Skip to main content
Top
Published in: Strahlentherapie und Onkologie 10/2022

18-08-2022 | Metastasis | Original Article

Evaluation of the ability of the Brainlab Elements Cranial Distortion Correction algorithm to correct clinically relevant MRI distortions for cranial SRT

Authors: Paul Retif, Abdourahamane Djibo Sidikou, Christian Mathis, Romain Letellier, Emilie Verrecchia-Ramos, Rémi Dupres, Xavier Michel

Published in: Strahlentherapie und Onkologie | Issue 10/2022

Login to get access

Abstract

Purpose

Cranial stereotactic radiotherapy (SRT) requires highly accurate lesion delineation. However, MRI can have significant inherent geometric distortions. We investigated how well the Elements Cranial Distortion Correction algorithm of Brainlab (Munich, Germany) corrects the distortions in MR image-sets of a phantom and patients.

Methods

A non-distorted reference computed tomography image-set of a CIRS Model 603-GS (CIRS, Norfolk, VA, USA) phantom was acquired. Three-dimensional T1-weighted images were acquired with five MRI scanners and reconstructed with vendor-derived distortion correction. Some were reconstructed without correction to generate heavily distorted image-sets. All MR image-sets were corrected with the Brainlab algorithm relative to the computed tomography acquisition. CIRS Distortion Check software measured the distortion in each image-set. For all uncorrected and corrected image-sets, the control points that exceeded the 0.5-mm clinically relevant distortion threshold and the distortion maximum, mean, and standard deviation were recorded. Empirical cumulative distribution functions (eCDF) were plotted. Intraclass correlation coefficient (ICC) was calculated. The algorithm was evaluated with 10 brain metastases using Dice similarity coefficients (DSC).

Results

The algorithm significantly reduced mean and standard deviation distortion in all image-sets. It reduced the maximum distortion in the heavily distorted image-sets from 2.072 to 1.059 mm and the control points with > 0.5-mm distortion fell from 50.2% to 4.0%. Before and especially after correction, the eCDFs of the four repeats were visually similar. ICC was 0.812 (excellent–good agreement). The algorithm increased the DSCs for all patients and image-sets.

