Mady, R., Shah, P., et al. (2006). The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes and Development, 20, 1470–1484. doi:10.​1101/​gad.​1416106.PubMed
go back to reference Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P., Jr., Bird, E. D., et al. (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230, 561–563. doi:10.1126/science.2931802.PubMed Ferrante, R. J., Kowall, N. W., Beal, M. F., Richardson, E. P., Jr., Bird, E. D., et al. (1985). Selective sparing of a class of striatal neurons in Huntington’s disease. Science, 230, 561–563. doi:10.​1126/​science.​2931802.PubMed
go back to reference Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews. Genetics, 9, 102–114. doi:10.1038/nrg2290.PubMed Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nature Reviews. Genetics, 9, 102–114. doi:10.​1038/​nrg2290.PubMed
go back to reference Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., et al. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology, 26, 407–415. doi:10.1038/nbt1394.PubMed Friedlander, M. R., Chen, W., Adamidi, C., Maaskola, J., Einspanier, R., et al. (2008). Discovering microRNAs from deep sequencing data using miRDeep. Nature Biotechnology, 26, 407–415. doi:10.​1038/​nbt1394.PubMed
go back to reference Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838. doi:10.1126/science.1109020.PubMed Giraldez, A. J., Cinalli, R. M., Glasner, M. E., Enright, A. J., Thomson, J. M., et al. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science, 308, 833–838. doi:10.​1126/​science.​1109020.PubMed
go back to reference Greenway, D. J., Street, M., Jeffries, A., & Buckley, N. J. (2007). RE1 silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells, 25, 354–363. doi:10.1634/stemcells.2006-0207.PubMed Greenway, D. J., Street, M., Jeffries, A., & Buckley, N. J. (2007). RE1 silencing transcription factor maintains a repressive chromatin environment in embryonic hippocampal neural stem cells. Stem Cells, 25, 354–363. doi:10.​1634/​stemcells.​2006-0207.PubMed
go back to reference He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134. doi:10.1038/nature05939.PubMed He, L., He, X., Lim, L. P., de Stanchina, E., Xuan, Z., et al. (2007). A microRNA component of the p53 tumour suppressor network. Nature, 447, 1130–1134. doi:10.​1038/​nature05939.PubMed
go back to reference He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833. doi:10.1038/nature03552.PubMed He, L., Thomson, J. M., Hemann, M. T., Hernando-Monge, E., Mu, D., et al. (2005). A microRNA polycistron as a potential human oncogene. Nature, 435, 828–833. doi:10.​1038/​nature03552.PubMed
go back to reference Hebert, S. S., Horre, K., Nicolai, L., Papadopoulou, A. S., Mandemakers, W., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105, 6415–6420. doi:10.1073/pnas.0710263105.PubMed Hebert, S. S., Horre, K., Nicolai, L., Papadopoulou, A. S., Mandemakers, W., et al. (2008). Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression. Proceedings of the National Academy of Sciences of the United States of America, 105, 6415–6420. doi:10.​1073/​pnas.​0710263105.PubMed
go back to reference Hedreen, J. C., Peyser, C. E., Folstein, S. E., & Ross, C. A. (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neuroscience Letters, 133, 257–261. doi:10.1016/0304-3940(91)90583-F.PubMed Hedreen, J. C., Peyser, C. E., Folstein, S. E., & Ross, C. A. (1991). Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease. Neuroscience Letters, 133, 257–261. doi:10.​1016/​0304-3940(91)90583-F.PubMed
go back to reference Hodges, A., Strand, A. D., Aragaki, A. K., Kuhn, A., Sengstag, T., et al. (2006). Regional and cellular gene expression changes in human Huntington’s disease brain. Human Molecular Genetics, 15, 965–977. doi:10.1093/hmg/ddl013.PubMed Hodges, A., Strand, A. D., Aragaki, A. K., Kuhn, A., Sengstag, T., et al. (2006). Regional and cellular gene expression changes in human Huntington’s disease brain. Human Molecular Genetics, 15, 965–977. doi:10.​1093/​hmg/​ddl013.PubMed
go back to reference Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J. P., et al. (1998). Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins. Somatic Cell and Molecular Genetics, 24, 217–233. doi:10.1023/B:SCAM.0000007124.19463.e5.PubMed Huang, C. C., Faber, P. W., Persichetti, F., Mittal, V., Vonsattel, J. P., et al. (1998). Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins. Somatic Cell and Molecular Genetics, 24, 217–233. doi:10.​1023/​B:​SCAM.​0000007124.​19463.​e5.PubMed
go back to reference Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell, 72, 971–983. doi:10.1016/0092-8674(93)90585-E. Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell, 72, 971–983. doi:10.​1016/​0092-8674(93)90585-E.
