Skip to main content
Top

01-04-2024 | Metastasis | Review

The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets

Authors: Yan Xu, Zhipeng Gao, Xiaoyu Sun, Jun Li, Toshinori Ozaki, Du Shi, Meng Yu, Yuyan Zhu

Published in: Cancer and Metastasis Reviews

Login to get access

Abstract

Metastasis is a major contributor to treatment failure and death in urological cancers, representing an important biomedical challenge at present. Metastases form as a result of cancer cells leaving the primary site, entering the vasculature and lymphatic vessels, and colonizing clones elsewhere in the body. However, the specific regulatory mechanisms of action underlying the metastatic process of urological cancers remain incompletely elucidated. With the deepening of research, circular RNAs (circRNAs) have been found to not only play a significant role in tumor progression and prognosis but also show aberrant expression in various tumor metastases, consequently impacting tumor metastasis through multiple pathways. Therefore, circRNAs are emerging as potential tumor markers and treatment targets. This review summarizes the research progress on elucidating how circRNAs regulate the urological cancer invasion-metastasis cascade response and related processes, as well as their role in immune microenvironment remodeling and circRNA vaccines. This body of work highlights circRNA regulation as an emerging therapeutic target for urological cancers, which should motivate further specific research in this regard.
Literature
1.
go back to reference Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(1), 17–48.PubMed Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: a Cancer Journal for Clinicians, 73(1), 17–48.PubMed
2.
go back to reference Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., et al. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: a Cancer Journal for Clinicians, 67(2), 93–99.PubMed Amin, M. B., Greene, F. L., Edge, S. B., Compton, C. C., Gershenwald, J. E., Brookland, R. K., et al. (2017). The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: a Cancer Journal for Clinicians, 67(2), 93–99.PubMed
3.
go back to reference Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell., 147(2), 275–292.PubMedCrossRef Valastyan, S., & Weinberg, R. A. (2011). Tumor metastasis: molecular insights and evolving paradigms. Cell., 147(2), 275–292.PubMedCrossRef
4.
go back to reference Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691.PubMedCrossRef Kristensen, L. S., Andersen, M. S., Stagsted, L. V. W., Ebbesen, K. K., Hansen, T. B., & Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nature Reviews Genetics, 20(11), 675–691.PubMedCrossRef
5.
go back to reference Pisignano, G., Michael, D. C., Visal, T. H., Pirlog, R., Ladomery, M., & Calin, G. A. (2023). Going circular: history, present, and future of circRNAs in cancer. Oncogene, 42. Pisignano, G., Michael, D. C., Visal, T. H., Pirlog, R., Ladomery, M., & Calin, G. A. (2023). Going circular: history, present, and future of circRNAs in cancer. Oncogene, 42.
6.
go back to reference Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 3852–3856.PubMedCrossRef Sanger, H. L., Klotz, G., Riesner, D., Gross, H. J., & Kleinschmidt, A. K. (1976). Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proceedings of the National Academy of Sciences of the United States of America, 73(11), 3852–3856.PubMedCrossRef
7.
go back to reference Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature., 495(7441), 333–338.PubMedCrossRef Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature., 495(7441), 333–338.PubMedCrossRef
8.
go back to reference Li, X., Ding, J., Wang, X., Cheng, Z., & Zhu, Q. (2020). NUDT21 regulates circRNA cyclization and ceRNA crosstalk in hepatocellular carcinoma. Oncogene., 39(4), 891–904.PubMedCrossRef Li, X., Ding, J., Wang, X., Cheng, Z., & Zhu, Q. (2020). NUDT21 regulates circRNA cyclization and ceRNA crosstalk in hepatocellular carcinoma. Oncogene., 39(4), 891–904.PubMedCrossRef
9.
go back to reference Zeng, Z., Xia, L., Fan, S., Zheng, J., Qin, J., Fan, X., et al. (2021). Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia Via TET2-mediated smooth muscle cell differentiation. Circulation., 143(4), 354–371.PubMedCrossRef Zeng, Z., Xia, L., Fan, S., Zheng, J., Qin, J., Fan, X., et al. (2021). Circular RNA CircMAP3K5 acts as a microRNA-22-3p sponge to promote resolution of intimal hyperplasia Via TET2-mediated smooth muscle cell differentiation. Circulation., 143(4), 354–371.PubMedCrossRef
10.
go back to reference van Zonneveld, A. J., Kölling, M., Bijkerk, R., & Lorenzen, J. M. (2021). Circular RNAs in kidney disease and cancer. Nature Reviews Nephrology, 17(12), 814–826.PubMedCrossRef van Zonneveld, A. J., Kölling, M., Bijkerk, R., & Lorenzen, J. M. (2021). Circular RNAs in kidney disease and cancer. Nature Reviews Nephrology, 17(12), 814–826.PubMedCrossRef
11.
go back to reference Zhou, Z., Sun, B., Huang, S., & Zhao, L. (2019). Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death & Disease, 10(7), 503.CrossRef Zhou, Z., Sun, B., Huang, S., & Zhao, L. (2019). Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death & Disease, 10(7), 503.CrossRef
12.
go back to reference Wang, Y., Zhang, Y., Wang, P., Fu, X., & Lin, W. (2020). Circular RNAs in renal cell carcinoma: implications for tumorigenesis, diagnosis, and therapy. Molecular Cancer, 19(1), 149.PubMedPubMedCentralCrossRef Wang, Y., Zhang, Y., Wang, P., Fu, X., & Lin, W. (2020). Circular RNAs in renal cell carcinoma: implications for tumorigenesis, diagnosis, and therapy. Molecular Cancer, 19(1), 149.PubMedPubMedCentralCrossRef
13.
go back to reference Yang, X., Ye, T., Liu, H., Lv, P., Duan, C., Wu, X., et al. (2021). Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Molecular Cancer, 20(1), 4.PubMedCrossRef Yang, X., Ye, T., Liu, H., Lv, P., Duan, C., Wu, X., et al. (2021). Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer. Molecular Cancer, 20(1), 4.PubMedCrossRef
14.
go back to reference Hua, J. T., Chen, S., & He, H. H. (2019). Landscape of noncoding RNA in prostate cancer. Trends in Genetics : TIG, 35(11), 840–851.PubMedCrossRef Hua, J. T., Chen, S., & He, H. H. (2019). Landscape of noncoding RNA in prostate cancer. Trends in Genetics : TIG, 35(11), 840–851.PubMedCrossRef
15.
