Skip to main content
Top
Published in: Strahlentherapie und Onkologie 5/2020

Open Access 01-05-2020 | Radiotherapy | Review Article

Technological quality requirements for stereotactic radiotherapy

Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy

Authors: Daniela Schmitt, PhD, Oliver Blanck, PhD, Tobias Gauer, PhD, Michael K. Fix, PhD, Thomas B. Brunner, MD, Jens Fleckenstein, PhD, Britta Loutfi-Krauss, MSc, Peter Manser, PhD, Rene Werner, PhD, Maria-Lisa Wilhelm, MSc, Wolfgang W. Baus, PhD, Christos Moustakis, PhD

Published in: Strahlentherapie und Onkologie | Issue 5/2020

Login to get access

Abstract

This review details and discusses the technological quality requirements to ensure the desired quality for stereotactic radiotherapy using photon external beam radiotherapy as defined by the DEGRO Working Group Radiosurgery and Stereotactic Radiotherapy and the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The covered aspects of this review are 1) imaging for target volume definition, 2) patient positioning and target volume localization, 3) motion management, 4) collimation of the irradiation and beam directions, 5) dose calculation, 6) treatment unit accuracy, and 7) dedicated quality assurance measures. For each part, an expert review for current state-of-the-art techniques and their particular technological quality requirement to reach the necessary accuracy for stereotactic radiotherapy divided into intracranial stereotactic radiosurgery in one single fraction (SRS), intracranial fractionated stereotactic radiotherapy (FSRT), and extracranial stereotactic body radiotherapy (SBRT) is presented. All recommendations and suggestions for all mentioned aspects of stereotactic radiotherapy are formulated and related uncertainties and potential sources of error discussed. Additionally, further research and development needs in terms of insufficient data and unsolved problems for stereotactic radiotherapy are identified, which will serve as a basis for the future assignments of the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy. The review was group peer-reviewed, and consensus was obtained through multiple working group meetings.
Appendix
Available only for authorised users
Literature
2.
go back to reference Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys 37:4078–4101PubMed Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys 37:4078–4101PubMed
3.
go back to reference Seuntjens J, Lartigau EF, Cora S et al (2014) ICRU report 91. Prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU 14(2):1–160 Seuntjens J, Lartigau EF, Cora S et al (2014) ICRU report 91. Prescribing, recording, and reporting of stereotactic treatments with small photon beams. J ICRU 14(2):1–160
4.
go back to reference International Atomic Energy Agency (2016) Accuracy requirements and uncertainties in radiation therapy. IAEA human health series No 31 International Atomic Energy Agency (2016) Accuracy requirements and uncertainties in radiation therapy. IAEA human health series No 31
5.
go back to reference Paulson ES, Crijns SP, Keller BM et al (2016) Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol 121(2):187–192PubMed Paulson ES, Crijns SP, Keller BM et al (2016) Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol 121(2):187–192PubMed
6.
go back to reference Brock KK, Mutic S, McNutt TR et al (2017) Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group no. 132. Med Phys 44(7):e43–e76PubMed Brock KK, Mutic S, McNutt TR et al (2017) Use of image registration and fusion algorithms and techniques in radiotherapy: report of the AAPM radiation therapy committee task group no. 132. Med Phys 44(7):e43–e76PubMed
7.
go back to reference Rohlfing T (2012) Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans Med Imaging 31(2):153–163PubMed Rohlfing T (2012) Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans Med Imaging 31(2):153–163PubMed
8.
go back to reference Mogadas N, Sothmann T, Knopp T et al (2018) Influence of deformable image registration on 4D dose simulation for extracranial SBRT: a multi-registration framework study. Radiother Oncol 127(2):225–232PubMed Mogadas N, Sothmann T, Knopp T et al (2018) Influence of deformable image registration on 4D dose simulation for extracranial SBRT: a multi-registration framework study. Radiother Oncol 127(2):225–232PubMed
9.
go back to reference Kocher M, Wittig A, Piroth MD et al (2014) Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 190(6):521–532PubMed Kocher M, Wittig A, Piroth MD et al (2014) Stereotactic radiosurgery for treatment of brain metastases. A report of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 190(6):521–532PubMed
10.
go back to reference Sahgal A, Lo S, Ma L et al (2016) Image-guided hypofractionated stereotactic radiosurgery: a practical approach to guide treatment of brain and spine tumors. CRC Press, Boca Raton, London, New York Sahgal A, Lo S, Ma L et al (2016) Image-guided hypofractionated stereotactic radiosurgery: a practical approach to guide treatment of brain and spine tumors. CRC Press, Boca Raton, London, New York
11.
go back to reference Soliman H, Ruschin M, Angelov L et al (2018) Consensus contouring guidelines for postoperative completely resected cavity stereotactic radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 100(2):436–442PubMed Soliman H, Ruschin M, Angelov L et al (2018) Consensus contouring guidelines for postoperative completely resected cavity stereotactic radiosurgery for brain metastases. Int J Radiat Oncol Biol Phys 100(2):436–442PubMed
12.
go back to reference Seymour ZA, Fogh SE, Westcott SK et al (2015) Interval from imaging to treatment delivery in the radiation surgery age: how long is too long? Int J Radiat Oncol Biol Phys 93(1):126–132PubMed Seymour ZA, Fogh SE, Westcott SK et al (2015) Interval from imaging to treatment delivery in the radiation surgery age: how long is too long? Int J Radiat Oncol Biol Phys 93(1):126–132PubMed
13.
go back to reference Salkeld AL, Hau EKC, Nahar N et al (2018) Changes in brain metastasis during radiosurgical planning. Int J Radiat Oncol Biol Phys 102(4):727–733PubMed Salkeld AL, Hau EKC, Nahar N et al (2018) Changes in brain metastasis during radiosurgical planning. Int J Radiat Oncol Biol Phys 102(4):727–733PubMed
14.
go back to reference Niyazi M, Brada M, Chalmers AJ et al (2016) ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 118(1):35–42PubMed Niyazi M, Brada M, Chalmers AJ et al (2016) ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 118(1):35–42PubMed
15.
go back to reference Kang J, Huang J, Gailloud P et al (2014) Planning evaluation of C‑arm cone beam CT angiography for target delineation in stereotactic radiation surgery of brain arteriovenous malformations. Int J Radiat Oncol Biol Phys 90(2):430–437PubMedPubMedCentral Kang J, Huang J, Gailloud P et al (2014) Planning evaluation of C‑arm cone beam CT angiography for target delineation in stereotactic radiation surgery of brain arteriovenous malformations. Int J Radiat Oncol Biol Phys 90(2):430–437PubMedPubMedCentral
16.
go back to reference Sahgal A, Roberge D, Schellenberg D et al (2012) The Canadian Association of Radiation Oncology Scope of Practice Guidelines for Lung, Liver and spine stereotactic body radiotherapy. Clin Oncol 24(9):629–639 Sahgal A, Roberge D, Schellenberg D et al (2012) The Canadian Association of Radiation Oncology Scope of Practice Guidelines for Lung, Liver and spine stereotactic body radiotherapy. Clin Oncol 24(9):629–639
17.
go back to reference Lee J, Jain P, Hawkins M et al (2019) Stereotactic ablative body radiation therapy (SABR): a resource (SABR UK Consortium. www.sabr.org.uk) Lee J, Jain P, Hawkins M et al (2019) Stereotactic ablative body radiation therapy (SABR): a resource (SABR UK Consortium. www.​sabr.​org.​uk)
18.
go back to reference Redmond KJ, Lo SS, Soltys SG et al (2017) Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey. J Neurosurg Spine 26(3):299–306PubMed Redmond KJ, Lo SS, Soltys SG et al (2017) Consensus guidelines for postoperative stereotactic body radiation therapy for spinal metastases: results of an international survey. J Neurosurg Spine 26(3):299–306PubMed
19.
go back to reference Guckenberger M, Andratschke N, Alheit H et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33PubMed Guckenberger M, Andratschke N, Alheit H et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190(1):26–33PubMed
20.
go back to reference Guckenberger M, Andratschke N, Dieckmann K et al (2017) ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol 124(1):11–17PubMed Guckenberger M, Andratschke N, Dieckmann K et al (2017) ESTRO ACROP consensus guideline on implementation and practice of stereotactic body radiotherapy for peripherally located early stage non-small cell lung cancer. Radiother Oncol 124(1):11–17PubMed
21.
go back to reference De Ruysscher D, Faivre-Finn C, Moeller D et al (2017) European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 124(1):1–10PubMed De Ruysscher D, Faivre-Finn C, Moeller D et al (2017) European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 124(1):1–10PubMed
22.
go back to reference Werner R, Hofmann C, Mücke E et al (2017) Reduction of breathing irregularity-related motion artifacts in low-pitch spiral 4D CT by optimized projection binning. Radiat Oncol 12(1):100PubMedPubMedCentral Werner R, Hofmann C, Mücke E et al (2017) Reduction of breathing irregularity-related motion artifacts in low-pitch spiral 4D CT by optimized projection binning. Radiat Oncol 12(1):100PubMedPubMedCentral
23.
go back to reference Hunjan S, Starkschall G, Prado K et al (2010) Lack of correlation between external fiducial positions and internal tumor positions during breath-hold CT. Int J Radiat Oncol Biol Phys 76(5):1586–1591PubMed Hunjan S, Starkschall G, Prado K et al (2010) Lack of correlation between external fiducial positions and internal tumor positions during breath-hold CT. Int J Radiat Oncol Biol Phys 76(5):1586–1591PubMed
24.
go back to reference Shirato H, Seppenwoolde Y, Kitamura K et al (2004) Intrafractional tumor motion: lung and liver. Semin Radiat Oncol 14(1):10–18PubMed Shirato H, Seppenwoolde Y, Kitamura K et al (2004) Intrafractional tumor motion: lung and liver. Semin Radiat Oncol 14(1):10–18PubMed
25.
go back to reference Riou O, Llacer Moscardo C, Fenoglietto P et al (2017) SBRT planning for liver metastases: a focus on immobilization, motion management and planning imaging techniques. Rep Pract Oncol Radiother 22(2):103–110PubMedPubMedCentral Riou O, Llacer Moscardo C, Fenoglietto P et al (2017) SBRT planning for liver metastases: a focus on immobilization, motion management and planning imaging techniques. Rep Pract Oncol Radiother 22(2):103–110PubMedPubMedCentral
26.
go back to reference Sterzing F, Brunner TB, Ernst I et al (2014) Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO working group on Stereotactic radiotherapy. Strahlenther Onkol 190(10):872–881PubMed Sterzing F, Brunner TB, Ernst I et al (2014) Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO working group on Stereotactic radiotherapy. Strahlenther Onkol 190(10):872–881PubMed
27.
go back to reference Panje C, Andratschke N, Brunner TB et al (2016) Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer: Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 192(12):875–885PubMed Panje C, Andratschke N, Brunner TB et al (2016) Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer: Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 192(12):875–885PubMed
28.
go back to reference Mancosu P, Bettinardi V, Passoni P et al (2008) Contrast enhanced 4D-CT imaging for target volume definition in pancreatic ductal adenocarcinoma. Radiother Oncol 87(3):339–342PubMed Mancosu P, Bettinardi V, Passoni P et al (2008) Contrast enhanced 4D-CT imaging for target volume definition in pancreatic ductal adenocarcinoma. Radiother Oncol 87(3):339–342PubMed
29.