go back to reference Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031–8041. doi:10.1038/sj.onc.1206928.PubMed Ji, P., Diederichs, S., Wang, W., Boing, S., Metzger, R., et al. (2003). MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22, 8031–8041. doi:10.​1038/​sj.​onc.​1206928.PubMed
go back to reference Johnson, R., Gamblin, R. J., Ooi, L., Bruce, A. W., Donaldson, I. J., et al. (2006). Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Research, 34, 3862–3877. doi:10.1093/nar/gkl525.PubMed Johnson, R., Gamblin, R. J., Ooi, L., Bruce, A. W., Donaldson, I. J., et al. (2006). Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication. Nucleic Acids Research, 34, 3862–3877. doi:10.​1093/​nar/​gkl525.PubMed
go back to reference Johnson, R., Teh, C. H., Jia, H., Vanisri, R. R., Pandey, T., et al. (2009). Regulation of neural macroRNAs by the transcriptional repressor REST. RNA, 15, 85–96. doi:10.1261/rna.1127009.PubMed Johnson, R., Teh, C. H., Jia, H., Vanisri, R. R., Pandey, T., et al. (2009). Regulation of neural macroRNAs by the transcriptional repressor REST. RNA, 15, 85–96. doi:10.​1261/​rna.​1127009.PubMed
go back to reference Kegel, K. B., Meloni, A. R., Yi, Y., Kim, Y. J., Doyle, E., et al. (2002). Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. Journal of Biological Chemistry, 277, 7466–7476. doi:10.1074/jbc.M103946200.PubMed Kegel, K. B., Meloni, A. R., Yi, Y., Kim, Y. J., Doyle, E., et al. (2002). Huntingtin is present in the nucleus, interacts with the transcriptional corepressor C-terminal binding protein, and represses transcription. Journal of Biological Chemistry, 277, 7466–7476. doi:10.​1074/​jbc.​M103946200.PubMed
go back to reference Kim, M. O., Chawla, P., Overland, R. P., Xia, E., Sadri-Vakili, G., et al. (2008). Altered histone monoubiquitylation mediated by mutant huntingtin induces transcriptional dysregulation. Journal of Neuroscience, 28, 3947–3957. doi:10.1523/JNEUROSCI.5667-07.2008.PubMed Kim, M. O., Chawla, P., Overland, R. P., Xia, E., Sadri-Vakili, G., et al. (2008). Altered histone monoubiquitylation mediated by mutant huntingtin induces transcriptional dysregulation. Journal of Neuroscience, 28, 3947–3957. doi:10.​1523/​JNEUROSCI.​5667-07.​2008.PubMed
go back to reference Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9, 1274–1281. doi:10.1261/rna.5980303.PubMed Krichevsky, A. M., King, K. S., Donahue, C. P., Khrapko, K., & Kosik, K. S. (2003). A microRNA array reveals extensive regulation of microRNAs during brain development. RNA, 9, 1274–1281. doi:10.​1261/​rna.​5980303.PubMed
go back to reference Kuhn, A., Goldstein, D. R., Hodges, A., Strand, A. D., Sengstag, T., et al. (2007). Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 16, 1845–1861. doi:10.1093/hmg/ddm133.PubMed Kuhn, A., Goldstein, D. R., Hodges, A., Strand, A. D., Sengstag, T., et al. (2007). Mutant huntingtin’s effects on striatal gene expression in mice recapitulate changes observed in human Huntington’s disease brain and do not differ with mutant huntingtin length or wild-type huntingtin dosage. Human Molecular Genetics, 16, 1845–1861. doi:10.​1093/​hmg/​ddm133.PubMed
go back to reference Leone, S., Mutti, C., Kazantsev, A., Sturlese, M., Moro, S., et al. (2008). SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington’s disease. Bioorganic & Medicinal Chemistry, 16, 5695–5703. doi:10.1016/j.bmc.2008.03.067. Leone, S., Mutti, C., Kazantsev, A., Sturlese, M., Moro, S., et al. (2008). SAR and QSAR study on 2-aminothiazole derivatives, modulators of transcriptional repression in Huntington’s disease. Bioorganic & Medicinal Chemistry, 16, 5695–5703. doi:10.​1016/​j.​bmc.​2008.​03.​067.