go back to reference Goodall, G. J., & Wickramasinghe, V. O. (2021). RNA in cancer. Nature Reviews Cancer, 21(1), 22–36.PubMedCrossRef Goodall, G. J., & Wickramasinghe, V. O. (2021). RNA in cancer. Nature Reviews Cancer, 21(1), 22–36.PubMedCrossRef
16.
go back to reference Li, X., Yang, L., & Chen, L. L. (2018). The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 71(3), 428–442.PubMedCrossRef Li, X., Yang, L., & Chen, L. L. (2018). The biogenesis, functions, and challenges of circular RNAs. Molecular Cell, 71(3), 428–442.PubMedCrossRef
17.
go back to reference Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., et al. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806.PubMedCrossRef Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., et al. (2013). Circular intronic long noncoding RNAs. Molecular Cell, 51(6), 792–806.PubMedCrossRef
18.
go back to reference Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2017). Corrigendum: Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 24(2), 194.CrossRef Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2017). Corrigendum: Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 24(2), 194.CrossRef
19.
go back to reference Lu, Z., Filonov, G. S., Noto, J. J., Schmidt, C. A., Hatkevich, T. L., Wen, Y., et al. (2015). Metazoan tRNA introns generate stable circular RNAs in vivo. RNA (New York, NY)., 21(9), 1554–1565.CrossRef Lu, Z., Filonov, G. S., Noto, J. J., Schmidt, C. A., Hatkevich, T. L., Wen, Y., et al. (2015). Metazoan tRNA introns generate stable circular RNAs in vivo. RNA (New York, NY)., 21(9), 1554–1565.CrossRef
20.
go back to reference Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.PubMedCrossRef Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges. Nature, 495(7441), 384–388.PubMedCrossRef
21.
go back to reference Okholm, T. L. H., Sathe, S., Park, S. S., Kamstrup, A. B., Rasmussen, A. M., Shankar, A., et al. (2020). Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Medicine, 12(1), 112.PubMedPubMedCentralCrossRef Okholm, T. L. H., Sathe, S., Park, S. S., Kamstrup, A. B., Rasmussen, A. M., Shankar, A., et al. (2020). Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Genome Medicine, 12(1), 112.PubMedPubMedCentralCrossRef
22.
go back to reference Xie, F., Xiao, X., Tao, D., Huang, C., Wang, L., Liu, F., et al. (2020). circNR3C1 suppresses bladder cancer progression through acting as an endogenous blocker of BRD4/C-myc complex. Molecular Therapy--Nucleic Acids, 22, 510–519.PubMedPubMedCentralCrossRef Xie, F., Xiao, X., Tao, D., Huang, C., Wang, L., Liu, F., et al. (2020). circNR3C1 suppresses bladder cancer progression through acting as an endogenous blocker of BRD4/C-myc complex. Molecular Therapy--Nucleic Acids, 22, 510–519.PubMedPubMedCentralCrossRef
23.
go back to reference Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256–264.CrossRef Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nature Structural & Molecular Biology, 22(3), 256–264.CrossRef
24.
go back to reference Chen, C. Y., & Sarnow, P. (1995). Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science (New York, N.Y.), 268(5209), 415–417.PubMedCrossRef Chen, C. Y., & Sarnow, P. (1995). Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science (New York, N.Y.), 268(5209), 415–417.PubMedCrossRef
25.
go back to reference Hogg, S. J., Beavis, P. A., Dawson, M. A., & Johnstone, R. W. (2020). Targeting the epigenetic regulation of antitumour immunity. Nature Reviews Drug Discovery, 19(11), 776–800.PubMedCrossRef Hogg, S. J., Beavis, P. A., Dawson, M. A., & Johnstone, R. W. (2020). Targeting the epigenetic regulation of antitumour immunity. Nature Reviews Drug Discovery, 19(11), 776–800.PubMedCrossRef
26.
go back to reference Weigel, C., Veldwijk, M. R., Oakes, C. C., Seibold, P., Slynko, A., Liesenfeld, D. B., et al. (2016). Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nature Communications, 7, 10893.PubMedPubMedCentralCrossRef Weigel, C., Veldwijk, M. R., Oakes, C. C., Seibold, P., Slynko, A., Liesenfeld, D. B., et al. (2016). Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nature Communications, 7, 10893.PubMedPubMedCentralCrossRef
27.
go back to reference Pietri, E., Conteduca, V., Andreis, D., Massa, I., Melegari, E., Sarti, S., et al. (2016). Androgen receptor signaling pathways as a target for breast cancer treatment. Endocrine-Related Cancer, 23(10), R485–R498.PubMedCrossRef Pietri, E., Conteduca, V., Andreis, D., Massa, I., Melegari, E., Sarti, S., et al. (2016). Androgen receptor signaling pathways as a target for breast cancer treatment. Endocrine-Related Cancer, 23(10), R485–R498.PubMedCrossRef
28.
go back to reference Yin, J., Liu, Y. N., Tillman, H., Barrett, B., Hewitt, S., Ylaya, K., et al. (2014). AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Research, 74(16), 4306–4317.PubMedPubMedCentralCrossRef Yin, J., Liu, Y. N., Tillman, H., Barrett, B., Hewitt, S., Ylaya, K., et al. (2014). AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Research, 74(16), 4306–4317.PubMedPubMedCentralCrossRef
29.
go back to reference Yang, L., Huang, W., Bai, X., Wang, H., Wang, X., Xiao, H., et al. (2023). Androgen dihydrotestosterone promotes bladder cancer cell proliferation and invasion via EPPK1-mediated MAPK/JUP signalling. Cell Death & Disease, 14(6), 363.CrossRef Yang, L., Huang, W., Bai, X., Wang, H., Wang, X., Xiao, H., et al. (2023). Androgen dihydrotestosterone promotes bladder cancer cell proliferation and invasion via EPPK1-mediated MAPK/JUP signalling. Cell Death & Disease, 14(6), 363.CrossRef
30.
go back to reference Deng, G., Wang, R., Sun, Y., Huang, C. P., Yeh, S., You, B., et al. (2021). Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death and Differentiation, 28(7), 2145–2159.PubMedPubMedCentralCrossRef Deng, G., Wang, R., Sun, Y., Huang, C. P., Yeh, S., You, B., et al. (2021). Targeting androgen receptor (AR) with antiandrogen Enzalutamide increases prostate cancer cell invasion yet decreases bladder cancer cell invasion via differentially altering the AR/circRNA-ARC1/miR-125b-2-3p or miR-4736/PPARγ/MMP-9 signals. Cell Death and Differentiation, 28(7), 2145–2159.PubMedPubMedCentralCrossRef
31.