Conclusion

The Brainlab algorithm significantly and reproducibly ameliorated MRI distortion, even with heavily distorted images. Thus, it increases the accuracy of cranial SRT lesion delineation. After further testing, this tool may be suitable for SRT of small lesions.
Literature
1.
go back to reference Gilbo P, Zhang I, Knisely J (2017) Stereotactic radiosurgery of the brain: a review of common indications. Chin Clin Oncol 6:S14PubMedCrossRef Gilbo P, Zhang I, Knisely J (2017) Stereotactic radiosurgery of the brain: a review of common indications. Chin Clin Oncol 6:S14PubMedCrossRef
2.
go back to reference Sahgal A, Ruschin M, Ma L, Verbakel W, Larson D, Brown PD (2017) Stereotactic radiosurgery alone for multiple brain metastases? A review of clinical and technical issues. Neuro Oncol 19:ii2–ii15PubMedPubMedCentralCrossRef Sahgal A, Ruschin M, Ma L, Verbakel W, Larson D, Brown PD (2017) Stereotactic radiosurgery alone for multiple brain metastases? A review of clinical and technical issues. Neuro Oncol 19:ii2–ii15PubMedPubMedCentralCrossRef
3.
go back to reference Hartgerink D, Swinnen A, Roberge D, Nichol A, Zygmanski P, Yin FF et al (2019) LINAC based stereotactic radiosurgery for multiple brain metastases: guidance for clinical implementation. Acta Oncol 58:1275–1282PubMedCrossRef Hartgerink D, Swinnen A, Roberge D, Nichol A, Zygmanski P, Yin FF et al (2019) LINAC based stereotactic radiosurgery for multiple brain metastases: guidance for clinical implementation. Acta Oncol 58:1275–1282PubMedCrossRef
4.
go back to reference Nakano H, Tanabe S, Utsunomiya S, Yamada T, Sasamoto R, Nakano T et al (2020) Effect of setup error in the single-isocenter technique on stereotactic radiosurgery for multiple brain metastases. J Appl Clin Med Phys 21:155–165PubMedPubMedCentralCrossRef Nakano H, Tanabe S, Utsunomiya S, Yamada T, Sasamoto R, Nakano T et al (2020) Effect of setup error in the single-isocenter technique on stereotactic radiosurgery for multiple brain metastases. J Appl Clin Med Phys 21:155–165PubMedPubMedCentralCrossRef
5.
go back to reference Putz F, Mengling V, Perrin R, Masitho S, Weissmann T, Rosch J et al (2020) Magnetic resonance imaging for brain stereotactic radiotherapy : a review of requirements and pitfalls. Strahlenther Onkol 196:444–456PubMedPubMedCentralCrossRef Putz F, Mengling V, Perrin R, Masitho S, Weissmann T, Rosch J et al (2020) Magnetic resonance imaging for brain stereotactic radiotherapy : a review of requirements and pitfalls. Strahlenther Onkol 196:444–456PubMedPubMedCentralCrossRef
6.
go back to reference Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J et al (2020) Technological quality requirements for stereotactic radiotherapy : expert review group consensus from the DGMP working group for physics and technology in Stereotactic radiotherapy. Strahlenther Onkol 196:421–443PubMedPubMedCentralCrossRef Schmitt D, Blanck O, Gauer T, Fix MK, Brunner TB, Fleckenstein J et al (2020) Technological quality requirements for stereotactic radiotherapy : expert review group consensus from the DGMP working group for physics and technology in Stereotactic radiotherapy. Strahlenther Onkol 196:421–443PubMedPubMedCentralCrossRef
7.
go back to reference Dellios D, Pappas EP, Seimenis I, Paraskevopoulou C, Lampropoulos KI, Lymperopoulou G et al (2021) Evaluation of patient-specific MR distortion correction schemes for improved target localization accuracy in SRS. Med Phys 48:1661–1672PubMedCrossRef Dellios D, Pappas EP, Seimenis I, Paraskevopoulou C, Lampropoulos KI, Lymperopoulou G et al (2021) Evaluation of patient-specific MR distortion correction schemes for improved target localization accuracy in SRS. Med Phys 48:1661–1672PubMedCrossRef
8.
go back to reference Weygand J, Fuller CD, Ibbott GS, Mohamed AS, Ding Y, Yang J et al (2016) Spatial precision in magnetic resonance imaging-guided radiation therapy: the role of geometric distortion. Int J Radiat Oncol Biol Phys 95:1304–1316PubMedCrossRef Weygand J, Fuller CD, Ibbott GS, Mohamed AS, Ding Y, Yang J et al (2016) Spatial precision in magnetic resonance imaging-guided radiation therapy: the role of geometric distortion. Int J Radiat Oncol Biol Phys 95:1304–1316PubMedCrossRef
9.
go back to reference Lightstone AW, Benedict SH, Bova FJ, Solberg TD, Stern RL, American Association of Physicists in Medicine Radiation Therapy C (2005) Intracranial stereotactic positioning systems: report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group no. 68. Med Phys 32:2380–2398PubMedCrossRef Lightstone AW, Benedict SH, Bova FJ, Solberg TD, Stern RL, American Association of Physicists in Medicine Radiation Therapy C (2005) Intracranial stereotactic positioning systems: report of the American Association of Physicists in Medicine Radiation Therapy Committee Task Group no. 68. Med Phys 32:2380–2398PubMedCrossRef
10.