go back to reference Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., et al. (2008). MicroRNA-9 directs late organizer activity of the midbrain–hindbrain boundary. Nature Neuroscience, 11, 641–648. doi:10.1038/nn.2115.PubMed Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., et al. (2008). MicroRNA-9 directs late organizer activity of the midbrain–hindbrain boundary. Nature Neuroscience, 11, 641–648. doi:10.​1038/​nn.​2115.PubMed
go back to reference Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773. doi:10.1038/nature03315.PubMed Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., et al. (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773. doi:10.​1038/​nature03315.PubMed
go back to reference Lipovich, L., Vanisri, R. R., Kong, S. L., Lin, C. Y., & Liu, E. T. (2006). Primate-specific endogenous cis-antisense transcription in the human 5q31 protocadherin gene cluster. Journal of Molecular Evolution, 62, 73–88. doi:10.1007/s00239-005-0041-3.PubMed Lipovich, L., Vanisri, R. R., Kong, S. L., Lin, C. Y., & Liu, E. T. (2006). Primate-specific endogenous cis-antisense transcription in the human 5q31 protocadherin gene cluster. Journal of Molecular Evolution, 62, 73–88. doi:10.​1007/​s00239-005-0041-3.PubMed
go back to reference Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838. doi:10.1038/nature03702.PubMed Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838. doi:10.​1038/​nature03702.PubMed
go back to reference Luthi-Carter, R., Hanson, S. A., Strand, A. D., Bergstrom, D. A., Chun, W., et al. (2002). Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Human Molecular Genetics, 11, 1911–1926. doi:10.1093/hmg/11.17.1911.PubMed Luthi-Carter, R., Hanson, S. A., Strand, A. D., Bergstrom, D. A., Chun, W., et al. (2002). Dysregulation of gene expression in the R6/2 model of polyglutamine disease: parallel changes in muscle and brain. Human Molecular Genetics, 11, 1911–1926. doi:10.​1093/​hmg/​11.​17.​1911.PubMed
go back to reference Luthi-Carter, R., Strand, A., Peters, N. L., Solano, S. M., Hollingsworth, Z. R., et al. (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Human Molecular Genetics, 9, 1259–1271. doi:10.1093/hmg/9.9.1259.PubMed Luthi-Carter, R., Strand, A., Peters, N. L., Solano, S. M., Hollingsworth, Z. R., et al. (2000). Decreased expression of striatal signaling genes in a mouse model of Huntington’s disease. Human Molecular Genetics, 9, 1259–1271. doi:10.​1093/​hmg/​9.​9.​1259.PubMed
go back to reference Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448. doi:10.1016/j.molcel.2007.07.015.PubMed Makeyev, E. V., Zhang, J., Carrasco, M. A., & Maniatis, T. (2007). The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Molecular Cell, 27, 435–448. doi:10.​1016/​j.​molcel.​2007.​07.​015.PubMed
go back to reference Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506. doi:10.1016/S0092-8674(00)81369-0.PubMed Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506. doi:10.​1016/​S0092-8674(00)81369-0.PubMed
go back to reference Mariner, P. D., Walters, R. D., Espinoza, C. A., Drullinger, L. F., Wagner, S. D., et al. (2008). Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Molecular Cell, 29, 499–509. doi:10.1016/j.molcel.2007.12.013.PubMed Mariner, P. D., Walters, R. D., Espinoza, C. A., Drullinger, L. F., Wagner, S. D., et al. (2008). Human Alu RNA is a modular transacting repressor of mRNA transcription during heat shock. Molecular Cell, 29, 499–509. doi:10.​1016/​j.​molcel.​2007.​12.​013.PubMed
go back to reference McCampbell, A., Taylor, J. P., Taye, A. A., Robitschek, J., Li, M., et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Human Molecular Genetics, 9, 2197–2202. doi:10.1093/hmg/9.14.2197.PubMed McCampbell, A., Taylor, J. P., Taye, A. A., Robitschek, J., Li, M., et al. (2000). CREB-binding protein sequestration by expanded polyglutamine. Human Molecular Genetics, 9, 2197–2202. doi:10.​1093/​hmg/​9.​14.​2197.PubMed
go back to reference Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F., & Mattick, J. S. (2008). Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 105, 716–721. doi:10.1073/pnas.0706729105.PubMed Mercer, T. R., Dinger, M. E., Sunkin, S. M., Mehler, M. F., & Mattick, J. S. (2008). Specific expression of long noncoding RNAs in the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 105, 716–721. doi:10.​1073/​pnas.​0706729105.PubMed