go back to reference Chen, J., Sun, Y., Ou, Z., Yeh, S., Huang, C. P., You, B., et al. (2020). Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Reports, 21(4), e48467.PubMedPubMedCentralCrossRef Chen, J., Sun, Y., Ou, Z., Yeh, S., Huang, C. P., You, B., et al. (2020). Androgen receptor-regulated circFNTA activates KRAS signaling to promote bladder cancer invasion. EMBO Reports, 21(4), e48467.PubMedPubMedCentralCrossRef
32.
go back to reference Yang, Z., Qu, C. B., Zhang, Y., Zhang, W. F., Wang, D. D., Gao, C. C., et al. (2019). Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 38(14), 2516–2532.PubMedCrossRef Yang, Z., Qu, C. B., Zhang, Y., Zhang, W. F., Wang, D. D., Gao, C. C., et al. (2019). Dysregulation of p53-RBM25-mediated circAMOTL1L biogenesis contributes to prostate cancer progression through the circAMOTL1L-miR-193a-5p-Pcdha pathway. Oncogene, 38(14), 2516–2532.PubMedCrossRef
34.
go back to reference Chen, W., Cen, S., Zhou, X., Yang, T., Wu, K., Zou, L., et al. (2020). Circular RNA CircNOLC1, upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 Axis. Frontiers in Cell and Development Biology, 8, 624764.CrossRef Chen, W., Cen, S., Zhou, X., Yang, T., Wu, K., Zou, L., et al. (2020). Circular RNA CircNOLC1, upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 Axis. Frontiers in Cell and Development Biology, 8, 624764.CrossRef
35.
go back to reference Han, Z., Zhang, Y., Sun, Y., Chen, J., Chang, C., Wang, X., et al. (2018). ERβ-mediated alteration of circATP2B1 and miR-204-3p signaling promotes invasion of clear cell renal cell carcinoma. Cancer Research, 78(10), 2550–2563.PubMedCrossRef Han, Z., Zhang, Y., Sun, Y., Chen, J., Chang, C., Wang, X., et al. (2018). ERβ-mediated alteration of circATP2B1 and miR-204-3p signaling promotes invasion of clear cell renal cell carcinoma. Cancer Research, 78(10), 2550–2563.PubMedCrossRef
36.
go back to reference Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell., 127(4), 679–695.PubMedCrossRef Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: building a framework. Cell., 127(4), 679–695.PubMedCrossRef
38.
go back to reference Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776.PubMedPubMedCentralCrossRef Bakir, B., Chiarella, A. M., Pitarresi, J. R., & Rustgi, A. K. (2020). EMT, MET, plasticity, and tumor metastasis. Trends in Cell Biology, 30(10), 764–776.PubMedPubMedCentralCrossRef
39.
go back to reference Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.PubMedCrossRef Pastushenko, I., & Blanpain, C. (2019). EMT transition states during tumor progression and metastasis. Trends in Cell Biology, 29(3), 212–226.PubMedCrossRef
40.
go back to reference Stuelten, C. H., Parent, C. A., & Montell, D. J. (2018). Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nature Reviews Cancer, 18(5), 296–312.PubMedPubMedCentralCrossRef Stuelten, C. H., Parent, C. A., & Montell, D. J. (2018). Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nature Reviews Cancer, 18(5), 296–312.PubMedPubMedCentralCrossRef
41.
go back to reference Slattum, G. M., & Rosenblatt, J. (2014). Tumour cell invasion: An emerging role for basal epithelial cell extrusion. Nature Reviews Cancer, 14(7), 495–501.PubMedPubMedCentralCrossRef Slattum, G. M., & Rosenblatt, J. (2014). Tumour cell invasion: An emerging role for basal epithelial cell extrusion. Nature Reviews Cancer, 14(7), 495–501.PubMedPubMedCentralCrossRef
42.
go back to reference Li, W., Yang, F. Q., Sun, C. M., Huang, J. H., Zhang, H. M., Li, X., et al. (2020). circPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma. Theranostics, 10(10), 4395–4409.PubMedPubMedCentralCrossRef Li, W., Yang, F. Q., Sun, C. M., Huang, J. H., Zhang, H. M., Li, X., et al. (2020). circPRRC2A promotes angiogenesis and metastasis through epithelial-mesenchymal transition and upregulates TRPM3 in renal cell carcinoma. Theranostics, 10(10), 4395–4409.PubMedPubMedCentralCrossRef
43.
go back to reference Nielsen, J., Kristensen, M. A., Willemoës, M., Nielsen, F. C., & Christiansen, J. (2004). Sequential dimerization of human zipcode-binding protein IMP1 on RNA: A cooperative mechanism providing RNP stability. Nucleic Acids Research, 32(14), 4368–4376.PubMedPubMedCentralCrossRef Nielsen, J., Kristensen, M. A., Willemoës, M., Nielsen, F. C., & Christiansen, J. (2004). Sequential dimerization of human zipcode-binding protein IMP1 on RNA: A cooperative mechanism providing RNP stability. Nucleic Acids Research, 32(14), 4368–4376.PubMedPubMedCentralCrossRef
44.
go back to reference Xie, F., Huang, C., Liu, F., Zhang, H., Xiao, X., Sun, J., et al. (2021). CircPTPRA blocks the recognition of RNA N(6)-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Molecular Cancer, 20(1), 68.PubMedPubMedCentralCrossRef Xie, F., Huang, C., Liu, F., Zhang, H., Xiao, X., Sun, J., et al. (2021). CircPTPRA blocks the recognition of RNA N(6)-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Molecular Cancer, 20(1), 68.PubMedPubMedCentralCrossRef
45.
go back to reference Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017). Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Research, 27(5), 626–641.PubMedPubMedCentralCrossRef Yang, Y., Fan, X., Mao, M., Song, X., Wu, P., Zhang, Y., et al. (2017). Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Research, 27(5), 626–641.PubMedPubMedCentralCrossRef
46.
