Skip to main content
Top
Published in: Radiation Oncology 1/2020

Open Access 01-12-2020 | Metastasis | Research

Predicting survival in melanoma patients treated with concurrent targeted- or immunotherapy and stereotactic radiotherapy

Melanoma brain metastases prognostic score

Authors: Jana Schaule, Stephanie G. C. Kroeze, Oliver Blanck, Susanne Stera, Klaus H. Kahl, Falk Roeder, Stephanie E. Combs, David Kaul, An Claes, Markus M. Schymalla, Sonja Adebahr, Franziska Eckert, Fabian Lohaus, Nasrin Abbasi-Senger, Guido Henke, Marcella Szuecs, Michael Geier, Nora Sundahl, Daniel Buergy, Reinhard Dummer, Matthias Guckenberger

Published in: Radiation Oncology | Issue 1/2020

Login to get access

Abstract

Background

Melanoma patients frequently develop brain metastases. The most widely used score to predict survival is the molGPA based on a mixed treatment of stereotactic radiotherapy (SRT) and whole brain radiotherapy (WBRT). In addition, systemic therapy was not considered. We therefore aimed to evaluate the performance of the molGPA score in patients homogeneously treated with SRT and concurrent targeted therapy or immunotherapy (TT/IT).

Methods

This retrospective analysis is based on an international multicenter database (TOaSTT) of melanoma patients treated with TT/IT and concurrent (≤30 days) SRT for brain metastases between May 2011 and May 2018. Overall survival (OS) was studied using Kaplan-Meier survival curves and log-rank testing. Uni- and multivariate analysis was performed to analyze prognostic factors for OS.

Results

One hundred ten patients were analyzed. 61, 31 and 8% were treated with IT, TT and with a simultaneous combination, respectively. A median of two brain metastases were treated per patient. After a median follow-up of 8 months, median OS was 8.4 months (0–40 months). The molGPA score was not associated with OS. Instead, cumulative brain metastases volume, timing of metastases (syn- vs. metachronous) and systemic therapy with concurrent IT vs. TT influenced OS significantly. Based on these parameters, the VTS score (volume-timing-systemic therapy) was established that stratified patients into three groups with a median OS of 5.1, 18.9 and 34.5 months, respectively (p = 0.001 and 0.03).