go back to reference Miska, E. A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., et al. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 5, R68. doi:10.1186/gb-2004-5-9-r68.PubMed Miska, E. A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., et al. (2004). Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biology, 5, R68. doi:10.​1186/​gb-2004-5-9-r68.PubMed
go back to reference Mortazavi, A., Thompson, E. C. L., Garcia, S. T., Myers, R. M., & Wold, B. (2006). Comparative genomics modeling of the NRSF/REST repressor network: From single conserved sites to genome-wide repertoire. Genome Research, 16, 1208–1221. doi:10.1101/gr.4997306.PubMed Mortazavi, A., Thompson, E. C. L., Garcia, S. T., Myers, R. M., & Wold, B. (2006). Comparative genomics modeling of the NRSF/REST repressor network: From single conserved sites to genome-wide repertoire. Genome Research, 16, 1208–1221. doi:10.​1101/​gr.​4997306.PubMed
go back to reference Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628. doi:10.1038/nmeth.1226.PubMed Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5, 621–628. doi:10.​1038/​nmeth.​1226.PubMed
go back to reference Nakamura, K., Jeong, S. Y., Uchihara, T., Anno, M., Nagashima, K., et al. (2001). SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human Molecular Genetics, 10, 1441–1448. doi:10.1093/hmg/10.14.1441.PubMed Nakamura, K., Jeong, S. Y., Uchihara, T., Anno, M., Nagashima, K., et al. (2001). SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human Molecular Genetics, 10, 1441–1448. doi:10.​1093/​hmg/​10.​14.​1441.PubMed
go back to reference Nomura, T., Kimura, M., Horii, T., Morita, S., Soejima, H., et al. (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Human Molecular Genetics, 17, 1192–1199. doi:10.1093/hmg/ddn011.PubMed Nomura, T., Kimura, M., Horii, T., Morita, S., Soejima, H., et al. (2008). MeCP2-dependent repression of an imprinted miR-184 released by depolarization. Human Molecular Genetics, 17, 1192–1199. doi:10.​1093/​hmg/​ddn011.PubMed
go back to reference Olson, M. V., & Varki, A. (2003). Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Review. Genetics, 4, 20–28. doi:10.1038/nrg981. Olson, M. V., & Varki, A. (2003). Sequencing the chimpanzee genome: insights into human evolution and disease. Nature Review. Genetics, 4, 20–28. doi:10.​1038/​nrg981.
go back to reference Ooi, L., & Wood, I. C. (2007). Chromatin crosstalk in development and disease: lessons from REST. Nature Reviews Genetics, 8, 544–554. doi:10.1038/nrg2100.PubMed Ooi, L., & Wood, I. C. (2007). Chromatin crosstalk in development and disease: lessons from REST. Nature Reviews Genetics, 8, 544–554. doi:10.​1038/​nrg2100.PubMed
go back to reference Otto, S. J., McCorkle, S. R., Hover, J., Conaco, C., Han, J.-J., et al. (2007). A new binding motif for the transcriptional repressor rest uncovers large gene networks devoted to neuronal functions. Journal of Neuroscience, 27, 6729–6739. doi:10.1523/JNEUROSCI.0091-07.2007.PubMed Otto, S. J., McCorkle, S. R., Hover, J., Conaco, C., Han, J.-J., et al. (2007). A new binding motif for the transcriptional repressor rest uncovers large gene networks devoted to neuronal functions. Journal of Neuroscience, 27, 6729–6739. doi:10.​1523/​JNEUROSCI.​0091-07.​2007.PubMed
go back to reference Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuroscience, 28, 14341–14346. doi:10.1523/JNEUROSCI.2390-08.2008.PubMed Packer, A. N., Xing, Y., Harper, S. Q., Jones, L., & Davidson, B. L. (2008). The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. Journal of Neuroscience, 28, 14341–14346. doi:10.​1523/​JNEUROSCI.​2390-08.​2008.PubMed
go back to reference Palm, K., Belluardo, N., Metsis, M., & To, Timmusk. (1998). Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. Journal of Neuroscience, 18, 1280–1296.PubMed Palm, K., Belluardo, N., Metsis, M., & To, Timmusk. (1998). Neuronal expression of zinc finger transcription factor REST/NRSF/XBR gene. Journal of Neuroscience, 18, 1280–1296.PubMed