go back to reference Meyer, K. D., Patil, D. P., Zhou, J., Zinoviev, A., Skabkin, M. A., Elemento, O., et al. (2015). 5’ UTR m(6)A promotes Cap-independent translation. Cell, 163(4), 999–1010.PubMedPubMedCentralCrossRef Meyer, K. D., Patil, D. P., Zhou, J., Zinoviev, A., Skabkin, M. A., Elemento, O., et al. (2015). 5’ UTR m(6)A promotes Cap-independent translation. Cell, 163(4), 999–1010.PubMedPubMedCentralCrossRef
47.
go back to reference Wang, Y., Liu, J., Ma, J., Sun, T., Zhou, Q., Wang, W., et al. (2019). Exosomal circRNAs: Biogenesis, effect and application in human diseases. Molecular Cancer, 18(1), 116.PubMedPubMedCentralCrossRef Wang, Y., Liu, J., Ma, J., Sun, T., Zhou, Q., Wang, W., et al. (2019). Exosomal circRNAs: Biogenesis, effect and application in human diseases. Molecular Cancer, 18(1), 116.PubMedPubMedCentralCrossRef
48.
go back to reference Chen, X., Chen, R. X., Wei, W. S., Li, Y. H., Feng, Z. H., Tan, L., et al. (2018). PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial-mesenchymal transition. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(24), 6319–6330.PubMedCrossRef Chen, X., Chen, R. X., Wei, W. S., Li, Y. H., Feng, Z. H., Tan, L., et al. (2018). PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial-mesenchymal transition. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(24), 6319–6330.PubMedCrossRef
49.
go back to reference Yang, C., Wu, S., Mou, Z., Zhou, Q., Dai, X., Ou, Y., et al. (2022). Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Molecular Therapy : The Journal of the American Society of Gene Therapy, 30(3), 1054–1070.PubMedCrossRef Yang, C., Wu, S., Mou, Z., Zhou, Q., Dai, X., Ou, Y., et al. (2022). Exosome-derived circTRPS1 promotes malignant phenotype and CD8+ T cell exhaustion in bladder cancer microenvironments. Molecular Therapy : The Journal of the American Society of Gene Therapy, 30(3), 1054–1070.PubMedCrossRef
50.
go back to reference Tang, Y., Liu, J., Li, X., & Wang, W. (2021). Exosomal circRNA HIPK3 knockdown inhibited cell proliferation and metastasis in prostate cancer by regulating miR-212/BMI-1 pathway. Journal of Biosciences, 46. Tang, Y., Liu, J., Li, X., & Wang, W. (2021). Exosomal circRNA HIPK3 knockdown inhibited cell proliferation and metastasis in prostate cancer by regulating miR-212/BMI-1 pathway. Journal of Biosciences, 46.
51.
go back to reference Ding, L., Zheng, Q., Lin, Y., Wang, R., Wang, H., Luo, W., et al. (2023). Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clinical and Translational Medicine, 13(1), e1156.PubMedPubMedCentralCrossRef Ding, L., Zheng, Q., Lin, Y., Wang, R., Wang, H., Luo, W., et al. (2023). Exosome-derived circTFDP2 promotes prostate cancer progression by preventing PARP1 from caspase-3-dependent cleavage. Clinical and Translational Medicine, 13(1), e1156.PubMedPubMedCentralCrossRef
52.
go back to reference Cen, J., Liang, Y., Huang, Y., Pan, Y., Shu, G., Zheng, Z., et al. (2021). Circular RNA circSDHC serves as a sponge for miR-127-3p to promote the proliferation and metastasis of renal cell carcinoma via the CDKN3/E2F1 axis. Molecular Cancer, 20(1), 19.PubMedPubMedCentralCrossRef Cen, J., Liang, Y., Huang, Y., Pan, Y., Shu, G., Zheng, Z., et al. (2021). Circular RNA circSDHC serves as a sponge for miR-127-3p to promote the proliferation and metastasis of renal cell carcinoma via the CDKN3/E2F1 axis. Molecular Cancer, 20(1), 19.PubMedPubMedCentralCrossRef
53.
go back to reference Lu, Q., Liu, T., Feng, H., Yang, R., Zhao, X., Chen, W., et al. (2019). Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Molecular Cancer, 18(1), 111.PubMedPubMedCentralCrossRef Lu, Q., Liu, T., Feng, H., Yang, R., Zhao, X., Chen, W., et al. (2019). Circular RNA circSLC8A1 acts as a sponge of miR-130b/miR-494 in suppressing bladder cancer progression via regulating PTEN. Molecular Cancer, 18(1), 111.PubMedPubMedCentralCrossRef
54.
go back to reference Chao, F., Song, Z., Wang, S., Ma, Z., Zhuo, Z., Meng, T., et al. (2021). Novel circular RNA circSOBP governs amoeboid migration through the regulation of the miR-141-3p/MYPT1/p-MLC2 axis in prostate cancer. Clinical and Translational Medicine, 11(3), e360.PubMedPubMedCentralCrossRef Chao, F., Song, Z., Wang, S., Ma, Z., Zhuo, Z., Meng, T., et al. (2021). Novel circular RNA circSOBP governs amoeboid migration through the regulation of the miR-141-3p/MYPT1/p-MLC2 axis in prostate cancer. Clinical and Translational Medicine, 11(3), e360.PubMedPubMedCentralCrossRef
55.
go back to reference Shen, Z., Zhou, L., Zhang, C., & Xu, J. (2020). Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Letters, 468, 88–101.PubMedCrossRef Shen, Z., Zhou, L., Zhang, C., & Xu, J. (2020). Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Letters, 468, 88–101.PubMedCrossRef
56.
go back to reference Yang, C., Yuan, W., Yang, X., Li, P., Wang, J., Han, J., et al. (2018). Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Molecular Cancer, 17(1), 19.PubMedPubMedCentralCrossRef Yang, C., Yuan, W., Yang, X., Li, P., Wang, J., Han, J., et al. (2018). Circular RNA circ-ITCH inhibits bladder cancer progression by sponging miR-17/miR-224 and regulating p21, PTEN expression. Molecular Cancer, 17(1), 19.PubMedPubMedCentralCrossRef
57.
go back to reference Dong, W., Bi, J., Liu, H., Yan, D., He, Q., Zhou, Q., et al. (2019). Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Molecular Cancer, 18(1), 95.PubMedPubMedCentralCrossRef Dong, W., Bi, J., Liu, H., Yan, D., He, Q., Zhou, Q., et al. (2019). Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Molecular Cancer, 18(1), 95.PubMedPubMedCentralCrossRef
58.