go back to reference Beddar AS, Briere TM, Balter P et al (2008) 4D-CT imaging with synchronized intravenous contrast injection to improve delineation of liver tumors for treatment planning. Radiother Oncol 87(3):445–448PubMed Beddar AS, Briere TM, Balter P et al (2008) 4D-CT imaging with synchronized intravenous contrast injection to improve delineation of liver tumors for treatment planning. Radiother Oncol 87(3):445–448PubMed
30.
go back to reference Méndez Romero A, Verheij J, Dwarkasing RS et al (2012) Comparison of macroscopic pathology measurements with magnetic resonance imaging and assessment of microscopic pathology extension for colorectal liver metastases. Int J Radiat Oncol Biol Phys 82(1):159–166PubMed Méndez Romero A, Verheij J, Dwarkasing RS et al (2012) Comparison of macroscopic pathology measurements with magnetic resonance imaging and assessment of microscopic pathology extension for colorectal liver metastases. Int J Radiat Oncol Biol Phys 82(1):159–166PubMed
31.
go back to reference Hall WA, Mikell JL, Mittal P et al (2013) Tumor size on abdominal MRI versus pathologic specimen in resected pancreatic adenocarcinoma: implications for radiation treatment planning. Int J Radiat Oncol Biol Phys 86(1):102–107PubMed Hall WA, Mikell JL, Mittal P et al (2013) Tumor size on abdominal MRI versus pathologic specimen in resected pancreatic adenocarcinoma: implications for radiation treatment planning. Int J Radiat Oncol Biol Phys 86(1):102–107PubMed
32.
go back to reference Jiang P, Krockenberger K, Vonthein R et al (2017) Hypo-fractionated SBRT for localized prostate cancer: a German bi-center single treatment group feasibility trial. Radiat Oncol 12(1):138PubMedPubMedCentral Jiang P, Krockenberger K, Vonthein R et al (2017) Hypo-fractionated SBRT for localized prostate cancer: a German bi-center single treatment group feasibility trial. Radiat Oncol 12(1):138PubMedPubMedCentral
33.
go back to reference Syed YA, Patel-Yadav AK, Rivers C et al (2017) Stereotactic radiotherapy for prostate cancer: a review and future directions. World J Clin Oncol 8(5):389–397PubMedPubMedCentral Syed YA, Patel-Yadav AK, Rivers C et al (2017) Stereotactic radiotherapy for prostate cancer: a review and future directions. World J Clin Oncol 8(5):389–397PubMedPubMedCentral
35.
go back to reference Draulans C, De Roover R, van der Heide UA et al (2019) Stereotactic body radiation therapy with optional focal lesion ablative microboost in prostate cancer: Topical review and multicenter consensus. Radiother Oncol 140:131–142PubMed Draulans C, De Roover R, van der Heide UA et al (2019) Stereotactic body radiation therapy with optional focal lesion ablative microboost in prostate cancer: Topical review and multicenter consensus. Radiother Oncol 140:131–142PubMed
36.
go back to reference Morabito R, Alafaci C, Pergolizzi S et al (2019) DCE and DSC perfusion MRI diagnostic accuracy in the follow-up of primary and metastatic intra-axial brain tumors treated by radiosurgery with cyberknife. Radiat Oncol 14(1):65PubMedPubMedCentral Morabito R, Alafaci C, Pergolizzi S et al (2019) DCE and DSC perfusion MRI diagnostic accuracy in the follow-up of primary and metastatic intra-axial brain tumors treated by radiosurgery with cyberknife. Radiat Oncol 14(1):65PubMedPubMedCentral
37.
go back to reference Boda-Heggemann J, Jahnke A, Chan MKH et al (2019) In-vivo treatment accuracy analysis of active motion-compensated liver SBRT through registration of plan dose to post-therapeutic MRI-morphologic alterations. Radiother Oncol 134:158–165PubMed Boda-Heggemann J, Jahnke A, Chan MKH et al (2019) In-vivo treatment accuracy analysis of active motion-compensated liver SBRT through registration of plan dose to post-therapeutic MRI-morphologic alterations. Radiother Oncol 134:158–165PubMed
38.
go back to reference Essler M, Wantke J, Mayer B et al (2013) Positron-emission tomography CT to identify local recurrence in stage I lung cancer patients 1 year after stereotactic body radiation therapy. Strahlenther Onkol 189(6):495–501PubMed Essler M, Wantke J, Mayer B et al (2013) Positron-emission tomography CT to identify local recurrence in stage I lung cancer patients 1 year after stereotactic body radiation therapy. Strahlenther Onkol 189(6):495–501PubMed
39.
go back to reference Guckenberger M, Baier K, Guenther I et al (2007) Reliability of the bony anatomy in image-guided stereotactic radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 69(1):294–301PubMed Guckenberger M, Baier K, Guenther I et al (2007) Reliability of the bony anatomy in image-guided stereotactic radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 69(1):294–301PubMed
40.
go back to reference Jarraya H, Chalayer C, Tresch E et al (2014) Novel technique for hepatic fiducial marker placement for stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 90(1):119–125PubMed Jarraya H, Chalayer C, Tresch E et al (2014) Novel technique for hepatic fiducial marker placement for stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 90(1):119–125PubMed
41.
go back to reference Henderson DR, Tree AC, van As NJ (2015) Stereotactic body radiotherapy for prostate cancer. Clin Oncol 27(5):270–279 Henderson DR, Tree AC, van As NJ (2015) Stereotactic body radiotherapy for prostate cancer. Clin Oncol 27(5):270–279
42.
go back to reference Badakhshi H, Kaul D, Wust P et al (2013) Image-guided stereotactic radiosurgery for cranial lesions: large margins compensate for reduced image guidance frequency. Anticancer Res 33(10):4639–4643PubMed Badakhshi H, Kaul D, Wust P et al (2013) Image-guided stereotactic radiosurgery for cranial lesions: large margins compensate for reduced image guidance frequency. Anticancer Res 33(10):4639–4643PubMed
43.
go back to reference Kupelian P, Willoughby T, Mahadevan A et al (2007) Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67(4):1088–1098PubMed Kupelian P, Willoughby T, Mahadevan A et al (2007) Multi-institutional clinical experience with the Calypso System in localization and continuous, real-time monitoring of the prostate gland during external radiotherapy. Int J Radiat Oncol Biol Phys 67(4):1088–1098PubMed
44.
go back to reference Fürweger C, Drexler C, Kufeld M et al (2010) Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys 78(3):937–945PubMed Fürweger C, Drexler C, Kufeld M et al (2010) Patient motion and targeting accuracy in robotic spinal radiosurgery: 260 single-fraction fiducial-free cases. Int J Radiat Oncol Biol Phys 78(3):937–945PubMed
45.
go back to reference Takao S, Miyamoto N, Matsuura T et al (2016) Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system. Int J Radiat Oncol Biol Phys 94(1):172–180PubMed Takao S, Miyamoto N, Matsuura T et al (2016) Intrafractional baseline shift or drift of lung tumor motion during gated radiation therapy with a real-time tumor-tracking system. Int J Radiat Oncol Biol Phys 94(1):172–180PubMed
46.
go back to reference Guckenberger M, Roesch J, Baier K et al (2012) Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery. Radiat Oncol 7:63PubMedPubMedCentral Guckenberger M, Roesch J, Baier K et al (2012) Dosimetric consequences of translational and rotational errors in frame-less image-guided radiosurgery. Radiat Oncol 7:63PubMedPubMedCentral
47.
go back to reference Oh YK, Baek JG, Kim OB et al (2014) Assessment of setup uncertainties for various tumor sites when using daily CBCT for more than 2200 VMAT treatments. J Appl Clin Med Phys 15(2):4418PubMed Oh YK, Baek JG, Kim OB et al (2014) Assessment of setup uncertainties for various tumor sites when using daily CBCT for more than 2200 VMAT treatments. J Appl Clin Med Phys 15(2):4418PubMed
48.
go back to reference Treuer H, Hunsche S, Hoevels M et al (2004) The influence of head frame distortions on stereotactic localization and targeting. Phys Med Biol 49(17):3877–3887PubMed Treuer H, Hunsche S, Hoevels M et al (2004) The influence of head frame distortions on stereotactic localization and targeting. Phys Med Biol 49(17):3877–3887PubMed
49.
go back to reference Rojas-Villabona A, Miszkiel K, Kitchen N et al (2016) Evaluation of the stability of the stereotactic leksell frame G in gamma knife radiosurgery. J Appl Clin Med Phys 17(3):75–89PubMedPubMedCentral Rojas-Villabona A, Miszkiel K, Kitchen N et al (2016) Evaluation of the stability of the stereotactic leksell frame G in gamma knife radiosurgery. J Appl Clin Med Phys 17(3):75–89PubMedPubMedCentral
50.
go back to reference Babic S, Lee Y, Ruschin M et al (2018) To frame or not to frame? Cone-beam CT-based analysis of head immobilization devices specific to linac-based stereotactic radiosurgery and radiotherapy. J Appl Clin Med Phys 19(2):111–120PubMedPubMedCentral Babic S, Lee Y, Ruschin M et al (2018) To frame or not to frame? Cone-beam CT-based analysis of head immobilization devices specific to linac-based stereotactic radiosurgery and radiotherapy. J Appl Clin Med Phys 19(2):111–120PubMedPubMedCentral
51.
go back to reference Peach MS, Trifiletti DM, Dutta SW et al (2018) Spatial shifts in frame-based Gamma Knife radiosurgery: a case for cone beam CT imaging as quality assurance using the Gamma Knife® Icon. J Radiosurg SBRT 5(4):315–322PubMedPubMedCentral Peach MS, Trifiletti DM, Dutta SW et al (2018) Spatial shifts in frame-based Gamma Knife radiosurgery: a case for cone beam CT imaging as quality assurance using the Gamma Knife® Icon. J Radiosurg SBRT 5(4):315–322PubMedPubMedCentral
52.
go back to reference Gevaert T, Verellen D, Tournel K et al (2012) Setup accuracy of the Novalis ExacTrac 6DOF system for frameless radiosurgery. Int J Radiat Oncol Biol Phys 82(5):1627–1635PubMed Gevaert T, Verellen D, Tournel K et al (2012) Setup accuracy of the Novalis ExacTrac 6DOF system for frameless radiosurgery. Int J Radiat Oncol Biol Phys 82(5):1627–1635PubMed
53.
go back to reference Kilby W, Dooley JR, Kuduvalli G et al (2010) The cyberknife robotic radiosurgery system in 2010. Technol Cancer Res Treat 9(5):433–452PubMed Kilby W, Dooley JR, Kuduvalli G et al (2010) The cyberknife robotic radiosurgery system in 2010. Technol Cancer Res Treat 9(5):433–452PubMed
54.
go back to reference Masi L, Casamassima F, Polli C et al (2008) Cone beam CT image guidance for intracranial stereotactic treatments: comparison with a frame guided set-up. Int J Radiat Oncol Biol Phys 71(3):926–933PubMed Masi L, Casamassima F, Polli C et al (2008) Cone beam CT image guidance for intracranial stereotactic treatments: comparison with a frame guided set-up. Int J Radiat Oncol Biol Phys 71(3):926–933PubMed
55.