go back to reference Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32, 232–246. doi:10.1016/j.molcel.2008.08.022.PubMed Pandey, R. R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., et al. (2008). Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Molecular Cell, 32, 232–246. doi:10.​1016/​j.​molcel.​2008.​08.​022.PubMed
go back to reference Perez, D. S., Hoage, T. R., Pritchett, J. R., Ducharme-Smith, A. L., Halling, M. L., et al. (2008). Long, abundantly expressed non-coding transcripts are altered in cancer. Human Molecular Genetics, 17, 642–655. doi:10.1093/hmg/ddm336.PubMed Perez, D. S., Hoage, T. R., Pritchett, J. R., Ducharme-Smith, A. L., Halling, M. L., et al. (2008). Long, abundantly expressed non-coding transcripts are altered in cancer. Human Molecular Genetics, 17, 642–655. doi:10.​1093/​hmg/​ddm336.PubMed
go back to reference Pollard, K. S., Salama, S. R., Lambert, N., Lambot, M.-A., Coppens, S., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443, 167–172. doi:10.1038/nature05113.PubMed Pollard, K. S., Salama, S. R., Lambert, N., Lambot, M.-A., Coppens, S., et al. (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, 443, 167–172. doi:10.​1038/​nature05113.PubMed
go back to reference Ponjavic, J., Ponting, C. P., & Lunter, G. (2007). Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Research, 17, 556–565. doi:10.1101/gr.6036807.PubMed Ponjavic, J., Ponting, C. P., & Lunter, G. (2007). Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Research, 17, 556–565. doi:10.​1101/​gr.​6036807.PubMed
go back to reference Preker, P., Nielsen, J., Kammler, S., Lykke-Andersen, S., Christensen, M. S., et al. (2008). RNA exosome depletion reveals transcription upstream of active human promoters. Science, 322, 1851–1854. doi:10.1126/science.1164096.PubMed Preker, P., Nielsen, J., Kammler, S., Lykke-Andersen, S., Christensen, M. S., et al. (2008). RNA exosome depletion reveals transcription upstream of active human promoters. Science, 322, 1851–1854. doi:10.​1126/​science.​1164096.PubMed
go back to reference Qiu, Z., Norflus, F., Singh, B., Swindell, M. K., Buzescu, R., et al. (2006). Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective. Journal of Biological Chemistry, 281, 16672–16680. doi:10.1074/jbc.M511648200.PubMed Qiu, Z., Norflus, F., Singh, B., Swindell, M. K., Buzescu, R., et al. (2006). Sp1 is up-regulated in cellular and transgenic models of Huntington disease, and its reduction is neuroprotective. Journal of Biological Chemistry, 281, 16672–16680. doi:10.​1074/​jbc.​M511648200.PubMed
go back to reference Ravasi, T., Suzuki, H., Pang, K. C., Katayama, S., Furuno, M., et al. (2006). Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 16, 11–19. doi:10.1101/gr.4200206.PubMed Ravasi, T., Suzuki, H., Pang, K. C., Katayama, S., Furuno, M., et al. (2006). Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Research, 16, 11–19. doi:10.​1101/​gr.​4200206.PubMed
go back to reference Reiner, A., Albin, R. L., Anderson, K. D., D’Amato, C. J., Penney, J. B., et al. (1988). Differential loss of striatal projection neurons in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 85, 5733–5737. doi:10.1073/pnas.85.15.5733.PubMed Reiner, A., Albin, R. L., Anderson, K. D., D’Amato, C. J., Penney, J. B., et al. (1988). Differential loss of striatal projection neurons in Huntington disease. Proceedings of the National Academy of Sciences of the United States of America, 85, 5733–5737. doi:10.​1073/​pnas.​85.​15.​5733.PubMed
go back to reference Rigamonti, D., Bolognini, D., Mutti, C., Zuccato, C., Tartari, M., et al. (2007). Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators. Journal of Biological Chemistry, 282, 24554–24562. doi:10.1074/jbc.M609885200.PubMed Rigamonti, D., Bolognini, D., Mutti, C., Zuccato, C., Tartari, M., et al. (2007). Loss of huntingtin function complemented by small molecules acting as repressor element 1/neuron restrictive silencer element silencer modulators. Journal of Biological Chemistry, 282, 24554–24562. doi:10.​1074/​jbc.​M609885200.PubMed
go back to reference Rinn, J., Kertesz, M., Wang, J., Squazzo, S., Xu, X., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 127, 1311–1323. doi:10.1016/j.cell.2007.05.022. Rinn, J., Kertesz, M., Wang, J., Squazzo, S., Xu, X., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 127, 1311–1323. doi:10.​1016/​j.​cell.​2007.​05.​022.