go back to reference Zhang, X., Liu, X., Jing, Z., Bi, J., Li, Z., Liu, X., et al. (2020). The circINTS4/miR-146b/CARMA3 axis promotes tumorigenesis in bladder cancer. Cancer Gene Therapy, 27(3–4), 189–202.PubMedCrossRef Zhang, X., Liu, X., Jing, Z., Bi, J., Li, Z., Liu, X., et al. (2020). The circINTS4/miR-146b/CARMA3 axis promotes tumorigenesis in bladder cancer. Cancer Gene Therapy, 27(3–4), 189–202.PubMedCrossRef
59.
go back to reference Else, T., Kim, A. C., Sabolch, A., Raymond, V. M., Kandathil, A., Caoili, E. M., et al. (2014). Adrenocortical carcinoma. Endocrine Reviews, 35(2), 282–326.PubMedCrossRef Else, T., Kim, A. C., Sabolch, A., Raymond, V. M., Kandathil, A., Caoili, E. M., et al. (2014). Adrenocortical carcinoma. Endocrine Reviews, 35(2), 282–326.PubMedCrossRef
60.
go back to reference Li, W., Liu, R., Wei, D., Zhang, W., Zhang, H., Huang, W., et al. (2020). Circular RNA circ-CCAC1 facilitates adrenocortical carcinoma cell proliferation, migration, and invasion through regulating the miR-514a-5p/C22orf46 axis. BioMed Research International, 2020, 3501451.PubMedPubMedCentral Li, W., Liu, R., Wei, D., Zhang, W., Zhang, H., Huang, W., et al. (2020). Circular RNA circ-CCAC1 facilitates adrenocortical carcinoma cell proliferation, migration, and invasion through regulating the miR-514a-5p/C22orf46 axis. BioMed Research International, 2020, 3501451.PubMedPubMedCentral
61.
go back to reference Hakenberg, O. W., Dräger, D. L., Erbersdobler, A., Naumann, C. M., Jünemann, K. P., & Protzel, C. (2018). The diagnosis and treatment of penile cancer. Deutsches Ärzteblatt International, 115(39), 646–652.PubMed Hakenberg, O. W., Dräger, D. L., Erbersdobler, A., Naumann, C. M., Jünemann, K. P., & Protzel, C. (2018). The diagnosis and treatment of penile cancer. Deutsches Ärzteblatt International, 115(39), 646–652.PubMed
62.
go back to reference Heideman, D. A., Waterboer, T., Pawlita, M., Delis-van Diemen, P., Nindl, I., Leijte, J. A., et al. (2007). Human papillomavirus-16 is the predominant type etiologically involved in penile squamous cell carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 25(29), 4550–4556.PubMedCrossRef Heideman, D. A., Waterboer, T., Pawlita, M., Delis-van Diemen, P., Nindl, I., Leijte, J. A., et al. (2007). Human papillomavirus-16 is the predominant type etiologically involved in penile squamous cell carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 25(29), 4550–4556.PubMedCrossRef
63.
go back to reference Bonelli, P., Borrelli, A., Tuccillo, F. M., Buonaguro, F. M., & Tornesello, M. L. (2021). The Role of circRNAs in Human Papillomavirus (HPV)-Associated Cancers. Cancers, 13(5). Bonelli, P., Borrelli, A., Tuccillo, F. M., Buonaguro, F. M., & Tornesello, M. L. (2021). The Role of circRNAs in Human Papillomavirus (HPV)-Associated Cancers. Cancers, 13(5).
64.
go back to reference Bockhorn, M., Jain, R. K., & Munn, L. L. (2007). Active versus passive mechanisms in metastasis: Do cancer cells crawl into vessels, or are they pushed? The Lancet Oncology, 8(5), 444–448.PubMedPubMedCentralCrossRef Bockhorn, M., Jain, R. K., & Munn, L. L. (2007). Active versus passive mechanisms in metastasis: Do cancer cells crawl into vessels, or are they pushed? The Lancet Oncology, 8(5), 444–448.PubMedPubMedCentralCrossRef
65.
go back to reference Lin, Y., Xu, J., & Lan, H. (2019). Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. Journal of Hematology & Oncology, 12(1), 76.CrossRef Lin, Y., Xu, J., & Lan, H. (2019). Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. Journal of Hematology & Oncology, 12(1), 76.CrossRef
66.
go back to reference Dua, R. S., Gui, G. P., & Isacke, C. M. (2005). Endothelial adhesion molecules in breast cancer invasion into the vascular and lymphatic systems. European Journal of Surgical Oncology : The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 31(8), 824–832.PubMedCrossRef Dua, R. S., Gui, G. P., & Isacke, C. M. (2005). Endothelial adhesion molecules in breast cancer invasion into the vascular and lymphatic systems. European Journal of Surgical Oncology : The Journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology, 31(8), 824–832.PubMedCrossRef
67.
go back to reference Follain, G., Herrmann, D., Harlepp, S., Hyenne, V., Osmani, N., Warren, S. C., et al. (2020). Fluids and their mechanics in tumour transit: shaping metastasis. Nature Reviews Cancer, 20(2), 107–124.PubMedCrossRef Follain, G., Herrmann, D., Harlepp, S., Hyenne, V., Osmani, N., Warren, S. C., et al. (2020). Fluids and their mechanics in tumour transit: shaping metastasis. Nature Reviews Cancer, 20(2), 107–124.PubMedCrossRef
68.
go back to reference Cheng, X., & Cheng, K. (2021). Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Reviews, 40(1), 71–88.PubMedCrossRef Cheng, X., & Cheng, K. (2021). Visualizing cancer extravasation: from mechanistic studies to drug development. Cancer Metastasis Reviews, 40(1), 71–88.PubMedCrossRef
69.
go back to reference Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229.PubMedPubMedCentralCrossRef Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229.PubMedPubMedCentralCrossRef
70.
go back to reference Dufies, M., Giuliano, S., Ambrosetti, D., Claren, A., Ndiaye, P. D., Mastri, M., et al. (2017). Sunitinib stimulates expression of VEGFC by tumor cells and promotes lymphangiogenesis in clear cell renal cell carcinomas. Cancer Research, 77(5), 1212–1226.PubMedCrossRef Dufies, M., Giuliano, S., Ambrosetti, D., Claren, A., Ndiaye, P. D., Mastri, M., et al. (2017). Sunitinib stimulates expression of VEGFC by tumor cells and promotes lymphangiogenesis in clear cell renal cell carcinomas. Cancer Research, 77(5), 1212–1226.PubMedCrossRef
71.