go back to reference Huang Y, Zhao B, Chetty IJ et al (2016) Targeting accuracy of image-guided radiosurgery for Intracranial lesions: a comparison across multiple linear accelerator platforms. Technol Cancer Res Treat 15(2):243–248PubMed Huang Y, Zhao B, Chetty IJ et al (2016) Targeting accuracy of image-guided radiosurgery for Intracranial lesions: a comparison across multiple linear accelerator platforms. Technol Cancer Res Treat 15(2):243–248PubMed
56.
go back to reference AlDahlawi I, Prasad D, Podgorsak MB (2017) Evaluation of stability of stereotactic space defined by cone-beam CT for the Leksell Gamma Knife Icon. J Appl Clin Med Phys 18(3):67–72PubMedPubMedCentral AlDahlawi I, Prasad D, Podgorsak MB (2017) Evaluation of stability of stereotactic space defined by cone-beam CT for the Leksell Gamma Knife Icon. J Appl Clin Med Phys 18(3):67–72PubMedPubMedCentral
57.
go back to reference Ramakrishna N, Rosca F, Friesen S et al (2010) A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions. Radiother Oncol 95(1):109–115PubMed Ramakrishna N, Rosca F, Friesen S et al (2010) A clinical comparison of patient setup and intra-fraction motion using frame-based radiosurgery versus a frameless image-guided radiosurgery system for intracranial lesions. Radiother Oncol 95(1):109–115PubMed
58.
go back to reference Treuer H, Kocher M, Hoevels M et al (2006) Impact of target point deviations on control and complication probabilities in stereotactic radiosurgery of AVMs and metastases. Radiother Oncol 81(1):25–32PubMed Treuer H, Kocher M, Hoevels M et al (2006) Impact of target point deviations on control and complication probabilities in stereotactic radiosurgery of AVMs and metastases. Radiother Oncol 81(1):25–32PubMed
59.
go back to reference Sweeney RA, Seubert B, Stark S et al (2012) Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors. Radiat Oncol 7:81PubMedPubMedCentral Sweeney RA, Seubert B, Stark S et al (2012) Accuracy and inter-observer variability of 3D versus 4D cone-beam CT based image-guidance in SBRT for lung tumors. Radiat Oncol 7:81PubMedPubMedCentral
60.
go back to reference Loi M, Magallon-Baro A, Suker M et al (2019) Pancreatic cancer treated with SBRT: Effect of anatomical interfraction variations on dose to organs at risk. Radiother Oncol 134:67–73PubMed Loi M, Magallon-Baro A, Suker M et al (2019) Pancreatic cancer treated with SBRT: Effect of anatomical interfraction variations on dose to organs at risk. Radiother Oncol 134:67–73PubMed
61.
go back to reference Fontanarosa D, van der Meer S, Bamber J et al (2015) Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys Med Biol 60(3):R77–R114PubMed Fontanarosa D, van der Meer S, Bamber J et al (2015) Review of ultrasound image guidance in external beam radiotherapy: I. Treatment planning and inter-fraction motion management. Phys Med Biol 60(3):R77–R114PubMed
63.
go back to reference Worm ES, Høyer M, Hansen R et al (2018) A prospective cohort study of gated Stereotactic liver radiation therapy using continuous internal electromagnetic motion monitoring. Int J Radiat Oncol Biol Phys 101(2):366–375PubMed Worm ES, Høyer M, Hansen R et al (2018) A prospective cohort study of gated Stereotactic liver radiation therapy using continuous internal electromagnetic motion monitoring. Int J Radiat Oncol Biol Phys 101(2):366–375PubMed
64.
go back to reference Dieterich S, Green O, Booth J (2018) SBRT targets that move with respiration. Phys Med 56:19–24PubMed Dieterich S, Green O, Booth J (2018) SBRT targets that move with respiration. Phys Med 56:19–24PubMed
65.
go back to reference O’Shea TP, Bamber JC, Harris EJ (2016) Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy. Med Phys 43(1):455PubMedPubMedCentral O’Shea TP, Bamber JC, Harris EJ (2016) Temporal regularization of ultrasound-based liver motion estimation for image-guided radiation therapy. Med Phys 43(1):455PubMedPubMedCentral
66.
go back to reference Chan MK, Lee V, Chiang CL et al (2016) Lipiodol versus diaphragm in 4D-CBCT-guided stereotactic radiotherapy of hepatocellular carcinomas. Strahlenther Onkol 192(2):92–101PubMed Chan MK, Lee V, Chiang CL et al (2016) Lipiodol versus diaphragm in 4D-CBCT-guided stereotactic radiotherapy of hepatocellular carcinomas. Strahlenther Onkol 192(2):92–101PubMed
67.
go back to reference Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR et al (2011) Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol 56:5445–5468PubMed Seppenwoolde Y, Wunderink W, Wunderink-van Veen SR et al (2011) Treatment precision of image-guided liver SBRT using implanted fiducial markers depends on marker-tumour distance. Phys Med Biol 56:5445–5468PubMed
68.
go back to reference Xu Q, Hanna G, Grimm J et al (2014) Quantifying rigid and nonrigid motion of liver tumors during stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 90:94–101PubMed Xu Q, Hanna G, Grimm J et al (2014) Quantifying rigid and nonrigid motion of liver tumors during stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys 90:94–101PubMed
69.
go back to reference Goldsmith C, Green MM, Middleton B, Cowley I, Robinson A, Plowman NP, Price PM (2018) Evaluation of Cyberknife® fiducial tracking limitations to assist targeting accuracy: a phantom study with fiducial displacement. Cureus 10(10):e3523PubMedPubMedCentral Goldsmith C, Green MM, Middleton B, Cowley I, Robinson A, Plowman NP, Price PM (2018) Evaluation of Cyberknife® fiducial tracking limitations to assist targeting accuracy: a phantom study with fiducial displacement. Cureus 10(10):e3523PubMedPubMedCentral
70.
go back to reference Schmitt D, Nill S, Roeder F, Gompelmann D, Herth F, Oelfke U (2017) Motion monitoring during a course of lung radiotherapy with anchored electromagnetic transponders: quantification of inter- and intrafraction motion and variability of relative transponder positions. Strahlenther Onkol 193(10):840–847PubMedPubMedCentral Schmitt D, Nill S, Roeder F, Gompelmann D, Herth F, Oelfke U (2017) Motion monitoring during a course of lung radiotherapy with anchored electromagnetic transponders: quantification of inter- and intrafraction motion and variability of relative transponder positions. Strahlenther Onkol 193(10):840–847PubMedPubMedCentral
71.
go back to reference Thorwarth D (2019) MRgRT: magnetic resonance guided radiation therapy. Z Med Phys 29(1):1–2PubMed Thorwarth D (2019) MRgRT: magnetic resonance guided radiation therapy. Z Med Phys 29(1):1–2PubMed
72.
go back to reference van Sörnsen de Koste JR, Palacios MA et al (2018) MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys 102(4):858–866PubMed van Sörnsen de Koste JR, Palacios MA et al (2018) MR-guided gated stereotactic radiation therapy delivery for lung, adrenal, and pancreatic tumors: a geometric analysis. Int J Radiat Oncol Biol Phys 102(4):858–866PubMed
73.
go back to reference Henke L, Kashani R, Robinson C et al (2018) Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiother Oncol 126(3):519–526PubMed Henke L, Kashani R, Robinson C et al (2018) Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen. Radiother Oncol 126(3):519–526PubMed
74.
go back to reference Rosenberg SA, Henke LE, Shaverdian N et al (2018) A multi-institutional experience of MR-guided liver stereotactic body radiation therapy. Adv Radiat Oncol 4(1):142–149PubMedPubMedCentral Rosenberg SA, Henke LE, Shaverdian N et al (2018) A multi-institutional experience of MR-guided liver stereotactic body radiation therapy. Adv Radiat Oncol 4(1):142–149PubMedPubMedCentral
75.
go back to reference Wen N, Kim J, Doemer A et al (2018) Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment. Radiother Oncol 127(3):460–466PubMedPubMedCentral Wen N, Kim J, Doemer A et al (2018) Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment. Radiother Oncol 127(3):460–466PubMedPubMedCentral
76.
go back to reference Korreman SS (2012) Motion in radiotherapy: photon therapy. Phys Med Biol 57(23):R161–R191PubMed Korreman SS (2012) Motion in radiotherapy: photon therapy. Phys Med Biol 57(23):R161–R191PubMed
77.
go back to reference Kolbitsch C, Neji R, Fenchel M et al (2018) Joint cardiac and respiratory motion estimation for motion-corrected cardiac PET-MR. Phys Med Biol 64(1):15007PubMed Kolbitsch C, Neji R, Fenchel M et al (2018) Joint cardiac and respiratory motion estimation for motion-corrected cardiac PET-MR. Phys Med Biol 64(1):15007PubMed
78.
go back to reference Malinowski K, McAvoy TJ, George R et al (2012) Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions. Int J Radiat Oncol Biol Phys 82:1665–1673PubMed Malinowski K, McAvoy TJ, George R et al (2012) Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions. Int J Radiat Oncol Biol Phys 82:1665–1673PubMed
79.
go back to reference van de Water S, Valli L, Aluwini S et al (2014) Intrafraction prostate translations and rotations during hypofractionated robotic radiation surgery: Dosimetric impact of correction strategies and margins. Int J Radiat Oncol Biol Phys 88:1154–1160PubMed van de Water S, Valli L, Aluwini S et al (2014) Intrafraction prostate translations and rotations during hypofractionated robotic radiation surgery: Dosimetric impact of correction strategies and margins. Int J Radiat Oncol Biol Phys 88:1154–1160PubMed
80.
go back to reference Pepin EW, Wu H, Zhang Y et al (2011) Correlation and prediction uncertainties in the CyberKnife synchrony respiratory tracking system. Med Phys 38:4036–4044PubMedPubMedCentral Pepin EW, Wu H, Zhang Y et al (2011) Correlation and prediction uncertainties in the CyberKnife synchrony respiratory tracking system. Med Phys 38:4036–4044PubMedPubMedCentral
81.
go back to reference Chan M, Grehn M, Cremers F et al (2017) Dosimetric implications of residual tracking errors during robotic SBRT of liver metastases. Int J Radiat Oncol Biol Phys 97(4):839–848PubMed Chan M, Grehn M, Cremers F et al (2017) Dosimetric implications of residual tracking errors during robotic SBRT of liver metastases. Int J Radiat Oncol Biol Phys 97(4):839–848PubMed
82.
go back to reference Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900PubMed Keall PJ, Mageras GS, Balter JM et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900PubMed
83.
go back to reference Guckenberger M, Richter A, Boda-Heggemann J et al (2012) Motion compensation in radiotherapy. Crit Rev Biomed Eng 40(3):187–197PubMed Guckenberger M, Richter A, Boda-Heggemann J et al (2012) Motion compensation in radiotherapy. Crit Rev Biomed Eng 40(3):187–197PubMed
84.
go back to reference Brandner ED, Chetty IJ, Giaddui TG et al (2017) Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: a review from NRG oncology. Med Phys 44(6):2595–2612PubMedPubMedCentral Brandner ED, Chetty IJ, Giaddui TG et al (2017) Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: a review from NRG oncology. Med Phys 44(6):2595–2612PubMedPubMedCentral
85.
go back to reference Iizuka Y, Matsuo Y, Ishihara Y et al (2015) Dynamic tumor-tracking radiotherapy with real-time monitoring for liver tumors using a gimbal mounted linac. Radiother Oncol 117(3):496–500PubMed Iizuka Y, Matsuo Y, Ishihara Y et al (2015) Dynamic tumor-tracking radiotherapy with real-time monitoring for liver tumors using a gimbal mounted linac. Radiother Oncol 117(3):496–500PubMed
86.