go back to reference Runne, H., Kuhn, A., Wild, E. J., Pratyaksha, W., Kristiansen, M., et al. (2007). Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proceedings of the National Academy of Sciences of the United States of America, 104, 14424–14429. doi:10.1073/pnas.0703652104.PubMed Runne, H., Kuhn, A., Wild, E. J., Pratyaksha, W., Kristiansen, M., et al. (2007). Analysis of potential transcriptomic biomarkers for Huntington’s disease in peripheral blood. Proceedings of the National Academy of Sciences of the United States of America, 104, 14424–14429. doi:10.​1073/​pnas.​0703652104.PubMed
go back to reference Sadri-Vakili, G., Bouzou, B., Benn, C. L., Kim, M. O., Chawla, P., et al. (2007). Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Human Molecular Genetics, 16, 1293–1306. doi:10.1093/hmg/ddm078.PubMed Sadri-Vakili, G., Bouzou, B., Benn, C. L., Kim, M. O., Chawla, P., et al. (2007). Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Human Molecular Genetics, 16, 1293–1306. doi:10.​1093/​hmg/​ddm078.PubMed
go back to reference Savas, J. N., Makusky, A., Ottosen, S., Baillat, D., Then, F., et al. (2008). Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proceedings of the National Academy of Sciences of the United States of America, 105, 10820–10825. doi:10.1073/pnas.0800658105.PubMed Savas, J. N., Makusky, A., Ottosen, S., Baillat, D., Then, F., et al. (2008). Huntington’s disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proceedings of the National Academy of Sciences of the United States of America, 105, 10820–10825. doi:10.​1073/​pnas.​0800658105.PubMed
go back to reference Schaefer, A., O’Carroll, D., Tan, C. L., Hillman, D., Sugimori, M., et al. (2007). Cerebellar neurodegeneration in the absence of microRNAs. Journal of Experimental Medicine, 204, 1553–1558. doi:10.1084/jem.20070823.PubMed Schaefer, A., O’Carroll, D., Tan, C. L., Hillman, D., Sugimori, M., et al. (2007). Cerebellar neurodegeneration in the absence of microRNAs. Journal of Experimental Medicine, 204, 1553–1558. doi:10.​1084/​jem.​20070823.PubMed
go back to reference Schoenherr, C., & Anderson, D. (1995). The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science, 5202, 1360–1363. doi:10.1126/science.7871435. Schoenherr, C., & Anderson, D. (1995). The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science, 5202, 1360–1363. doi:10.​1126/​science.​7871435.
go back to reference Schoenherr, C. J., Paquette, A. J., & Anderson, D. J. (1996). Identification of potential target genes for the neuron-restrictive silencer factor. Proceedings of the National Academy of Sciences, 93, 9881–9886. doi:10.1073/pnas.93.18.9881. Schoenherr, C. J., Paquette, A. J., & Anderson, D. J. (1996). Identification of potential target genes for the neuron-restrictive silencer factor. Proceedings of the National Academy of Sciences, 93, 9881–9886. doi:10.​1073/​pnas.​93.​18.​9881.