go back to reference Ndiaye, P. D., Dufies, M., Giuliano, S., Douguet, L., Grépin, R., Durivault, J., et al. (2019). VEGFC acts as a double-edged sword in renal cell carcinoma aggressiveness. Theranostics, 9(3), 661–675.PubMedCrossRef Ndiaye, P. D., Dufies, M., Giuliano, S., Douguet, L., Grépin, R., Durivault, J., et al. (2019). VEGFC acts as a double-edged sword in renal cell carcinoma aggressiveness. Theranostics, 9(3), 661–675.PubMedCrossRef
72.
go back to reference Nisato, R. E., Tille, J. C., & Pepper, M. S. (2003). Lymphangiogenesis and tumor metastasis. Thrombosis and Haemostasis, 90(4), 591–597.PubMedCrossRef Nisato, R. E., Tille, J. C., & Pepper, M. S. (2003). Lymphangiogenesis and tumor metastasis. Thrombosis and Haemostasis, 90(4), 591–597.PubMedCrossRef
73.
go back to reference Zhong, Z., Huang, M., Lv, M., He, Y., Duan, C., Zhang, L., et al. (2017). Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Letters, 403, 305–317.PubMedCrossRef Zhong, Z., Huang, M., Lv, M., He, Y., Duan, C., Zhang, L., et al. (2017). Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Letters, 403, 305–317.PubMedCrossRef
74.
go back to reference Dai, Y., Li, D., Chen, X., Tan, X., Gu, J., Chen, M., et al. (2018). Circular RNA myosin light chain kinase (MYLK) promotes prostate cancer progression through modulating Mir-29a expression. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 24, 3462–3471.PubMedCrossRef Dai, Y., Li, D., Chen, X., Tan, X., Gu, J., Chen, M., et al. (2018). Circular RNA myosin light chain kinase (MYLK) promotes prostate cancer progression through modulating Mir-29a expression. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 24, 3462–3471.PubMedCrossRef
75.
go back to reference Li, J., Huang, C., Zou, Y., Yu, J., & Gui, Y. (2020). Circular RNA MYLK promotes tumour growth and metastasis via modulating miR-513a-5p/VEGFC signalling in renal cell carcinoma. Journal of Cellular and Molecular Medicine, 24(12), 6609–6621.PubMedCrossRef Li, J., Huang, C., Zou, Y., Yu, J., & Gui, Y. (2020). Circular RNA MYLK promotes tumour growth and metastasis via modulating miR-513a-5p/VEGFC signalling in renal cell carcinoma. Journal of Cellular and Molecular Medicine, 24(12), 6609–6621.PubMedCrossRef
76.
go back to reference Miles, F. L., Pruitt, F. L., van Golen, K. L., & Cooper, C. R. (2008). Stepping out of the flow: capillary extravasation in cancer metastasis. Clinical & Experimental Metastasis, 25(4), 305–324.CrossRef Miles, F. L., Pruitt, F. L., van Golen, K. L., & Cooper, C. R. (2008). Stepping out of the flow: capillary extravasation in cancer metastasis. Clinical & Experimental Metastasis, 25(4), 305–324.CrossRef
77.
go back to reference Sadik, C. D., Kim, N. D., & Luster, A. D. (2011). Neutrophils cascading their way to inflammation. Trends in Immunology, 32(10), 452–460.PubMedCrossRef Sadik, C. D., Kim, N. D., & Luster, A. D. (2011). Neutrophils cascading their way to inflammation. Trends in Immunology, 32(10), 452–460.PubMedCrossRef
78.
go back to reference García-Román, J., & Zentella-Dehesa, A. (2013). Vascular permeability changes involved in tumor metastasis. Cancer Letters, 335(2), 259–269.PubMedCrossRef García-Román, J., & Zentella-Dehesa, A. (2013). Vascular permeability changes involved in tumor metastasis. Cancer Letters, 335(2), 259–269.PubMedCrossRef
79.
go back to reference Sawant Dessai, A., Dominguez, M. P., Chen, U. I., Hasper, J., Prechtl, C., Yu, C., et al. (2021). Transcriptional repression of SIRT3 potentiates mitochondrial aconitase activation to drive aggressive prostate cancer to the bone. Cancer Research, 81(1), 50–63.PubMed Sawant Dessai, A., Dominguez, M. P., Chen, U. I., Hasper, J., Prechtl, C., Yu, C., et al. (2021). Transcriptional repression of SIRT3 potentiates mitochondrial aconitase activation to drive aggressive prostate cancer to the bone. Cancer Research, 81(1), 50–63.PubMed
80.
go back to reference Gilardi, M., Bersini, S., Valtorta, S., Proietto, M., Crippa, M., Boussommier-Calleja, A., et al. (2021). The driving role of the Cdk5/Tln1/FAK(S732) axis in cancer cell extravasation dissected by human vascularized microfluidic models. Biomaterials, 276, 120975.PubMedCrossRef Gilardi, M., Bersini, S., Valtorta, S., Proietto, M., Crippa, M., Boussommier-Calleja, A., et al. (2021). The driving role of the Cdk5/Tln1/FAK(S732) axis in cancer cell extravasation dissected by human vascularized microfluidic models. Biomaterials, 276, 120975.PubMedCrossRef
81.
go back to reference Liu, H., Bi, J., Dong, W., Yang, M., Shi, J., Jiang, N., et al. (2018). Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Molecular Cancer, 17(1), 161.PubMedCrossRef Liu, H., Bi, J., Dong, W., Yang, M., Shi, J., Jiang, N., et al. (2018). Invasion-related circular RNA circFNDC3B inhibits bladder cancer progression through the miR-1178-3p/G3BP2/SRC/FAK axis. Molecular Cancer, 17(1), 161.PubMedCrossRef
82.
go back to reference Cruz-Munoz, W., Sanchez, O. H., Di Grappa, M., English, J. L., Hill, R. P., & Khokha, R. (2006). Enhanced metastatic dissemination to multiple organs by melanoma and lymphoma cells in timp-3-/- mice. Oncogene, 25(49), 6489–6496.PubMedCrossRef Cruz-Munoz, W., Sanchez, O. H., Di Grappa, M., English, J. L., Hill, R. P., & Khokha, R. (2006). Enhanced metastatic dissemination to multiple organs by melanoma and lymphoma cells in timp-3-/- mice. Oncogene, 25(49), 6489–6496.PubMedCrossRef
83.