go back to reference Keall PJ, Colvill E, O’Brien R et al (2018) Electromagnetic-guided MLC tracking radiation therapy for prostate cancer patients: prospective clinical trial results. Int J Radiat Oncol Biol Phys 101(2):387–395PubMed Keall PJ, Colvill E, O’Brien R et al (2018) Electromagnetic-guided MLC tracking radiation therapy for prostate cancer patients: prospective clinical trial results. Int J Radiat Oncol Biol Phys 101(2):387–395PubMed
87.
go back to reference Fast MF, Nill S, Bedford JL et al (2014) Dynamic tumor tracking using the Elekta Agility MLC. Med Phys 41(11):111719PubMed Fast MF, Nill S, Bedford JL et al (2014) Dynamic tumor tracking using the Elekta Agility MLC. Med Phys 41(11):111719PubMed
88.
go back to reference Ehrbar S, Schmid S, Jöhl A et al (2017) Validation of dynamic treatment-couch tracking for prostate SBRT. Med Phys 44(6):2466–2477PubMed Ehrbar S, Schmid S, Jöhl A et al (2017) Validation of dynamic treatment-couch tracking for prostate SBRT. Med Phys 44(6):2466–2477PubMed
89.
go back to reference Colvill E, Booth J, Nill S et al (2016) A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking. Radiother Oncol 119(1):159–165PubMedPubMedCentral Colvill E, Booth J, Nill S et al (2016) A dosimetric comparison of real-time adaptive and non-adaptive radiotherapy: a multi-institutional study encompassing robotic, gimbaled, multileaf collimator and couch tracking. Radiother Oncol 119(1):159–165PubMedPubMedCentral
90.
go back to reference Ziegler M, Brandt T, Lettmaier S et al (2018) Performance of gimbal-based dynamic tumor tracking for treating liver carcinoma. Radiat Oncol 13(1):242PubMedPubMedCentral Ziegler M, Brandt T, Lettmaier S et al (2018) Performance of gimbal-based dynamic tumor tracking for treating liver carcinoma. Radiat Oncol 13(1):242PubMedPubMedCentral
91.
go back to reference Kataria T, Narang K, Gupta D et al (2016) Analysis of intrafraction motion in CyberKnife-based stereotaxy using mask based immobilization and 6D-skull tracking. J Radiosurg SBRT 4(3):203–212PubMedPubMedCentral Kataria T, Narang K, Gupta D et al (2016) Analysis of intrafraction motion in CyberKnife-based stereotaxy using mask based immobilization and 6D-skull tracking. J Radiosurg SBRT 4(3):203–212PubMedPubMedCentral
92.
go back to reference Papalazarou C, Klop GJ, Milder MTW (2017) CyberKnife with integrated CT-on-rails: System description and first clinical application for pancreas SBRT. Med Phys 44(9):4816–4827PubMed Papalazarou C, Klop GJ, Milder MTW (2017) CyberKnife with integrated CT-on-rails: System description and first clinical application for pancreas SBRT. Med Phys 44(9):4816–4827PubMed
94.
go back to reference Viel F, Lee R, Gete E et al (2015) Amplitude gating for a coached breathing approach in respiratory gated 10 MV flattening filter-free VMAT delivery. J Appl Clin Med Phys 16(4):78–90PubMedPubMedCentral Viel F, Lee R, Gete E et al (2015) Amplitude gating for a coached breathing approach in respiratory gated 10 MV flattening filter-free VMAT delivery. J Appl Clin Med Phys 16(4):78–90PubMedPubMedCentral
95.
go back to reference Lee M, Yoon K, Cho B et al (2019) Comparing phase- and amplitude-gated volumetric modulated arc therapy for stereotactic body radiation therapy using 3D printed lung phantom. J Appl Clin Med Phys 20(2):107–113PubMedPubMedCentral Lee M, Yoon K, Cho B et al (2019) Comparing phase- and amplitude-gated volumetric modulated arc therapy for stereotactic body radiation therapy using 3D printed lung phantom. J Appl Clin Med Phys 20(2):107–113PubMedPubMedCentral
96.
go back to reference Josipovic M, Persson GF, Dueck J et al (2015) Geometric uncertainties in voluntary deep inspiration breath hold radiotherapy for locally advanced lung cancer. Radiother Oncol 118(3):510–514PubMed Josipovic M, Persson GF, Dueck J et al (2015) Geometric uncertainties in voluntary deep inspiration breath hold radiotherapy for locally advanced lung cancer. Radiother Oncol 118(3):510–514PubMed
97.
go back to reference Boda-Heggemann J, Knopf AC, Simeonova-Chergou A et al (2016) Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94(3):478–492PubMed Boda-Heggemann J, Knopf AC, Simeonova-Chergou A et al (2016) Deep inspiration breath hold-based radiation therapy: a clinical review. Int J Radiat Oncol Biol Phys 94(3):478–492PubMed
99.
go back to reference Hazelaar C, Verbakel WFAR, Mostafavi H et al (2018) First experience with markerless online 3D spine position monitoring during SBRT delivery using a conventional LINAC. Int J Radiat Oncol Biol Phys 101(5):1253–1258PubMed Hazelaar C, Verbakel WFAR, Mostafavi H et al (2018) First experience with markerless online 3D spine position monitoring during SBRT delivery using a conventional LINAC. Int J Radiat Oncol Biol Phys 101(5):1253–1258PubMed
100.
go back to reference Keall PJ, Ng JA, Juneja P et al (2016) Real-time 3D image guidance using a standard LINAC: measured motion, accuracy, and precision of the first prospective clinical trial of Kilovoltage Intrafraction monitoring-guided gating for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys 94(5):1015–1021PubMed Keall PJ, Ng JA, Juneja P et al (2016) Real-time 3D image guidance using a standard LINAC: measured motion, accuracy, and precision of the first prospective clinical trial of Kilovoltage Intrafraction monitoring-guided gating for prostate cancer radiation therapy. Int J Radiat Oncol Biol Phys 94(5):1015–1021PubMed
101.
go back to reference Muirhead R, McNee SG, Featherstone C et al (2008) Use of Maximum Intensity Projections (MIPs) for target outlining in 4DCT radiotherapy planning. J Thorac Oncol 3(12):1433–1438PubMed Muirhead R, McNee SG, Featherstone C et al (2008) Use of Maximum Intensity Projections (MIPs) for target outlining in 4DCT radiotherapy planning. J Thorac Oncol 3(12):1433–1438PubMed
103.
go back to reference Dieterich S, Green O, Booth J (2018) SBRT targets that move with respiration. Phys Med 56:19–24PubMed Dieterich S, Green O, Booth J (2018) SBRT targets that move with respiration. Phys Med 56:19–24PubMed
104.
go back to reference Stock M, Kontrisova K, Dieckmann K et al (2006) Development and application of a real-time monitoring and feedback system for deep inspiration breath hold based on external marker tracking. Med Phys 33(8):2868–2877PubMed Stock M, Kontrisova K, Dieckmann K et al (2006) Development and application of a real-time monitoring and feedback system for deep inspiration breath hold based on external marker tracking. Med Phys 33(8):2868–2877PubMed
105.
go back to reference Linthout N, Bral S, Van de Vondel I et al (2009) Treatment delivery time optimization of respiratory gated radiation therapy by application of audio-visual feedback. Radiother Oncol 91(3):330–335PubMed Linthout N, Bral S, Van de Vondel I et al (2009) Treatment delivery time optimization of respiratory gated radiation therapy by application of audio-visual feedback. Radiother Oncol 91(3):330–335PubMed
106.
go back to reference Peng Y, Vedam S, Chang JY et al (2011) Implementation of feedback-guided voluntary breath-hold gating for cone beam CT-based stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 80(3):909–917PubMed Peng Y, Vedam S, Chang JY et al (2011) Implementation of feedback-guided voluntary breath-hold gating for cone beam CT-based stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 80(3):909–917PubMed
107.
go back to reference Nankali S, Worm ES, Hansen R et al (2018) Geometric and dosimetric comparison of four intrafraction motion adaptation strategies for stereotactic liver radiotherapy. Phys Med Biol 63(14):145010PubMed Nankali S, Worm ES, Hansen R et al (2018) Geometric and dosimetric comparison of four intrafraction motion adaptation strategies for stereotactic liver radiotherapy. Phys Med Biol 63(14):145010PubMed
108.
go back to reference Vogel L, Sihono DSK, Weiss C et al (2018) Intra-breath-hold residual motion of image-guided DIBH liver-SBRT: An estimation by ultrasound-based monitoring correlated with diaphragm position in CBCT. Radiother Oncol 129(3):441–448PubMed Vogel L, Sihono DSK, Weiss C et al (2018) Intra-breath-hold residual motion of image-guided DIBH liver-SBRT: An estimation by ultrasound-based monitoring correlated with diaphragm position in CBCT. Radiother Oncol 129(3):441–448PubMed
109.
go back to reference Prasetio H, Yohannes I, Bert C (2017) Effect of VERO pan-tilt motion on the dose distribution. J Appl Clin Med Phys 18(4):144–154PubMedPubMedCentral Prasetio H, Yohannes I, Bert C (2017) Effect of VERO pan-tilt motion on the dose distribution. J Appl Clin Med Phys 18(4):144–154PubMedPubMedCentral
110.
go back to reference Poels K, Dhont J, Verellen D et al (2015) A comparison of two clinical correlation models used for real-time tumor tracking of semi-periodic motion: a focus on geometrical accuracy in lung and liver cancer patients. Radiother Oncol 115(3):419–424PubMed Poels K, Dhont J, Verellen D et al (2015) A comparison of two clinical correlation models used for real-time tumor tracking of semi-periodic motion: a focus on geometrical accuracy in lung and liver cancer patients. Radiother Oncol 115(3):419–424PubMed
111.
go back to reference Ernst F, Schlaefer A, Schweikard A (2011) Predicting the outcome of respiratory motion prediction. Med Phys 38(10):5569–5581PubMed Ernst F, Schlaefer A, Schweikard A (2011) Predicting the outcome of respiratory motion prediction. Med Phys 38(10):5569–5581PubMed
112.
go back to reference Fledelius W, Keall PJ, Cho B (2011) Tracking latency in image-based dynamic MLC tracking with direct image access. Acta Oncol 50(6):952–959PubMed Fledelius W, Keall PJ, Cho B (2011) Tracking latency in image-based dynamic MLC tracking with direct image access. Acta Oncol 50(6):952–959PubMed
113.
go back to reference Gauer T, Sothmann T, Blanck O et al (2018) Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy. Strahlenther Onkol 194(6):570–579PubMed Gauer T, Sothmann T, Blanck O et al (2018) Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy. Strahlenther Onkol 194(6):570–579PubMed
114.
go back to reference Kang H, Yorke ED, Yang J et al (2010) Evaluation of tumor motion effects on dose distribution for hypofractionated intensity-modulated radiotherapy of non-small-cell lung cancer. J Appl Clin Med Phys 11(3):3182PubMedPubMedCentral Kang H, Yorke ED, Yang J et al (2010) Evaluation of tumor motion effects on dose distribution for hypofractionated intensity-modulated radiotherapy of non-small-cell lung cancer. J Appl Clin Med Phys 11(3):3182PubMedPubMedCentral
115.