Conclusion

The molGPA score was not useful for this cohort of melanoma patients undergoing local therapy for brain metastases taking into account systemic TT/IT. For these patients, we propose a prognostic VTS score, which needs to be validated prospectively.
Literature
1.
go back to reference Patel JK, Didolkar MS, Pickren JW, Moore RH. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am J Surg. 1978;135:807–10.CrossRef Patel JK, Didolkar MS, Pickren JW, Moore RH. Metastatic pattern of malignant melanoma. A study of 216 autopsy cases. Am J Surg. 1978;135:807–10.CrossRef
2.
go back to reference Sampson JH, Carter JH, Friedman AH, Seigler HF. Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma. J Neurosurg. 1998;88:11–20.CrossRef Sampson JH, Carter JH, Friedman AH, Seigler HF. Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma. J Neurosurg. 1998;88:11–20.CrossRef
3.
go back to reference Gaudy-Marqueste C, Dussouil AS, Carron R, et al. Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery. Eur J Cancer. 2017;84:44–54.CrossRef Gaudy-Marqueste C, Dussouil AS, Carron R, et al. Survival of melanoma patients treated with targeted therapy and immunotherapy after systematic upfront control of brain metastases by radiosurgery. Eur J Cancer. 2017;84:44–54.CrossRef
4.
go back to reference Goyal S, Silk AW, Tian S, Mehnert J, Danish S, Ranjan S, et al. Clinical Management of Multiple Melanoma Brain Metastases: a systematic review. JAMA Oncol. 2015;1:668–76.CrossRef Goyal S, Silk AW, Tian S, Mehnert J, Danish S, Ranjan S, et al. Clinical Management of Multiple Melanoma Brain Metastases: a systematic review. JAMA Oncol. 2015;1:668–76.CrossRef
5.
go back to reference Long GV, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 2018;19:672–81.CrossRef Long GV, Atkinson V, Lo S, et al. Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: a multicentre randomised phase 2 study. Lancet Oncol. 2018;19:672–81.CrossRef
6.
go back to reference Tawbi HA, Forsyth PA, Algazi A, et al. Combined Nivolumab and Ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379:722–30.CrossRef Tawbi HA, Forsyth PA, Algazi A, et al. Combined Nivolumab and Ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379:722–30.CrossRef
7.
go back to reference Davies MA, Saiag P, Robert C, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18:863–73.CrossRef Davies MA, Saiag P, Robert C, et al. Dabrafenib plus trametinib in patients with BRAFV600-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol. 2017;18:863–73.CrossRef
8.
go back to reference Dummer R, Goldinger SM, Turtschi CP, Eggmann NB, Michielin O, Mitchell L, et al. Vemurafenib in patients with BRAFV600 mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study. Eur J Cancer. 2014;50:611–21.CrossRef Dummer R, Goldinger SM, Turtschi CP, Eggmann NB, Michielin O, Mitchell L, et al. Vemurafenib in patients with BRAFV600 mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study. Eur J Cancer. 2014;50:611–21.CrossRef
9.
go back to reference Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29:134–41.CrossRef Kocher M, Soffietti R, Abacioglu U, et al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952-26001 study. J Clin Oncol. 2011;29:134–41.CrossRef
10.
go back to reference Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15:387–95.CrossRef Yamamoto M, Serizawa T, Shuto T, et al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol. 2014;15:387–95.CrossRef
11.
go back to reference Shultz DB, Modlin LA, Jayachandran P, et al. Repeat courses of stereotactic radiosurgery (SRS), deferring whole-brain irradiation, for new brain metastases after initial SRS. Int J Radiat Oncol Biol Phys. 2015;92:993–9.CrossRef Shultz DB, Modlin LA, Jayachandran P, et al. Repeat courses of stereotactic radiosurgery (SRS), deferring whole-brain irradiation, for new brain metastases after initial SRS. Int J Radiat Oncol Biol Phys. 2015;92:993–9.CrossRef
12.
go back to reference Rauschenberg R, Bruns J, Brütting J, et al. Impact of radiation, systemic therapy and treatment sequencing on survival of patients with melanoma brain metastases. Eur J Cancer. 2019;110:11–20.CrossRef Rauschenberg R, Bruns J, Brütting J, et al. Impact of radiation, systemic therapy and treatment sequencing on survival of patients with melanoma brain metastases. Eur J Cancer. 2019;110:11–20.CrossRef
13.
go back to reference Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T, et al. Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997;37:745–51.CrossRef Gaspar L, Scott C, Rotman M, Asbell S, Phillips T, Wasserman T, et al. Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int J Radiat Oncol Biol Phys. 1997;37:745–51.CrossRef