go back to reference Xie, X., Sun, F. K., Huang, X., Wang, C. H., Dai, J., Zhao, J. P., et al. (2021). A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging, 13(15), 19908–19919.PubMedCrossRef Xie, X., Sun, F. K., Huang, X., Wang, C. H., Dai, J., Zhao, J. P., et al. (2021). A circular RNA, circSMARCA5, inhibits prostate cancer proliferative, migrative, and invasive capabilities via the miR-181b-5p/miR-17-3p-TIMP3 axis. Aging, 13(15), 19908–19919.PubMedCrossRef
84.
go back to reference Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMedCrossRef Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMedCrossRef
85.
go back to reference Hart, I. R., & Fidler, I. J. (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Research, 40(7), 2281–2287.PubMed Hart, I. R., & Fidler, I. J. (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Research, 40(7), 2281–2287.PubMed
86.
go back to reference Turajlic, S., & Swanton, C. (2016). Metastasis as an evolutionary process. Science (New York, N.Y.), 352(6282), 169–175.PubMedCrossRef Turajlic, S., & Swanton, C. (2016). Metastasis as an evolutionary process. Science (New York, N.Y.), 352(6282), 169–175.PubMedCrossRef
87.
go back to reference Ntziachristos, P., Lim, J. S., Sage, J., & Aifantis, I. (2014). From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell, 25(3), 318–334.PubMedCrossRef Ntziachristos, P., Lim, J. S., Sage, J., & Aifantis, I. (2014). From fly wings to targeted cancer therapies: a centennial for notch signaling. Cancer Cell, 25(3), 318–334.PubMedCrossRef
88.
go back to reference Wieland, E., Rodriguez-Vita, J., Liebler, S. S., Mogler, C., Moll, I., Herberich, S. E., et al. (2017). Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 31(3), 355–367.PubMedCrossRef Wieland, E., Rodriguez-Vita, J., Liebler, S. S., Mogler, C., Moll, I., Herberich, S. E., et al. (2017). Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 31(3), 355–367.PubMedCrossRef
89.
go back to reference Huang, Z., Ding, Y., Zhang, L., He, S., Jia, Z., Gu, C., et al. (2020). Upregulated circPDK1 promotes RCC cell migration and invasion by regulating the miR-377-3P-NOTCH1 axis in renal cell carcinoma. OncoTargets and Therapy, 13, 11237–11252.PubMedCrossRef Huang, Z., Ding, Y., Zhang, L., He, S., Jia, Z., Gu, C., et al. (2020). Upregulated circPDK1 promotes RCC cell migration and invasion by regulating the miR-377-3P-NOTCH1 axis in renal cell carcinoma. OncoTargets and Therapy, 13, 11237–11252.PubMedCrossRef
90.
go back to reference Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.PubMedCrossRef Chaffer, C. L., Brennan, J. P., Slavin, J. L., Blick, T., Thompson, E. W., & Williams, E. D. (2006). Mesenchymal-to-epithelial transition facilitates bladder cancer metastasis: Role of fibroblast growth factor receptor-2. Cancer Research, 66(23), 11271–11278.PubMedCrossRef
91.
go back to reference Yang, C., Wu, S., Wu, X., Zhou, X., Jin, S., & Jiang, H. (2019). Silencing circular RNA UVRAG inhibits bladder cancer growth and metastasis by targeting the microRNA-223/fibroblast growth factor receptor 2 axis. Cancer Science, 110(1), 99–106.PubMedCrossRef Yang, C., Wu, S., Wu, X., Zhou, X., Jin, S., & Jiang, H. (2019). Silencing circular RNA UVRAG inhibits bladder cancer growth and metastasis by targeting the microRNA-223/fibroblast growth factor receptor 2 axis. Cancer Science, 110(1), 99–106.PubMedCrossRef
92.
go back to reference Li, L., Ameri, A. H., Wang, S., Jansson, K. H., Casey, O. M., Yang, Q., et al. (2019). EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene, 38(35), 6241–6255.PubMedPubMedCentralCrossRef Li, L., Ameri, A. H., Wang, S., Jansson, K. H., Casey, O. M., Yang, Q., et al. (2019). EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene, 38(35), 6241–6255.PubMedPubMedCentralCrossRef
93.
go back to reference Lu, J., Zhong, C., Luo, J., Shu, F., Lv, D., Liu, Z., et al. (2021). HnRNP-L-regulated circCSPP1/miR-520h/EGR1 axis modulates autophagy and promotes progression in prostate cancer. Molecular Therapy--Nucleic Acids, 26, 927–944.PubMedPubMedCentralCrossRef Lu, J., Zhong, C., Luo, J., Shu, F., Lv, D., Liu, Z., et al. (2021). HnRNP-L-regulated circCSPP1/miR-520h/EGR1 axis modulates autophagy and promotes progression in prostate cancer. Molecular Therapy--Nucleic Acids, 26, 927–944.PubMedPubMedCentralCrossRef
94.
go back to reference Xiao, Y., & Yu, D. (2021). Tumor microenvironment as a therapeutic target in cancer. Pharmacology & Therapeutics, 221, 107753.CrossRef Xiao, Y., & Yu, D. (2021). Tumor microenvironment as a therapeutic target in cancer. Pharmacology & Therapeutics, 221, 107753.CrossRef
95.
96.
go back to reference Xiang, X., Wang, J., Lu, D., & Xu, X. (2021). Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduction and Targeted Therapy, 6(1), 75.PubMedPubMedCentralCrossRef Xiang, X., Wang, J., Lu, D., & Xu, X. (2021). Targeting tumor-associated macrophages to synergize tumor immunotherapy. Signal Transduction and Targeted Therapy, 6(1), 75.PubMedPubMedCentralCrossRef
97.
go back to reference Huang, X., Wang, J., Guan, J., Zheng, Z., Hao, J., Sheng, Z., et al. (2022). Exosomal Circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization. Frontiers in Oncology, 12, 808888.PubMedPubMedCentralCrossRef Huang, X., Wang, J., Guan, J., Zheng, Z., Hao, J., Sheng, Z., et al. (2022). Exosomal Circsafb2 reshaping tumor environment to promote renal cell carcinoma progression by mediating M2 macrophage polarization. Frontiers in Oncology, 12, 808888.PubMedPubMedCentralCrossRef
98.
go back to reference Du, C., Yan, Q., Wang, Y., Ren, L., Lu, H., Han, M., et al. (2023). Circular RNA AGAP1 stimulates immune escape and distant metastasis in renal cell carcinoma. Molecular Biotechnology, 66. Du, C., Yan, Q., Wang, Y., Ren, L., Lu, H., Han, M., et al. (2023). Circular RNA AGAP1 stimulates immune escape and distant metastasis in renal cell carcinoma. Molecular Biotechnology, 66.