go back to reference Fleckenstein J, Hesser J, Wenz F et al (2015) Robustness of sweeping-window arc therapy treatment sequences against intrafractional tumor motion. Med Phys 42(4):1538–1545PubMed Fleckenstein J, Hesser J, Wenz F et al (2015) Robustness of sweeping-window arc therapy treatment sequences against intrafractional tumor motion. Med Phys 42(4):1538–1545PubMed
116.
go back to reference Stambaugh C, Nelms BE, Dilling T et al (2013) Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments. Med Phys 40(9):91710PubMed Stambaugh C, Nelms BE, Dilling T et al (2013) Experimentally studied dynamic dose interplay does not meaningfully affect target dose in VMAT SBRT lung treatments. Med Phys 40(9):91710PubMed
117.
go back to reference Rao M, Wu J, Cao D et al (2012) Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using intensity modulated radiotherapy and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 83(2):e251–e256PubMed Rao M, Wu J, Cao D et al (2012) Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using intensity modulated radiotherapy and volumetric modulated arc therapy. Int J Radiat Oncol Biol Phys 83(2):e251–e256PubMed
118.
go back to reference Sothmann T, Gauer T, Werner R (2017) 4D dose simulation in volumetric arc therapy: accuracy and affecting parameters. PLoS ONE 12(2):e172810PubMedPubMedCentral Sothmann T, Gauer T, Werner R (2017) 4D dose simulation in volumetric arc therapy: accuracy and affecting parameters. PLoS ONE 12(2):e172810PubMedPubMedCentral
119.
go back to reference Kamerling CP, Fast MF, Ziegenhein P et al (2016) Real-time 4D dose reconstruction for tracked dynamic MLC deliveries for lung SBRT. Med Phys 43(11):6072PubMedPubMedCentral Kamerling CP, Fast MF, Ziegenhein P et al (2016) Real-time 4D dose reconstruction for tracked dynamic MLC deliveries for lung SBRT. Med Phys 43(11):6072PubMedPubMedCentral
120.
go back to reference Chan MK, Kwong DL, Ng SC (2012) Accuracy and sensitivity of four-dimensional dose calculation to systematic motion variability in stereotatic body radiotherapy (SBRT) for lung cancer. J Appl Clin Med Phys 13(6):3992PubMed Chan MK, Kwong DL, Ng SC (2012) Accuracy and sensitivity of four-dimensional dose calculation to systematic motion variability in stereotatic body radiotherapy (SBRT) for lung cancer. J Appl Clin Med Phys 13(6):3992PubMed
121.
go back to reference Freislederer P, von Münchow A, Kamp F et al (2019) Comparison of Planned Dose on Different CT Image Sets to Four-dimensional Monte Carlo Dose Recalculation Using the Patients Actual Breathing Trace for Lung Stereotactic Body Radiation Therapy. Med Phys. https://doi.org/10.1002/mp.13579 CrossRefPubMed Freislederer P, von Münchow A, Kamp F et al (2019) Comparison of Planned Dose on Different CT Image Sets to Four-dimensional Monte Carlo Dose Recalculation Using the Patients Actual Breathing Trace for Lung Stereotactic Body Radiation Therapy. Med Phys. https://​doi.​org/​10.​1002/​mp.​13579 CrossRefPubMed
122.
go back to reference Hamzeei M, Modiri A, Kazemzadeh N et al (2018) Inverse-planned deliverable 4D-IMRT for lung SBRT. Med Phys 45(11):5145–5160PubMedPubMedCentral Hamzeei M, Modiri A, Kazemzadeh N et al (2018) Inverse-planned deliverable 4D-IMRT for lung SBRT. Med Phys 45(11):5145–5160PubMedPubMedCentral
123.
go back to reference Chan MK, Werner R, Ayadi M et al (2015) Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer. Strahlenther Onkol 191(2):161–171PubMed Chan MK, Werner R, Ayadi M et al (2015) Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer. Strahlenther Onkol 191(2):161–171PubMed
124.
go back to reference Liang X, Zheng D, Mamalui-Hunter M (2019) ITV-based robust optimization for VMAT planning of stereotactic body radiation therapy of lung cancer. Pract Radiat Oncol 9(1):38–48PubMed Liang X, Zheng D, Mamalui-Hunter M (2019) ITV-based robust optimization for VMAT planning of stereotactic body radiation therapy of lung cancer. Pract Radiat Oncol 9(1):38–48PubMed
125.
go back to reference Chan M, Chiang CL, Lee V et al (2017) Target localization of 3D versus 4D cone beam computed tomography in lipiodol-guided stereotactic radiotherapy of hepatocellular carcinomas. PLoS ONE 12(4):e174929PubMedPubMedCentral Chan M, Chiang CL, Lee V et al (2017) Target localization of 3D versus 4D cone beam computed tomography in lipiodol-guided stereotactic radiotherapy of hepatocellular carcinomas. PLoS ONE 12(4):e174929PubMedPubMedCentral
126.
go back to reference Oechsner M, Chizzali B, Devecka M et al (2016) Registration uncertainties between 3D cone beam computed tomography and different reference CT datasets in lung stereotactic body radiation therapy. Radiat Oncol 11(1):142PubMedPubMedCentral Oechsner M, Chizzali B, Devecka M et al (2016) Registration uncertainties between 3D cone beam computed tomography and different reference CT datasets in lung stereotactic body radiation therapy. Radiat Oncol 11(1):142PubMedPubMedCentral
127.
go back to reference O’Shea T, Bamber J, Fontanarosa D et al (2016) Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol 61(8):R90–R137PubMed O’Shea T, Bamber J, Fontanarosa D et al (2016) Review of ultrasound image guidance in external beam radiotherapy part II: intra-fraction motion management and novel applications. Phys Med Biol 61(8):R90–R137PubMed
128.
go back to reference Wiersma RD, Tomarken SL, Grelewicz Z et al (2013) Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys 40(11):111712PubMed Wiersma RD, Tomarken SL, Grelewicz Z et al (2013) Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking. Med Phys 40(11):111712PubMed
129.
go back to reference Lu B, Chen Y, Park JC et al (2015) A method of surface marker location optimization for tumor motion estimation in lung stereotactic body radiation therapy. Med Phys 42(1):244–253PubMed Lu B, Chen Y, Park JC et al (2015) A method of surface marker location optimization for tumor motion estimation in lung stereotactic body radiation therapy. Med Phys 42(1):244–253PubMed
130.
go back to reference McNair HA, Brock J, Symonds-Tayler JRN et al (2009) Feasibility of the use of the Active Breathing Coordinator (ABC) in patients receiving radical radiotherapy for non-small cell lung cancer (NSCLC). Radiother Oncol 93:424–429PubMed McNair HA, Brock J, Symonds-Tayler JRN et al (2009) Feasibility of the use of the Active Breathing Coordinator (ABC) in patients receiving radical radiotherapy for non-small cell lung cancer (NSCLC). Radiother Oncol 93:424–429PubMed
131.
go back to reference Malinowski K, McAvoy TJ, George R et al (2012) Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions. Int J Radiat Oncol Biol Phys 82:1665–1673PubMed Malinowski K, McAvoy TJ, George R et al (2012) Incidence of changes in respiration-induced tumor motion and its relationship with respiratory surrogates during individual treatment fractions. Int J Radiat Oncol Biol Phys 82:1665–1673PubMed
132.
go back to reference Han C, Sampath S, Schultheisss TE et al (2017) Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression. Med Dosim 42(2):116–121PubMed Han C, Sampath S, Schultheisss TE et al (2017) Variations of target volume definition and daily target volume localization in stereotactic body radiotherapy for early-stage non-small cell lung cancer patients under abdominal compression. Med Dosim 42(2):116–121PubMed
133.
go back to reference Onishi H, Kuriyama K, Komiyama T et al (2003) CT evaluation of patient deep inspiration self-breath-holding: how precisely can patients reproduce the tumor position in the absence of respiratory monitoring devices? Med Phys 30(6):1183–1187PubMed Onishi H, Kuriyama K, Komiyama T et al (2003) CT evaluation of patient deep inspiration self-breath-holding: how precisely can patients reproduce the tumor position in the absence of respiratory monitoring devices? Med Phys 30(6):1183–1187PubMed
134.
go back to reference Akino Y, Oh RJ, Masai N, Shiomi H, Inoue T (2014) Evaluation of potential internal target volume of liver tumors using cine-MRI. Med Phys 41(11):111704PubMed Akino Y, Oh RJ, Masai N, Shiomi H, Inoue T (2014) Evaluation of potential internal target volume of liver tumors using cine-MRI. Med Phys 41(11):111704PubMed
135.
go back to reference Guckenberger M, Baier K, Richter A, Flentje M (2007) Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? Int J Radiat Oncol Biol Phys 67(5):1352–1359PubMed Guckenberger M, Baier K, Richter A, Flentje M (2007) Is a single respiratory correlated 4D-CT study sufficient for evaluation of breathing motion? Int J Radiat Oncol Biol Phys 67(5):1352–1359PubMed
136.
go back to reference Lafrenièrea M, Mahadeo N, Lewis J et al (2019) Continuous generation of volumetric images during stereotactic body radiation therapy using periodic kV imaging and an external respiratory surrogate. Phys Med 63:25–34 Lafrenièrea M, Mahadeo N, Lewis J et al (2019) Continuous generation of volumetric images during stereotactic body radiation therapy using periodic kV imaging and an external respiratory surrogate. Phys Med 63:25–34
137.
go back to reference Mack A, Mack G, Scheib S et al (2004) Quality assurance in stereotactic radiosurgery/radiotherapy according to DIN 6875‑1. Stereotact Funct Neurosurg 82(5–6):235–243PubMed Mack A, Mack G, Scheib S et al (2004) Quality assurance in stereotactic radiosurgery/radiotherapy according to DIN 6875‑1. Stereotact Funct Neurosurg 82(5–6):235–243PubMed
138.
go back to reference Hellerbach A, Luyken K, Hoevels M et al (2017) Radiotoxicity in robotic radiosurgery: proposing a new quality index for optimizing the treatment planning of brain metastases. Radiat Oncol 12(1):136PubMedPubMedCentral Hellerbach A, Luyken K, Hoevels M et al (2017) Radiotoxicity in robotic radiosurgery: proposing a new quality index for optimizing the treatment planning of brain metastases. Radiat Oncol 12(1):136PubMedPubMedCentral
139.
go back to reference Bortfeld T, Oelfke U, Nill S (2000) What is the optimum leaf width of a multileaf collimator? Med Phys 27(11):2494–2502PubMed Bortfeld T, Oelfke U, Nill S (2000) What is the optimum leaf width of a multileaf collimator? Med Phys 27(11):2494–2502PubMed
140.
go back to reference Hong CS, Ju SG, Kim M et al (2014) Dosimetric effects of multileaf collimator leaf width on intensity-modulated radiotherapy for head and neck cancer. Med Phys 41(2):21712PubMed Hong CS, Ju SG, Kim M et al (2014) Dosimetric effects of multileaf collimator leaf width on intensity-modulated radiotherapy for head and neck cancer. Med Phys 41(2):21712PubMed
141.
go back to reference Monk JE, Perks JR, Doughty D et al (2003) Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 57(5):1443–1449PubMed Monk JE, Perks JR, Doughty D et al (2003) Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 57(5):1443–1449PubMed
142.