14.
go back to reference Golden DW, Lamborn KR, McDermott MW, Kunwar S, Wara WM, Nakamura JL, et al. Prognostic factors and grading systems for overall survival in patients treated with radiosurgery for brain metastases: variation by primary site. J Neurosurg. 2008;109(Suppl):77–86.CrossRef Golden DW, Lamborn KR, McDermott MW, Kunwar S, Wara WM, Nakamura JL, et al. Prognostic factors and grading systems for overall survival in patients treated with radiosurgery for brain metastases: variation by primary site. J Neurosurg. 2008;109(Suppl):77–86.CrossRef
15.
go back to reference Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys. 2008;70:510–4.CrossRef Sperduto PW, Berkey B, Gaspar LE, Mehta M, Curran W. A new prognostic index and comparison to three other indices for patients with brain metastases: an analysis of 1,960 patients in the RTOG database. Int J Radiat Oncol Biol Phys. 2008;70:510–4.CrossRef
16.
go back to reference Sperduto PW, Chao ST, Sneed PK, et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys. 2010;77:655–61.CrossRef Sperduto PW, Chao ST, Sneed PK, et al. Diagnosis-specific prognostic factors, indexes, and treatment outcomes for patients with newly diagnosed brain metastases: a multi-institutional analysis of 4,259 patients. Int J Radiat Oncol Biol Phys. 2010;77:655–61.CrossRef
17.
go back to reference Sperduto PW, Jiang W, Brown PD, et al. Estimating survival in melanoma patients with brain metastases: an update of the graded prognostic assessment for melanoma using molecular markers ( melanoma-molGPA ). Radiat Oncol Biol. 2017;99:812–6. Sperduto PW, Jiang W, Brown PD, et al. Estimating survival in melanoma patients with brain metastases: an update of the graded prognostic assessment for melanoma using molecular markers ( melanoma-molGPA ). Radiat Oncol Biol. 2017;99:812–6.
18.
go back to reference Nieder C, Hintz M, Bilger A, Oehlke O, Grosu A. Validation of the graded prognostic assessment for melanoma using molecular markers ( melanoma-molGPA ). J Clin Med Res. 2018;10:178–81.CrossRef Nieder C, Hintz M, Bilger A, Oehlke O, Grosu A. Validation of the graded prognostic assessment for melanoma using molecular markers ( melanoma-molGPA ). J Clin Med Res. 2018;10:178–81.CrossRef
19.
go back to reference Rice SR, Bentzen SM, Hanna A, et al. Prognostic models for patients with brain metastases after stereotactic radiosurgery with or without whole brain radiotherapy: a validation study. J Neuro-Oncol. 2018;140:341–9.CrossRef Rice SR, Bentzen SM, Hanna A, et al. Prognostic models for patients with brain metastases after stereotactic radiosurgery with or without whole brain radiotherapy: a validation study. J Neuro-Oncol. 2018;140:341–9.CrossRef
20.
go back to reference Badakhshi H, Engeling F, Budach V, Ghadjar P, Zschaeck S, Kaul D. Are prognostic indices for brain metastases of melanoma still valid in the stereotactic era? Radiat Oncol. 2018;13:1–6.CrossRef Badakhshi H, Engeling F, Budach V, Ghadjar P, Zschaeck S, Kaul D. Are prognostic indices for brain metastases of melanoma still valid in the stereotactic era? Radiat Oncol. 2018;13:1–6.CrossRef
21.
go back to reference Kano H, Morales-Restrepo A, Iyer A, Weiner GM, Mousavi SH, Kirkwood JM, et al. Comparison of prognostic indices in patients who undergo melanoma brain metastasis radiosurgery. J Neurosurg. 2018;128:14–22.CrossRef Kano H, Morales-Restrepo A, Iyer A, Weiner GM, Mousavi SH, Kirkwood JM, et al. Comparison of prognostic indices in patients who undergo melanoma brain metastasis radiosurgery. J Neurosurg. 2018;128:14–22.CrossRef
22.
go back to reference Choong ES, Lo S, Drummond M, Fogarty GB, Menzies AM, Guminski A, et al. Survival of patients with melanoma brain metastasis treated with stereotactic radiosurgery and active systemic drug therapies. Eur J Cancer. 2017;75:169–78.CrossRef Choong ES, Lo S, Drummond M, Fogarty GB, Menzies AM, Guminski A, et al. Survival of patients with melanoma brain metastasis treated with stereotactic radiosurgery and active systemic drug therapies. Eur J Cancer. 2017;75:169–78.CrossRef
23.
go back to reference Minniti G, Anzellini D, Reverberi C, Cappellini GCA, Marchetti L, Bianciardi F, et al. Stereotactic radiosurgery combined with nivolumab or Ipilimumab for patients with melanoma brain metastases: evaluation of brain control and toxicity. J Immunother Cancer. 2019;7:102.CrossRef Minniti G, Anzellini D, Reverberi C, Cappellini GCA, Marchetti L, Bianciardi F, et al. Stereotactic radiosurgery combined with nivolumab or Ipilimumab for patients with melanoma brain metastases: evaluation of brain control and toxicity. J Immunother Cancer. 2019;7:102.CrossRef
25.