go back to reference Seibert TM, White NS, Kim GY, Moiseenko V, McDonald CR, Farid N et al (2016) Distortion inherent to magnetic resonance imaging can lead to geometric miss in radiosurgery planning. Pract Radiat Oncol 6:e319–e328PubMedPubMedCentralCrossRef Seibert TM, White NS, Kim GY, Moiseenko V, McDonald CR, Farid N et al (2016) Distortion inherent to magnetic resonance imaging can lead to geometric miss in radiosurgery planning. Pract Radiat Oncol 6:e319–e328PubMedPubMedCentralCrossRef
11.
go back to reference Owrangi AM, Greer PB, Glide-Hurst CK (2018) MRI-only treatment planning: benefits and challenges. Phys Med Biol 63:05TR1CrossRef Owrangi AM, Greer PB, Glide-Hurst CK (2018) MRI-only treatment planning: benefits and challenges. Phys Med Biol 63:05TR1CrossRef
12.
go back to reference Crijns SP, Raaymakers BW, Lagendijk JJ (2011) Real-time correction of magnetic field inhomogeneity-induced image distortions for MRI-guided conventional and proton radiotherapy. Phys Med Biol 56:289–297PubMedCrossRef Crijns SP, Raaymakers BW, Lagendijk JJ (2011) Real-time correction of magnetic field inhomogeneity-induced image distortions for MRI-guided conventional and proton radiotherapy. Phys Med Biol 56:289–297PubMedCrossRef
13.
go back to reference Wang D, Doddrell DM, Cowin G (2004) A novel phantom and method for comprehensive 3‑dimensional measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson Imaging 22:529–542PubMedCrossRef Wang D, Doddrell DM, Cowin G (2004) A novel phantom and method for comprehensive 3‑dimensional measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson Imaging 22:529–542PubMedCrossRef
14.
go back to reference Mizowaki T, Nagata Y, Okajima K, Kokubo M, Negoro Y, Araki N et al (2000) Reproducibility of geometric distortion in magnetic resonance imaging based on phantom studies. Radiother Oncol 57:237–242PubMedCrossRef Mizowaki T, Nagata Y, Okajima K, Kokubo M, Negoro Y, Araki N et al (2000) Reproducibility of geometric distortion in magnetic resonance imaging based on phantom studies. Radiother Oncol 57:237–242PubMedCrossRef
15.
go back to reference Doran SJ, Charles-Edwards L, Reinsberg SA, Leach MO (2005) A complete distortion correction for MR images: I. Gradient warp correction. Phys Med Biol 50:1343–1361PubMedCrossRef Doran SJ, Charles-Edwards L, Reinsberg SA, Leach MO (2005) A complete distortion correction for MR images: I. Gradient warp correction. Phys Med Biol 50:1343–1361PubMedCrossRef
16.
go back to reference Shan S, Li M, Li M, Tang F, Crozier S, Liu F (2021) ReUINet: A fast GNL distortion correction approach on a 1.0 T MRI-Linac scanner. Med Phys 48:2991–3002PubMedCrossRef Shan S, Li M, Li M, Tang F, Crozier S, Liu F (2021) ReUINet: A fast GNL distortion correction approach on a 1.0 T MRI-Linac scanner. Med Phys 48:2991–3002PubMedCrossRef
17.
go back to reference Janke A, Zhao H, Cowin GJ, Galloway GJ, Doddrell DM (2004) Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn Reson Med 52:115–122PubMedCrossRef Janke A, Zhao H, Cowin GJ, Galloway GJ, Doddrell DM (2004) Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn Reson Med 52:115–122PubMedCrossRef
18.
go back to reference Wang D, Strugnell W, Cowin G, Doddrell DM, Slaughter R (2004) Geometric distortion in clinical MRI systems Part II: correction using a 3D phantom. Magn Reson Imaging 22:1223–1232PubMedCrossRef Wang D, Strugnell W, Cowin G, Doddrell DM, Slaughter R (2004) Geometric distortion in clinical MRI systems Part II: correction using a 3D phantom. Magn Reson Imaging 22:1223–1232PubMedCrossRef
19.
go back to reference Wang H, Balter J, Cao Y (2013) Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner. Phys Med Biol 58:465–477PubMedCrossRef Wang H, Balter J, Cao Y (2013) Patient-induced susceptibility effect on geometric distortion of clinical brain MRI for radiation treatment planning on a 3T scanner. Phys Med Biol 58:465–477PubMedCrossRef
20.
go back to reference Pappas EP, Alshanqity M, Moutsatsos A, Lababidi H, Alsafi K, Georgiou K et al (2017) MRI-related geometric distortions in stereotactic radiotherapy treatment planning: evaluation and dosimetric impact. Technol Cancer Res Treat 16:1120–1129PubMedPubMedCentralCrossRef Pappas EP, Alshanqity M, Moutsatsos A, Lababidi H, Alsafi K, Georgiou K et al (2017) MRI-related geometric distortions in stereotactic radiotherapy treatment planning: evaluation and dosimetric impact. Technol Cancer Res Treat 16:1120–1129PubMedPubMedCentralCrossRef
21.
go back to reference Walker A, Metcalfe P, Liney G, Batumalai V, Dundas K, Glide-Hurst C et al (2016) MRI geometric distortion: Impact on tangential whole-breast IMRT. J Appl Clin Med Phys 17:7–19PubMedPubMedCentralCrossRef Walker A, Metcalfe P, Liney G, Batumalai V, Dundas K, Glide-Hurst C et al (2016) MRI geometric distortion: Impact on tangential whole-breast IMRT. J Appl Clin Med Phys 17:7–19PubMedPubMedCentralCrossRef
22.