go back to reference Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. doi:10.1038/nature04367.PubMed Schratt, G. M., Tuebing, F., Nigh, E. A., Kane, C. G., Sabatini, M. E., et al. (2006). A brain-specific microRNA regulates dendritic spine development. Nature, 439, 283–289. doi:10.​1038/​nature04367.PubMed
go back to reference Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., et al. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13. doi:10.1186/gb-2004-5-3-r13.PubMed Sempere, L. F., Freemantle, S., Pitha-Rowe, I., Moss, E., Dmitrovsky, E., et al. (2004). Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biology, 5, R13. doi:10.​1186/​gb-2004-5-3-r13.PubMed
go back to reference Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., & Aizawa, S. (2008). MicroRNA-9 modulates Cajal–Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. Journal of Neuroscience, 28, 10415–10421. doi:10.1523/JNEUROSCI.3219-08.2008.PubMed Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., & Aizawa, S. (2008). MicroRNA-9 modulates Cajal–Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. Journal of Neuroscience, 28, 10415–10421. doi:10.​1523/​JNEUROSCI.​3219-08.​2008.PubMed
go back to reference Shimojo, M. (2008). Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. Journal of Biological Chemistry, 283, 34880–34886. doi:10.1074/jbc.M804183200.PubMed Shimojo, M. (2008). Huntingtin regulates RE1-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF) nuclear trafficking indirectly through a complex with REST/NRSF-interacting LIM domain protein (RILP) and dynactin p150 Glued. Journal of Biological Chemistry, 283, 34880–34886. doi:10.​1074/​jbc.​M804183200.PubMed
go back to reference Snell, R. G., MacMillan, J. C., Cheadle, J. P., Fenton, I., Lazarou, L. P., et al. (1993). Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nature Genetics, 4, 393–397. doi:10.1038/ng0893-393.PubMed Snell, R. G., MacMillan, J. C., Cheadle, J. P., Fenton, I., Lazarou, L. P., et al. (1993). Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nature Genetics, 4, 393–397. doi:10.​1038/​ng0893-393.PubMed
go back to reference Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40, 751–760. doi:10.1038/ng.138.PubMed Stark, K. L., Xu, B., Bagchi, A., Lai, W. S., Liu, H., et al. (2008). Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nature Genetics, 40, 751–760. doi:10.​1038/​ng.​138.PubMed
go back to reference Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y.-Z., et al. (2000). The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. PNAS, 97, 6763–6768. doi:10.1073/pnas.100110097.PubMed Steffan, J. S., Kazantsev, A., Spasic-Boskovic, O., Greenwald, M., Zhu, Y.-Z., et al. (2000). The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. PNAS, 97, 6763–6768. doi:10.​1073/​pnas.​100110097.PubMed
go back to reference Strand, A. D., Baquet, Z. C., Aragaki, A. K., Holmans, P., Yang, L., et al. (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. Journal of Neuroscience, 27, 11758–11768. doi:10.1523/JNEUROSCI.2461-07.2007.PubMed Strand, A. D., Baquet, Z. C., Aragaki, A. K., Holmans, P., Yang, L., et al. (2007). Expression profiling of Huntington’s disease models suggests that brain-derived neurotrophic factor depletion plays a major role in striatal degeneration. Journal of Neuroscience, 27, 11758–11768. doi:10.​1523/​JNEUROSCI.​2461-07.​2007.PubMed
go back to reference Sun, Y.-M., Greenway, D. J., Johnson, R., Street, M., Belyaev, N. D., et al. (2005). Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Molecular Biology of the Cell, 16, 5630–5638. doi:10.1091/mbc.E05-07-0687.PubMed Sun, Y.-M., Greenway, D. J., Johnson, R., Street, M., Belyaev, N. D., et al. (2005). Distinct profiles of REST interactions with its target genes at different stages of neuronal development. Molecular Biology of the Cell, 16, 5630–5638. doi:10.​1091/​mbc.​E05-07-0687.PubMed
go back to reference Varki, A., & Altheide, T. K. (2005). Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Research, 15, 1746–1758. doi:10.1101/gr.3737405.PubMed Varki, A., & Altheide, T. K. (2005). Comparing the human and chimpanzee genomes: searching for needles in a haystack. Genome Research, 15, 1746–1758. doi:10.​1101/​gr.​3737405.PubMed
go back to reference Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749. doi:10.1101/gad.1519107.PubMed Visvanathan, J., Lee, S., Lee, B., Lee, J. W., & Lee, S. K. (2007). The microRNA miR-124 antagonizes the anti-neural REST/SCP1 pathway during embryonic CNS development. Genes and Development, 21, 744–749. doi:10.​1101/​gad.​1519107.PubMed