go back to reference Shang Q, Qi P, Ferjani S et al (2013) Effect of MLC leaf width on treatment adaptation and accuracy for concurrent irradiation of prostate and pelvic lymph nodes. Med Phys 40(6):61701PubMed Shang Q, Qi P, Ferjani S et al (2013) Effect of MLC leaf width on treatment adaptation and accuracy for concurrent irradiation of prostate and pelvic lymph nodes. Med Phys 40(6):61701PubMed
143.
go back to reference Amoush A, Long H, Subedi L et al (2017) Dosimetric effect of multileaf collimator leaf width on volumetric modulated arc stereotactic radiotherapy for spine tumors. Med Dosim 42(2):111–115PubMed Amoush A, Long H, Subedi L et al (2017) Dosimetric effect of multileaf collimator leaf width on volumetric modulated arc stereotactic radiotherapy for spine tumors. Med Dosim 42(2):111–115PubMed
144.
go back to reference Chae SM, Lee KW, Son SH (2016) Dosimetric impact of multileaf collimator leaf width according to sophisticated grade of technique in the IMRT and VMAT planning for pituitary adenoma lesion. Oncotarget 7(47):78119–78126PubMedPubMedCentral Chae SM, Lee KW, Son SH (2016) Dosimetric impact of multileaf collimator leaf width according to sophisticated grade of technique in the IMRT and VMAT planning for pituitary adenoma lesion. Oncotarget 7(47):78119–78126PubMedPubMedCentral
145.
go back to reference Chae SM, Lee GW, Son SH (2014) The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity. Radiat Oncol 9:72PubMedPubMedCentral Chae SM, Lee GW, Son SH (2014) The effect of multileaf collimator leaf width on the radiosurgery planning for spine lesion treatment in terms of the modulated techniques and target complexity. Radiat Oncol 9:72PubMedPubMedCentral
146.
go back to reference Huq MS, Das IJ, Steinberg T et al (2002) A dosimetric comparison of various multileaf collimators. Phys Med Biol 47(12):N159–N170PubMed Huq MS, Das IJ, Steinberg T et al (2002) A dosimetric comparison of various multileaf collimators. Phys Med Biol 47(12):N159–N170PubMed
147.
go back to reference Bratengeier K, Herzog B, Wegener S et al (2017) Finer leaf resolution and steeper beam edges using a virtual isocentre in concurrence to PTV-shaped collimators in standard distance—a planning study. Radiat Oncol 12(1):88PubMedPubMedCentral Bratengeier K, Herzog B, Wegener S et al (2017) Finer leaf resolution and steeper beam edges using a virtual isocentre in concurrence to PTV-shaped collimators in standard distance—a planning study. Radiat Oncol 12(1):88PubMedPubMedCentral
148.
go back to reference Francescon P, Cora S, Satariano N (2011) Calculation of k(Q(clin),Q(msr) ) (f(clin),f(msr) ) for several small detectors and for two linear accelerators using Monte Carlo simulations. Med Phys 38(12):6513–6527PubMed Francescon P, Cora S, Satariano N (2011) Calculation of k(Q(clin),Q(msr) ) (f(clin),f(msr) ) for several small detectors and for two linear accelerators using Monte Carlo simulations. Med Phys 38(12):6513–6527PubMed
149.
go back to reference Agostinelli S, Garelli S, Gusinu M et al (2018) Dosimetric analysis of Tomotherapy-based intracranial stereotactic radiosurgery of brain metastasis. Phys Med 52:48–55PubMed Agostinelli S, Garelli S, Gusinu M et al (2018) Dosimetric analysis of Tomotherapy-based intracranial stereotactic radiosurgery of brain metastasis. Phys Med 52:48–55PubMed
150.
go back to reference Configliacco E, Belgioia L, Barra S et al (2017) Repeated stereotactic radiosurgery in brain metastases: a case report. Cureus 9(12):e2005PubMedPubMedCentral Configliacco E, Belgioia L, Barra S et al (2017) Repeated stereotactic radiosurgery in brain metastases: a case report. Cureus 9(12):e2005PubMedPubMedCentral
151.
go back to reference Elson A, Walker A, Bovi JA et al (2015) Use of helical tomotherapy for the focal Hypofractionated treatment of limited brain metastases in the initial and recurrent setting. Front Oncol 5:27PubMedPubMedCentral Elson A, Walker A, Bovi JA et al (2015) Use of helical tomotherapy for the focal Hypofractionated treatment of limited brain metastases in the initial and recurrent setting. Front Oncol 5:27PubMedPubMedCentral
152.
go back to reference Miwa K, Matsuo M, Shinoda J et al (2012) Clinical value of [(1)(1)C]methionine PET for stereotactic radiation therapy with intensity modulated radiation therapy to metastatic brain tumors. Int J Radiat Oncol Biol Phys 84(5):1139–1144PubMed Miwa K, Matsuo M, Shinoda J et al (2012) Clinical value of [(1)(1)C]methionine PET for stereotactic radiation therapy with intensity modulated radiation therapy to metastatic brain tumors. Int J Radiat Oncol Biol Phys 84(5):1139–1144PubMed
153.
go back to reference Saw CB, Gillette C, Peters CA et al (2018) Clinical implementation of radiosurgery using the helical tomotherapy unit. Med Dosim 43(3):284–290PubMed Saw CB, Gillette C, Peters CA et al (2018) Clinical implementation of radiosurgery using the helical tomotherapy unit. Med Dosim 43(3):284–290PubMed
154.
go back to reference Zani M, Marrazzo L, Calusi S et al (2019) TomoTherapy treatments of multiple brain lesions: an in-phantom accuracy evaluation. Phys Med Biol 64(2):25020PubMed Zani M, Marrazzo L, Calusi S et al (2019) TomoTherapy treatments of multiple brain lesions: an in-phantom accuracy evaluation. Phys Med Biol 64(2):25020PubMed
155.
go back to reference Eaton DJ, Lee J, Paddick I (2018) Stereotactic radiosurgery for multiple brain metastases: Results of multicenter benchmark planning studies. Pract Radiat Oncol 8(4):e212–e220PubMed Eaton DJ, Lee J, Paddick I (2018) Stereotactic radiosurgery for multiple brain metastases: Results of multicenter benchmark planning studies. Pract Radiat Oncol 8(4):e212–e220PubMed
156.
go back to reference Eaton DJ, Lee J, Patel R et al (2018) Stereotactic radiosurgery for benign brain tumors: results of multicenter benchmark planning studies. Pract Radiat Oncol 8(5):e295–e304PubMed Eaton DJ, Lee J, Patel R et al (2018) Stereotactic radiosurgery for benign brain tumors: results of multicenter benchmark planning studies. Pract Radiat Oncol 8(5):e295–e304PubMed
157.
go back to reference Smyth G, Evans PM, Bamber JC et al (2019) Recent developments in non-coplanar radiotherapy. Br J Radiol 92(1097):20180908PubMedPubMedCentral Smyth G, Evans PM, Bamber JC et al (2019) Recent developments in non-coplanar radiotherapy. Br J Radiol 92(1097):20180908PubMedPubMedCentral
158.
go back to reference Hsu SM, Lai YC, Jeng CC et al (2017) Dosimetric comparison of different treatment modalities for stereotactic radiotherapy. Radiat Oncol 12(1):155PubMedPubMedCentral Hsu SM, Lai YC, Jeng CC et al (2017) Dosimetric comparison of different treatment modalities for stereotactic radiotherapy. Radiat Oncol 12(1):155PubMedPubMedCentral
159.
go back to reference Kothavade V, Jamema SV, Gupta T et al (2015) Which is the most optimal technique to spare hippocampus?—Dosimetric comparisons of SCRT, IMRT, and tomotherapy. J Cancer Res Ther 11(2):358–363PubMed Kothavade V, Jamema SV, Gupta T et al (2015) Which is the most optimal technique to spare hippocampus?—Dosimetric comparisons of SCRT, IMRT, and tomotherapy. J Cancer Res Ther 11(2):358–363PubMed
160.
go back to reference Zhang I, Antone J, Li J et al (2017) Hippocampal-sparing and target volume coverage in treating 3 to 10 brain metastases: a comparison of Gamma Knife, single-isocenter VMAT, CyberKnife, and TomoTherapy stereotactic radiosurgery. Pract Radiat Oncol 7(3):183–189PubMed Zhang I, Antone J, Li J et al (2017) Hippocampal-sparing and target volume coverage in treating 3 to 10 brain metastases: a comparison of Gamma Knife, single-isocenter VMAT, CyberKnife, and TomoTherapy stereotactic radiosurgery. Pract Radiat Oncol 7(3):183–189PubMed
161.
go back to reference Krause S, Beck S, Schramm O et al (2013) Tomotherapy radiosurgery for arteriovenous malformations—current possibilities and future options with helical tomotherapy dynamic jaws? Technol Cancer Res Treat 12(5):421–428PubMedPubMedCentral Krause S, Beck S, Schramm O et al (2013) Tomotherapy radiosurgery for arteriovenous malformations—current possibilities and future options with helical tomotherapy dynamic jaws? Technol Cancer Res Treat 12(5):421–428PubMedPubMedCentral
162.
go back to reference Cranmer-Sargison G, Liu PZ, Weston S et al (2013) Small field dosimetric characterization of a new 160-leaf MLC. Phys Med Biol 58(20):7343–7354PubMed Cranmer-Sargison G, Liu PZ, Weston S et al (2013) Small field dosimetric characterization of a new 160-leaf MLC. Phys Med Biol 58(20):7343–7354PubMed
163.
go back to reference Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC : results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193(10):780–790PubMed Moustakis C, Blanck O, Ebrahimi Tazehmahalleh F et al (2017) Planning benchmark study for SBRT of early stage NSCLC : results of the DEGRO Working Group Stereotactic Radiotherapy. Strahlenther Onkol 193(10):780–790PubMed
164.
go back to reference Moustakis C, Chan MKH, Kim J et al (2018) Treatment planning for spinal radiosurgery : a competitive multiplatform benchmark challenge. Strahlenther Onkol 194(9):843–854PubMed Moustakis C, Chan MKH, Kim J et al (2018) Treatment planning for spinal radiosurgery : a competitive multiplatform benchmark challenge. Strahlenther Onkol 194(9):843–854PubMed
165.
go back to reference Esposito M, Maggi G, Marino C et al (2016) Multicentre treatment planning inter-comparison in a national context: The liver stereotactic ablative radiotherapy case. Phys Med 32(1):277–283PubMed Esposito M, Maggi G, Marino C et al (2016) Multicentre treatment planning inter-comparison in a national context: The liver stereotactic ablative radiotherapy case. Phys Med 32(1):277–283PubMed
166.
go back to reference Marino C, Villaggi E, Maggi G et al (2015) A feasibility dosimetric study on prostate cancer : are we ready for a multicenter clinical trial on SBRT? Strahlenther Onkol 191(7):573–581PubMed Marino C, Villaggi E, Maggi G et al (2015) A feasibility dosimetric study on prostate cancer : are we ready for a multicenter clinical trial on SBRT? Strahlenther Onkol 191(7):573–581PubMed
167.
go back to reference Esposito M, Masi L, Zani M et al (2019) SBRT planning for spinal metastasis: indications from a large multicentric study. Strahlenther Onkol 195(3):226–235PubMed Esposito M, Masi L, Zani M et al (2019) SBRT planning for spinal metastasis: indications from a large multicentric study. Strahlenther Onkol 195(3):226–235PubMed
169.