go back to reference Winter RM, Schmidt H, Leibfarth S, Zwirner K, Welz S, Schwenzer NF et al (2017) Distortion correction of diffusion-weighted magnetic resonance imaging of the head and neck in radiotherapy position. Acta Oncol 56:1659–1663PubMedCrossRef Winter RM, Schmidt H, Leibfarth S, Zwirner K, Welz S, Schwenzer NF et al (2017) Distortion correction of diffusion-weighted magnetic resonance imaging of the head and neck in radiotherapy position. Acta Oncol 56:1659–1663PubMedCrossRef
23.
go back to reference Calvo-Ortega JF, Mateos J, Alberich A, Moragues S, Acebes JJ, Jose SS et al (2019) Evaluation of a novel software application for magnetic resonance distortion correction in cranial stereotactic radiosurgery. Med Dosim 44:136–143PubMedCrossRef Calvo-Ortega JF, Mateos J, Alberich A, Moragues S, Acebes JJ, Jose SS et al (2019) Evaluation of a novel software application for magnetic resonance distortion correction in cranial stereotactic radiosurgery. Med Dosim 44:136–143PubMedCrossRef
24.
go back to reference Gerhardt J, Sollmann N, Hiepe P, Kirschke JS, Meyer B, Krieg SM et al (2019) Retrospective distortion correction of diffusion tensor imaging data by semi-elastic image fusion—Evaluation by means of anatomical landmarks. Clin Neurol Neurosurg 183:105387PubMedCrossRef Gerhardt J, Sollmann N, Hiepe P, Kirschke JS, Meyer B, Krieg SM et al (2019) Retrospective distortion correction of diffusion tensor imaging data by semi-elastic image fusion—Evaluation by means of anatomical landmarks. Clin Neurol Neurosurg 183:105387PubMedCrossRef
25.
go back to reference Hiepe P (2017) Cranial distortion correction technical background. Brainlab Hiepe P (2017) Cranial distortion correction technical background. Brainlab
26.
go back to reference Koo TK, Li MY (2016) A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163PubMedPubMedCentralCrossRef Koo TK, Li MY (2016) A guideline of selecting and reporting Intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163PubMedPubMedCentralCrossRef
27.
go back to reference Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRef Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302CrossRef
28.
go back to reference Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6:284–290CrossRef Cicchetti DV (1994) Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 6:284–290CrossRef
29.
go back to reference Rampton JW, Young PM, Fidler JL, Hartman RP, Herfkens RJ (2013) Putting the fat and water protons to work for you: a demonstration through clinical cases of how fat-water separation techniques can benefit your body MRI practice. AJR Am J Roentgenol 201:1303–1308PubMedCrossRef Rampton JW, Young PM, Fidler JL, Hartman RP, Herfkens RJ (2013) Putting the fat and water protons to work for you: a demonstration through clinical cases of how fat-water separation techniques can benefit your body MRI practice. AJR Am J Roentgenol 201:1303–1308PubMedCrossRef
30.
go back to reference Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850PubMedCrossRef Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23:815–850PubMedCrossRef
31.
go back to reference Bagherimofidi SM, Yang CC, Rey-Dios R, Kanakamedala MR, Fatemi A (2019) Evaluating the accuracy of geometrical distortion correction of magnetic resonance images for use in intracranial brain tumor radiotherapy. Rep Pract Oncol Radiother 24:606–613PubMedPubMedCentralCrossRef Bagherimofidi SM, Yang CC, Rey-Dios R, Kanakamedala MR, Fatemi A (2019) Evaluating the accuracy of geometrical distortion correction of magnetic resonance images for use in intracranial brain tumor radiotherapy. Rep Pract Oncol Radiother 24:606–613PubMedPubMedCentralCrossRef
32.
go back to reference Morgan PS, Bowtell RW, McIntyre DJ, Worthington BS (2004) Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method. J Magn Reson Imaging 19:499–507PubMedCrossRef Morgan PS, Bowtell RW, McIntyre DJ, Worthington BS (2004) Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method. J Magn Reson Imaging 19:499–507PubMedCrossRef
33.
go back to reference Karaiskos P, Moutsatsos A, Pappas E, Georgiou E, Roussakis A, Torrens M et al (2014) A simple and efficient methodology to improve geometric accuracy in gamma knife radiation surgery: implementation in multiple brain metastases. Int J Radiat Oncol Biol Phys 90:1234–1241PubMedCrossRef Karaiskos P, Moutsatsos A, Pappas E, Georgiou E, Roussakis A, Torrens M et al (2014) A simple and efficient methodology to improve geometric accuracy in gamma knife radiation surgery: implementation in multiple brain metastases. Int J Radiat Oncol Biol Phys 90:1234–1241PubMedCrossRef
Metadata
Title
Evaluation of the ability of the Brainlab Elements Cranial Distortion Correction algorithm to correct clinically relevant MRI distortions for cranial SRT
Authors
Paul Retif
Abdourahamane Djibo Sidikou
Christian Mathis
Romain Letellier
Emilie Verrecchia-Ramos
Rémi Dupres
Xavier Michel
Publication date
18-08-2022
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 10/2022
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-022-01988-1

Other articles of this Issue 10/2022

Strahlentherapie und Onkologie 10/2022 Go to the issue