go back to reference Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., et al. (2005). From the cover: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. PNAS, 102, 16426–16431. doi:10.1073/pnas.0508448102.PubMed Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., et al. (2005). From the cover: A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. PNAS, 102, 16426–16431. doi:10.​1073/​pnas.​0508448102.PubMed
go back to reference Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28, 1213–1223. doi:10.1523/JNEUROSCI.5065-07.2008.PubMed Wang, W. X., Rajeev, B. W., Stromberg, A. J., Ren, N., Tang, G., et al. (2008). The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. Journal of Neuroscience, 28, 1213–1223. doi:10.​1523/​JNEUROSCI.​5065-07.​2008.PubMed
go back to reference Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the United States of America, 105, 9093–9098. doi:10.1073/pnas.0803072105.PubMed Wayman, G. A., Davare, M., Ando, H., Fortin, D., Varlamova, O., et al. (2008). An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proceedings of the National Academy of Sciences of the United States of America, 105, 9093–9098. doi:10.​1073/​pnas.​0803072105.PubMed
go back to reference Wheeler, V. C., Auerbach, W., White, J. K., Srinidhi, J., Auerbach, A., et al. (1999). Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Human Molecular Genetics, 8, 115–122. doi:10.1093/hmg/8.1.115.PubMed Wheeler, V. C., Auerbach, W., White, J. K., Srinidhi, J., Auerbach, A., et al. (1999). Length-dependent gametic CAG repeat instability in the Huntington’s disease knock-in mouse. Human Molecular Genetics, 8, 115–122. doi:10.​1093/​hmg/​8.​1.​115.PubMed
go back to reference Willingham, A., Orth, A., Batalov, S., Peters, E., Wen, B., et al. (2005). A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 309, 1570–1573. doi:10.1126/science.1115901.PubMed Willingham, A., Orth, A., Batalov, S., Peters, E., Wen, B., et al. (2005). A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science, 309, 1570–1573. doi:10.​1126/​science.​1115901.PubMed
go back to reference Wu, J., & Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biology, 7, R85. doi:10.1186/gb-2006-7-9-r85.PubMed Wu, J., & Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biology, 7, R85. doi:10.​1186/​gb-2006-7-9-r85.PubMed
go back to reference Zabel, C., Chamrad, D. C., Priller, J., Woodman, B., Meyer, H. E., et al. (2002). Alterations in the mouse and human proteome caused by Huntington’s disease. Molecular & Cellular Proteomics, 1, 366–375. doi:10.1074/mcp.M200016-MCP200. Zabel, C., Chamrad, D. C., Priller, J., Woodman, B., Meyer, H. E., et al. (2002). Alterations in the mouse and human proteome caused by Huntington’s disease. Molecular & Cellular Proteomics, 1, 366–375. doi:10.​1074/​mcp.​M200016-MCP200.
go back to reference Zhao, T., Li, G., Mi, S., Li, S., Hannon, G. J., et al. (2007a). A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes and Development, 21, 1190–1203. doi:10.1101/gad.1543507.PubMed Zhao, T., Li, G., Mi, S., Li, S., Hannon, G. J., et al. (2007a). A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes and Development, 21, 1190–1203. doi:10.​1101/​gad.​1543507.PubMed
go back to reference Zuccato, C., Belyaev, N., Conforti, P., Ooi, L., Tartari, M., et al. (2007). Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in huntington’s disease. Journal of Neuroscience, 27, 6972–6983. doi:10.1523/JNEUROSCI.4278-06.2007.PubMed Zuccato, C., Belyaev, N., Conforti, P., Ooi, L., Tartari, M., et al. (2007). Widespread disruption of repressor element-1 silencing transcription factor/neuron-restrictive silencer factor occupancy at its target genes in huntington’s disease. Journal of Neuroscience, 27, 6972–6983. doi:10.​1523/​JNEUROSCI.​4278-06.​2007.PubMed
go back to reference Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293, 493–498. doi:10.1126/science.1059581.PubMed Zuccato, C., Ciammola, A., Rigamonti, D., Leavitt, B. R., Goffredo, D., et al. (2001). Loss of huntingtin-mediated BDNF gene transcription in Huntington’s disease. Science, 293, 493–498. doi:10.​1126/​science.​1059581.PubMed
go back to reference Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35, 76–83. doi:10.1038/ng1219.PubMed Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35, 76–83. doi:10.​1038/​ng1219.PubMed
Metadata
Title
Gene Dysregulation in Huntington’s Disease: REST, MicroRNAs and Beyond
Authors
Rory Johnson
Noel J. Buckley
Publication date
01-09-2009
Publisher
Humana Press Inc
Published in
NeuroMolecular Medicine / Issue 3/2009
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-009-8063-4

Other articles of this Issue 3/2009

NeuroMolecular Medicine 3/2009 Go to the issue