go back to reference Wang L, Yorke E, Desobry G et al (2002) Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries. J Appl Clin Med Phys 3:51–59PubMedPubMedCentral Wang L, Yorke E, Desobry G et al (2002) Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries. J Appl Clin Med Phys 3:51–59PubMedPubMedCentral
170.
go back to reference Madani I, Vanderstraeten B, Bral S et al (2007) Comparison of 6 MV and 18 MV photons for IMRT treatment of lung cancer. Radiother Oncol 82:63–69PubMed Madani I, Vanderstraeten B, Bral S et al (2007) Comparison of 6 MV and 18 MV photons for IMRT treatment of lung cancer. Radiother Oncol 82:63–69PubMed
171.
go back to reference Chung H, Jin H, Palta J et al (2006) Dose variations with varying calculation grid size in head and neck IMRT. Phys Med Biol 51:4841–4856PubMed Chung H, Jin H, Palta J et al (2006) Dose variations with varying calculation grid size in head and neck IMRT. Phys Med Biol 51:4841–4856PubMed
172.
go back to reference Halvorsen PH, Cirino E, Das IJ et al (2017) AAPM-RSS medical physics practice guideline 9.a. for SRS-SBRT. J Appl Clin Med Phys 18(5):10–21PubMedPubMedCentral Halvorsen PH, Cirino E, Das IJ et al (2017) AAPM-RSS medical physics practice guideline 9.a. for SRS-SBRT. J Appl Clin Med Phys 18(5):10–21PubMedPubMedCentral
173.
go back to reference Fogliata A, Vanetti E, Albers D et al (2007) On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 52:1363–1385PubMed Fogliata A, Vanetti E, Albers D et al (2007) On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys Med Biol 52:1363–1385PubMed
174.
go back to reference Tillikainen L, Helminen H, Torsti T et al (2008) A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media. Phys Med Biol 53:3821–3839PubMed Tillikainen L, Helminen H, Torsti T et al (2008) A 3D pencil-beam-based superposition algorithm for photon dose calculation in heterogeneous media. Phys Med Biol 53:3821–3839PubMed
175.
go back to reference Gete E, Teke T, Kwa W (2012) Evaluation of the AAA treatment planning algorithm for SBRT lung treatment: comparison with Monte Carlo and homogeneous pencil beam dose calculations. J Med Imaging Radiat Sci 43:26–33PubMed Gete E, Teke T, Kwa W (2012) Evaluation of the AAA treatment planning algorithm for SBRT lung treatment: comparison with Monte Carlo and homogeneous pencil beam dose calculations. J Med Imaging Radiat Sci 43:26–33PubMed
176.
go back to reference Han T, Followill D, Mikell J et al (2013) Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneuous dose calculation in lung cancer. Med Phys 40(Suppl 5):2651–2664 Han T, Followill D, Mikell J et al (2013) Dosimetric impact of Acuros XB deterministic radiation transport algorithm for heterogeneuous dose calculation in lung cancer. Med Phys 40(Suppl 5):2651–2664
177.
go back to reference Kroon PS, Hol S, Essers M (2013) Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol 8:149PubMedPubMedCentral Kroon PS, Hol S, Essers M (2013) Dosimetric accuracy and clinical quality of Acuros XB and AAA dose calculation algorithm for stereotactic and conventional lung volumetric modulated arc therapy plans. Radiat Oncol 8:149PubMedPubMedCentral
178.
go back to reference Knöös T, Wieslander E, Cozzi L et al (2006) Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol 51:5785–5807PubMed Knöös T, Wieslander E, Cozzi L et al (2006) Comparison of dose calculation algorithms for treatment planning in external photon beam therapy for clinical situations. Phys Med Biol 51:5785–5807PubMed
179.
go back to reference Sakthi N, Keall P, Mihaylov I et al (2006) Monte Carlo-based dosimetry of head-and-neck patients treated with SIBIMRT. Int J Radiat Oncol Biol Phys 64:968–977PubMed Sakthi N, Keall P, Mihaylov I et al (2006) Monte Carlo-based dosimetry of head-and-neck patients treated with SIBIMRT. Int J Radiat Oncol Biol Phys 64:968–977PubMed
180.
go back to reference van der Voort van Zyp NC, Hoogeman MS, van de Water S et al (2010) Clinical introduction of Monte Carlo treatment planning: a different prescription dose for non-small cell lung cancer according to tumor location and size. Radiother Oncol 96:55–60PubMed van der Voort van Zyp NC, Hoogeman MS, van de Water S et al (2010) Clinical introduction of Monte Carlo treatment planning: a different prescription dose for non-small cell lung cancer according to tumor location and size. Radiother Oncol 96:55–60PubMed
181.
go back to reference Bibault JE, Mirabel X, Lacornerie T et al (2015) Adapted prescription dose for monte carlo algorithm in lung SBRT: clinical outcome on 205 patients. PLoS ONE 10(7):e133617PubMedPubMedCentral Bibault JE, Mirabel X, Lacornerie T et al (2015) Adapted prescription dose for monte carlo algorithm in lung SBRT: clinical outcome on 205 patients. PLoS ONE 10(7):e133617PubMedPubMedCentral
182.
go back to reference Dechambre D, Janvary LZ, Jansen N et al (2018) Prediction of GTV median dose differences eases Monte Carlo re-prescription in lung SBRT. Phys Med 45:88–92PubMed Dechambre D, Janvary LZ, Jansen N et al (2018) Prediction of GTV median dose differences eases Monte Carlo re-prescription in lung SBRT. Phys Med 45:88–92PubMed
183.
go back to reference Wilcox EE, Daskalov GM, Lincoln H (2011) Stereotactic radiosurgery-radiotherapy: Should Monte Carlo treatment planning be used for all sites? Pract Radiat Oncol 1(4):251–260PubMed Wilcox EE, Daskalov GM, Lincoln H (2011) Stereotactic radiosurgery-radiotherapy: Should Monte Carlo treatment planning be used for all sites? Pract Radiat Oncol 1(4):251–260PubMed
184.
go back to reference Okoye CC, Patel RB, Hasan S et al (2016) Comparison of Ray tracing and monte Carlo calculation algorithms for thoracic spine lesions treated with cyberknife-based stereotactic body radiation therapy. Technol Cancer Res Treat 15(1):196–202PubMed Okoye CC, Patel RB, Hasan S et al (2016) Comparison of Ray tracing and monte Carlo calculation algorithms for thoracic spine lesions treated with cyberknife-based stereotactic body radiation therapy. Technol Cancer Res Treat 15(1):196–202PubMed
186.
go back to reference Edmund JM, Nyholm T (2017) A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol 12:28PubMedPubMedCentral Edmund JM, Nyholm T (2017) A review of substitute CT generation for MRI-only radiation therapy. Radiat Oncol 12:28PubMedPubMedCentral
187.
go back to reference Dieterich S, Cavedon C, Chuang CF et al (2011) Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys 38(6):2914–2936PubMed Dieterich S, Cavedon C, Chuang CF et al (2011) Report of AAPM TG 135: quality assurance for robotic radiosurgery. Med Phys 38(6):2914–2936PubMed
188.
go back to reference Vandervoort E, Patrocinio H, Chow T et al (2018) COMP Report: CPQR technical quality control guidelines for CyberKnife® Technology. J Appl Clin Med Phys 19(2):29–34PubMedPubMedCentral Vandervoort E, Patrocinio H, Chow T et al (2018) COMP Report: CPQR technical quality control guidelines for CyberKnife® Technology. J Appl Clin Med Phys 19(2):29–34PubMedPubMedCentral
189.
go back to reference Seravalli E, van Haaren PM, van der Toorn PP et al (2015) A comprehensive evaluation of treatment accuracy, including end-to-end tests and clinical data, applied to intracranial stereotactic radiotherapy. Radiother Oncol 116(1):131–138PubMed Seravalli E, van Haaren PM, van der Toorn PP et al (2015) A comprehensive evaluation of treatment accuracy, including end-to-end tests and clinical data, applied to intracranial stereotactic radiotherapy. Radiother Oncol 116(1):131–138PubMed
190.
go back to reference Wen N, Li H, Song K et al (2015) Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys 16(4):125–148PubMedPubMedCentral Wen N, Li H, Song K et al (2015) Characteristics of a novel treatment system for linear accelerator-based stereotactic radiosurgery. J Appl Clin Med Phys 16(4):125–148PubMedPubMedCentral
191.
go back to reference Ma L, Chiu J, Hoye J et al (2014) Quality assurance of stereotactic alignment and patient positioning mechanical accuracy for robotized Gamma Knife radiosurgery. Phys Med Biol 59(23):N221–N226PubMed Ma L, Chiu J, Hoye J et al (2014) Quality assurance of stereotactic alignment and patient positioning mechanical accuracy for robotized Gamma Knife radiosurgery. Phys Med Biol 59(23):N221–N226PubMed
192.
go back to reference Novotny J Jr, Bhatnagar JP, Xu Y et al (2014) Long-term stability of the Leksell Gamma Knife® Perfexion™ patient positioning system (PPS). Med Phys 41(3):31711PubMed Novotny J Jr, Bhatnagar JP, Xu Y et al (2014) Long-term stability of the Leksell Gamma Knife® Perfexion™ patient positioning system (PPS). Med Phys 41(3):31711PubMed
193.
go back to reference Solberg TD, Medin PM, Ramirez E et al (2014) Commissioning and initial stereotactic ablative radiotherapy experience with Vero. J Appl Clin Med Phys 15(2):4685PubMed Solberg TD, Medin PM, Ramirez E et al (2014) Commissioning and initial stereotactic ablative radiotherapy experience with Vero. J Appl Clin Med Phys 15(2):4685PubMed
194.
go back to reference Fürweger C, Prins P, Coskan H et al (2016) Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys 43(5):2063PubMed Fürweger C, Prins P, Coskan H et al (2016) Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system. Med Phys 43(5):2063PubMed
195.
go back to reference Blanck O, Masi L, Damme MC et al (2015) Film-based delivery quality assurance for robotic radiosurgery: commissioning and validation. Phys Med 31(5):476–483PubMed Blanck O, Masi L, Damme MC et al (2015) Film-based delivery quality assurance for robotic radiosurgery: commissioning and validation. Phys Med 31(5):476–483PubMed
196.
go back to reference Blanck O, Masi L, Chan MK et al (2016) High resolution ion chamber array delivery quality assurance for robotic radiosurgery: commissioning and validation. Phys Med 32(6):838–846PubMed Blanck O, Masi L, Chan MK et al (2016) High resolution ion chamber array delivery quality assurance for robotic radiosurgery: commissioning and validation. Phys Med 32(6):838–846PubMed
197.
go back to reference Brezovich IA, Wu X, Popple RA et al (2019) Stereotactic radiosurgery with MLC-defined arcs: Verification of dosimetry, spatial accuracy, and end-to-end tests. J Appl Clin Med Phys 20(5):84–98PubMedPubMedCentral Brezovich IA, Wu X, Popple RA et al (2019) Stereotactic radiosurgery with MLC-defined arcs: Verification of dosimetry, spatial accuracy, and end-to-end tests. J Appl Clin Med Phys 20(5):84–98PubMedPubMedCentral
198.
go back to reference Calvo-Ortega JF, Hermida-López M, Moragues-Femenía S et al (2017) Investigating the spatial accuracy of CBCT-guided cranial radiosurgery: a phantom end-to-end test study. Phys Med 35:81–87PubMed Calvo-Ortega JF, Hermida-López M, Moragues-Femenía S et al (2017) Investigating the spatial accuracy of CBCT-guided cranial radiosurgery: a phantom end-to-end test study. Phys Med 35:81–87PubMed
199.