go back to reference Williams NL, Wuthrick EJ, Kim H, et al. Phase 1 study of Ipilimumab combined with whole brain radiation therapy or radiosurgery for melanoma patients with brain metastases. Int J Radiat Oncol. 2017;99:22–30.CrossRef Williams NL, Wuthrick EJ, Kim H, et al. Phase 1 study of Ipilimumab combined with whole brain radiation therapy or radiosurgery for melanoma patients with brain metastases. Int J Radiat Oncol. 2017;99:22–30.CrossRef
26.
go back to reference Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.CrossRef Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7.CrossRef
28.
go back to reference Patel KR, Lawson DH, Kudchadkar RR, Carthon BC, Oliver DE, Okwan-Duodu D, et al. Two heads better than one? Ipilimumab immunotherapy and radiation therapy for melanoma brain metastases. Neuro-Oncology. 2015;17:1312–21.CrossRef Patel KR, Lawson DH, Kudchadkar RR, Carthon BC, Oliver DE, Okwan-Duodu D, et al. Two heads better than one? Ipilimumab immunotherapy and radiation therapy for melanoma brain metastases. Neuro-Oncology. 2015;17:1312–21.CrossRef
29.
go back to reference Mangana J, Cheng PF, Kaufmann C, et al. Multicenter , real-life experience with checkpoint inhibitors and targeted therapy agents in advanced melanoma patients in Switzerland. Melanoma Res. 2017;27:358–68.CrossRef Mangana J, Cheng PF, Kaufmann C, et al. Multicenter , real-life experience with checkpoint inhibitors and targeted therapy agents in advanced melanoma patients in Switzerland. Melanoma Res. 2017;27:358–68.CrossRef
30.
go back to reference Knisely JPS, Yu JB, Flanigan J, Sznol M, Kluger HM, Chiang VLS. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg. 2012;117:227–33.CrossRef Knisely JPS, Yu JB, Flanigan J, Sznol M, Kluger HM, Chiang VLS. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg. 2012;117:227–33.CrossRef
32.
go back to reference Pires da Silva I, Wang KYX, Wilmott JS, et al. Distinct molecular profiles and immunotherapy treatment outcomes of V600E and V600K BRAF -mutant melanoma. Clin Cancer Res. 2019;25:1272–9.CrossRef Pires da Silva I, Wang KYX, Wilmott JS, et al. Distinct molecular profiles and immunotherapy treatment outcomes of V600E and V600K BRAF -mutant melanoma. Clin Cancer Res. 2019;25:1272–9.CrossRef
33.
go back to reference Stera S, Balermpas P, Blanck O, et al. Stereotactic radiosurgery combined with immune checkpoint inhibitors or kinase inhibitors for patients with multiple brain metastases of malignant melanoma. Melanoma Res. 2019;29:187–95.CrossRef Stera S, Balermpas P, Blanck O, et al. Stereotactic radiosurgery combined with immune checkpoint inhibitors or kinase inhibitors for patients with multiple brain metastases of malignant melanoma. Melanoma Res. 2019;29:187–95.CrossRef
35.
go back to reference Weltman E, Salvajoli JV, Brandt RA, de Morais HR, Prisco FE, Cruz JC, et al. Radiosurgery for brain metastases: a score index for predicting prognosis. Int J Radiat Oncol Biol Phys. 2000;46:1155–61.CrossRef Weltman E, Salvajoli JV, Brandt RA, de Morais HR, Prisco FE, Cruz JC, et al. Radiosurgery for brain metastases: a score index for predicting prognosis. Int J Radiat Oncol Biol Phys. 2000;46:1155–61.CrossRef
36.
go back to reference Likhacheva A, Pinnix CC, Parikh N, et al. Validation of recursive partitioning analysis and diagnosis-specific graded prognostic assessment in patients treated initially with radiosurgery alone. J Neurosurg. 2012;117(Suppl):38–44.CrossRef Likhacheva A, Pinnix CC, Parikh N, et al. Validation of recursive partitioning analysis and diagnosis-specific graded prognostic assessment in patients treated initially with radiosurgery alone. J Neurosurg. 2012;117(Suppl):38–44.CrossRef
37.
go back to reference Dummer R, Hauschild A, Lindenblatt N, Pentheroudakis G, Keilholz U. Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v126–32.CrossRef Dummer R, Hauschild A, Lindenblatt N, Pentheroudakis G, Keilholz U. Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v126–32.CrossRef
Metadata
Title
Predicting survival in melanoma patients treated with concurrent targeted- or immunotherapy and stereotactic radiotherapy
Melanoma brain metastases prognostic score
Authors
Jana Schaule
Stephanie G. C. Kroeze
Oliver Blanck
Susanne Stera
Klaus H. Kahl
Falk Roeder
Stephanie E. Combs
David Kaul
An Claes
Markus M. Schymalla
Sonja Adebahr
Franziska Eckert
Fabian Lohaus
Nasrin Abbasi-Senger
Guido Henke
Marcella Szuecs
Michael Geier
Nora Sundahl
Daniel Buergy
Reinhard Dummer
Matthias Guckenberger
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2020
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-020-01558-8

Other articles of this Issue 1/2020

Radiation Oncology 1/2020 Go to the issue