go back to reference Dimitriadis A, Kirkby KJ, Nisbet A et al (2016) Current status of cranial stereotactic radiosurgery in the UK. Br J Radiol 89(1058):20150452PubMedPubMedCentral Dimitriadis A, Kirkby KJ, Nisbet A et al (2016) Current status of cranial stereotactic radiosurgery in the UK. Br J Radiol 89(1058):20150452PubMedPubMedCentral
200.
go back to reference Kron T, Chesson B, Hardcastle N et al (2018) Credentialing of radiotherapy centres in Australasia for TROG 09.02 (Chisel), a Phase III clinical trial on stereotactic ablative body radiotherapy of early stage lung cancer. Br J Radiol 91(1085):20170737PubMedPubMedCentral Kron T, Chesson B, Hardcastle N et al (2018) Credentialing of radiotherapy centres in Australasia for TROG 09.02 (Chisel), a Phase III clinical trial on stereotactic ablative body radiotherapy of early stage lung cancer. Br J Radiol 91(1085):20170737PubMedPubMedCentral
201.
go back to reference Bissonnette JP (2018) COMP report: CPQR technical quality control guidelines for accelerator-integrated cone-beam systems for verification imaging. J Appl Clin Med Phys 19(3):9–12PubMedPubMedCentral Bissonnette JP (2018) COMP report: CPQR technical quality control guidelines for accelerator-integrated cone-beam systems for verification imaging. J Appl Clin Med Phys 19(3):9–12PubMedPubMedCentral
202.
go back to reference Calvo Ortega JF, Wunderink W, Delgado D et al (2016) Evaluation of the setup margins for cone beam computed tomography-guided cranial radiosurgery: A phantom study. Med Dosim 41(3):199–204PubMed Calvo Ortega JF, Wunderink W, Delgado D et al (2016) Evaluation of the setup margins for cone beam computed tomography-guided cranial radiosurgery: A phantom study. Med Dosim 41(3):199–204PubMed
203.
go back to reference Wen N, Kim J, Doemer A et al (2018) Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment. Radiother Oncol 127(3):460–466PubMedPubMedCentral Wen N, Kim J, Doemer A et al (2018) Evaluation of a magnetic resonance guided linear accelerator for stereotactic radiosurgery treatment. Radiother Oncol 127(3):460–466PubMedPubMedCentral
204.
go back to reference Sothmann T, Blanck O, Poels K et al (2016) Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ‑evaluation and dose-area-histograms. Phys Med Biol 61(4):1677–1691PubMed Sothmann T, Blanck O, Poels K et al (2016) Real time tracking in liver SBRT: comparison of CyberKnife and Vero by planning structure-based γ‑evaluation and dose-area-histograms. Phys Med Biol 61(4):1677–1691PubMed
205.
go back to reference Clark CH, Hurkmans CW, Kry SF et al (2017) Global Quality Assurance of Radiation Therapy Clinical Trials Harmonisation Group. The role of dosimetry audit in lung SBRT multi-centre clinical trials. Phys Med 44:171–176PubMed Clark CH, Hurkmans CW, Kry SF et al (2017) Global Quality Assurance of Radiation Therapy Clinical Trials Harmonisation Group. The role of dosimetry audit in lung SBRT multi-centre clinical trials. Phys Med 44:171–176PubMed
206.
go back to reference Gallo JJ, Kaufman I, Powell R et al (2015) Single-fraction spine SBRT end-to-end testing on TomoTherapy, Vero, TrueBeam, and CyberKnife treatment platforms using a novel anthropomorphic phantom. J Appl Clin Med Phys 16(1):5120PubMed Gallo JJ, Kaufman I, Powell R et al (2015) Single-fraction spine SBRT end-to-end testing on TomoTherapy, Vero, TrueBeam, and CyberKnife treatment platforms using a novel anthropomorphic phantom. J Appl Clin Med Phys 16(1):5120PubMed
207.
go back to reference Sarkar V, Huang L, Huang YJ et al (2016) Head to head comparison of two commercial phantoms used for SRS QA. J Radiosurg SBRT 4(3):213–223PubMedPubMedCentral Sarkar V, Huang L, Huang YJ et al (2016) Head to head comparison of two commercial phantoms used for SRS QA. J Radiosurg SBRT 4(3):213–223PubMedPubMedCentral
208.
go back to reference International Atomic Energy Agency (2017) Dosimetry of small static fields used in external beam radiotherapy. IAEA technical reports series, vol 483 International Atomic Energy Agency (2017) Dosimetry of small static fields used in external beam radiotherapy. IAEA technical reports series, vol 483
209.
go back to reference Berndt A, van Prooijen M, Guillot M (2018) COMP report: CPQR technical quality control guidelines for Gamma Knife radiosurgery. J Appl Clin Med Phys 19(5):365–367PubMedPubMedCentral Berndt A, van Prooijen M, Guillot M (2018) COMP report: CPQR technical quality control guidelines for Gamma Knife radiosurgery. J Appl Clin Med Phys 19(5):365–367PubMedPubMedCentral
210.
go back to reference Mamalui-Hunter M, Yaddanapudi S, Zhao T et al (2013) Patient-specific independent 3D GammaPlan quality assurance for Gamma Knife Perfexion radiosurgery. J Appl Clin Med Phys 14(1):3949PubMed Mamalui-Hunter M, Yaddanapudi S, Zhao T et al (2013) Patient-specific independent 3D GammaPlan quality assurance for Gamma Knife Perfexion radiosurgery. J Appl Clin Med Phys 14(1):3949PubMed
211.
go back to reference Wen N, Snyder KC, Scheib SG et al (2016) Technical note: evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys 43(5):2527PubMed Wen N, Snyder KC, Scheib SG et al (2016) Technical note: evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system. Med Phys 43(5):2527PubMed
212.
go back to reference Pantelis E, Moutsatsos AS, Antypas C et al (2018) On the total system error of a robotic radiosurgery system: phantom measurements, clinical evaluation and long-term analysis. Phys Med Biol 63(16):165015PubMed Pantelis E, Moutsatsos AS, Antypas C et al (2018) On the total system error of a robotic radiosurgery system: phantom measurements, clinical evaluation and long-term analysis. Phys Med Biol 63(16):165015PubMed
213.
go back to reference Swamy ST, Radha CA, Arun G et al (2015) Planning and dosimetric study of volumetric modulated arc based hypofractionated stereotactic radiotherapy for acoustic Schwannoma—6MV flattening filter free photon beam. Asian Pac J Cancer Prev 16(12):5019–5024PubMed Swamy ST, Radha CA, Arun G et al (2015) Planning and dosimetric study of volumetric modulated arc based hypofractionated stereotactic radiotherapy for acoustic Schwannoma—6MV flattening filter free photon beam. Asian Pac J Cancer Prev 16(12):5019–5024PubMed
214.
go back to reference Thomas A, Niebanck M, Juang T et al (2013) A comprehensive investigation of the accuracy and reproducibility of a multitarget single isocenter VMAT radiosurgery technique. Med Phys 40(12):121725PubMedPubMedCentral Thomas A, Niebanck M, Juang T et al (2013) A comprehensive investigation of the accuracy and reproducibility of a multitarget single isocenter VMAT radiosurgery technique. Med Phys 40(12):121725PubMedPubMedCentral
215.
go back to reference Weyh A, Konski A, Nalichowski A et al (2013) Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMR. J Appl Clin Med Phys 14(4):4065PubMed Weyh A, Konski A, Nalichowski A et al (2013) Lung SBRT: dosimetric and delivery comparison of RapidArc, TomoTherapy, and IMR. J Appl Clin Med Phys 14(4):4065PubMed
216.
go back to reference Colodro JFM, Berná AS, Puchades VP et al (2017) Volumetric-modulated arc therapy lung stereotactic body radiation therapy dosimetric quality assurance: a comparison between radiochromic film and chamber array. J Med Phys 42(3):133–139PubMedPubMedCentral Colodro JFM, Berná AS, Puchades VP et al (2017) Volumetric-modulated arc therapy lung stereotactic body radiation therapy dosimetric quality assurance: a comparison between radiochromic film and chamber array. J Med Phys 42(3):133–139PubMedPubMedCentral
217.
go back to reference Kurosu K, Sumida I, Shiomi H et al (2017) A robust measurement point for dose verification in delivery quality assurance for a robotic radiosurgery system. J Radiat Res 58(3):378–385PubMed Kurosu K, Sumida I, Shiomi H et al (2017) A robust measurement point for dose verification in delivery quality assurance for a robotic radiosurgery system. J Radiat Res 58(3):378–385PubMed
218.
go back to reference Bellec J, Delaby N, Jouyaux F et al (2017) Plan delivery quality assurance for CyberKnife: Statistical process control analysis of 350 film-based patient-specific QAs. Phys Med 39:50–58PubMed Bellec J, Delaby N, Jouyaux F et al (2017) Plan delivery quality assurance for CyberKnife: Statistical process control analysis of 350 film-based patient-specific QAs. Phys Med 39:50–58PubMed
220.
go back to reference Deutsches Institut für Normung (2018) Klinische Dosimetrie – Teil 8: Dosimetrie kleiner Photonen-Bestrahlungsfelder. DIN 6809‑8 Deutsches Institut für Normung (2018) Klinische Dosimetrie – Teil 8: Dosimetrie kleiner Photonen-Bestrahlungsfelder. DIN 6809‑8
221.
go back to reference Klein EE, Hanley J, Bayouth J et al (2009) American Association of Physicists in Medicine. Task Group 142 report: quality assurance of medical accelerators. Med Phys 36(9):4197–4212PubMed Klein EE, Hanley J, Bayouth J et al (2009) American Association of Physicists in Medicine. Task Group 142 report: quality assurance of medical accelerators. Med Phys 36(9):4197–4212PubMed
222.
go back to reference Kirkby C, Ghasroddashti E, Angers CP et al (2018) COMP report: CPQR technical quality control guideline for medical linear accelerators and multileaf collimators. J Appl Clin Med Phys 19(2):22–28PubMed Kirkby C, Ghasroddashti E, Angers CP et al (2018) COMP report: CPQR technical quality control guideline for medical linear accelerators and multileaf collimators. J Appl Clin Med Phys 19(2):22–28PubMed
223.
go back to reference Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14(2):373–378PubMed Lutz W, Winston KR, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14(2):373–378PubMed
Metadata
Title
Technological quality requirements for stereotactic radiotherapy
Expert review group consensus from the DGMP Working Group for Physics and Technology in Stereotactic Radiotherapy
Authors
Daniela Schmitt, PhD
Oliver Blanck, PhD
Tobias Gauer, PhD
Michael K. Fix, PhD
Thomas B. Brunner, MD
Jens Fleckenstein, PhD
Britta Loutfi-Krauss, MSc
Peter Manser, PhD
Rene Werner, PhD
Maria-Lisa Wilhelm, MSc
Wolfgang W. Baus, PhD
Christos Moustakis, PhD
Publication date
01-05-2020
Publisher
Springer Berlin Heidelberg
Keyword
Radiotherapy
Published in
Strahlentherapie und Onkologie / Issue 5/2020
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-020-01583-2

Other articles of this Issue 5/2020

Strahlentherapie und Onkologie 5/2020 Go to the issue