99.
go back to reference Lv, J., Li, K., Yu, H., Han, J., Zhuang, J., Yu, R., et al. (2023). HNRNPL induced circFAM13B increased bladder cancer immunotherapy sensitivity via inhibiting glycolysis through IGF2BP1/PKM2 pathway. Journal of experimental & clinical cancer research : CR, 42(1), 41.PubMedCentralCrossRef Lv, J., Li, K., Yu, H., Han, J., Zhuang, J., Yu, R., et al. (2023). HNRNPL induced circFAM13B increased bladder cancer immunotherapy sensitivity via inhibiting glycolysis through IGF2BP1/PKM2 pathway. Journal of experimental & clinical cancer research : CR, 42(1), 41.PubMedCentralCrossRef
100.
go back to reference Sun, J., Zhang, H., Wei, W., Xiao, X., Huang, C., Wang, L., et al. (2023). Regulation of CD8(+) T cells infiltration and immunotherapy by circMGA/HNRNPL complex in bladder cancer. Oncogene, 42(15), 1247–1262.PubMedCrossRef Sun, J., Zhang, H., Wei, W., Xiao, X., Huang, C., Wang, L., et al. (2023). Regulation of CD8(+) T cells infiltration and immunotherapy by circMGA/HNRNPL complex in bladder cancer. Oncogene, 42(15), 1247–1262.PubMedCrossRef
101.
go back to reference Liu, Q., You, B., Meng, J., Huang, C. P., Dong, G., Wang, R., et al. (2022). Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Therapy, 29(12), 1988–2000.PubMedPubMedCentralCrossRef Liu, Q., You, B., Meng, J., Huang, C. P., Dong, G., Wang, R., et al. (2022). Targeting the androgen receptor to enhance NK cell killing efficacy in bladder cancer by modulating ADAR2/circ_0001005/PD-L1 signaling. Cancer Gene Therapy, 29(12), 1988–2000.PubMedPubMedCentralCrossRef
102.
go back to reference Meng, M., & Wu, Y. C. (2022). LMX1B activated circular RNA GFRA1 modulates the tumorigenic properties and immune escape of prostate cancer. Journal of Immunology Research, 2022, 7375879.PubMedPubMedCentralCrossRef Meng, M., & Wu, Y. C. (2022). LMX1B activated circular RNA GFRA1 modulates the tumorigenic properties and immune escape of prostate cancer. Journal of Immunology Research, 2022, 7375879.PubMedPubMedCentralCrossRef
103.
go back to reference Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458.PubMedCrossRef Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nature Reviews Cancer, 3(6), 453–458.PubMedCrossRef
104.
go back to reference Liu, Q., Zhang, H., Jiang, X., Qian, C., Liu, Z., & Luo, D. (2017). Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Molecular Cancer, 16(1), 176.PubMedPubMedCentralCrossRef Liu, Q., Zhang, H., Jiang, X., Qian, C., Liu, Z., & Luo, D. (2017). Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Molecular Cancer, 16(1), 176.PubMedPubMedCentralCrossRef
105.
go back to reference Brodt, P. (2016). Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 22(24), 5971–5982.PubMedCrossRef Brodt, P. (2016). Role of the microenvironment in liver metastasis: from pre- to prometastatic niches. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research, 22(24), 5971–5982.PubMedCrossRef
106.
go back to reference Adekoya, T. O., & Richardson, R. M. (2020). Cytokines and chemokines as mediators of prostate cancer metastasis. International Journal of Molecular Sciences, 21(12). Adekoya, T. O., & Richardson, R. M. (2020). Cytokines and chemokines as mediators of prostate cancer metastasis. International Journal of Molecular Sciences, 21(12).
108.
go back to reference Bianchi, M., Sun, M., Jeldres, C., Shariat, S. F., Trinh, Q. D., Briganti, A., et al. (2012). Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 23(4), 973–980.PubMedCrossRef Bianchi, M., Sun, M., Jeldres, C., Shariat, S. F., Trinh, Q. D., Briganti, A., et al. (2012). Distribution of metastatic sites in renal cell carcinoma: a population-based analysis. Annals of Oncology : Official Journal of the European Society for Medical Oncology, 23(4), 973–980.PubMedCrossRef
109.
go back to reference Grünwald, V., Eberhardt, B., Bex, A., Flörcken, A., Gauler, T., Derlin, T., et al. (2018). An interdisciplinary consensus on the management of bone metastases from renal cell carcinoma. Nature Reviews Urology, 15(8), 511–521.PubMedPubMedCentralCrossRef Grünwald, V., Eberhardt, B., Bex, A., Flörcken, A., Gauler, T., Derlin, T., et al. (2018). An interdisciplinary consensus on the management of bone metastases from renal cell carcinoma. Nature Reviews Urology, 15(8), 511–521.PubMedPubMedCentralCrossRef
110.
go back to reference Chow, W. H., Dong, L. M., & Devesa, S. S. (2010). Epidemiology and risk factors for kidney cancer. Nature Reviews Urology, 7(5), 245–257.PubMedCrossRef Chow, W. H., Dong, L. M., & Devesa, S. S. (2010). Epidemiology and risk factors for kidney cancer. Nature Reviews Urology, 7(5), 245–257.PubMedCrossRef
111.
go back to reference Gong, D., Sun, Y., Guo, C., Sheu, T. J., Zhai, W., Zheng, J., et al. (2021). Androgen receptor decreases renal cell carcinoma bone metastases via suppressing the osteolytic formation through altering a novel circEXOC7 regulatory axis. Clinical and Translational Medicine, 11(3), e353.PubMedCrossRef Gong, D., Sun, Y., Guo, C., Sheu, T. J., Zhai, W., Zheng, J., et al. (2021). Androgen receptor decreases renal cell carcinoma bone metastases via suppressing the osteolytic formation through altering a novel circEXOC7 regulatory axis. Clinical and Translational Medicine, 11(3), e353.PubMedCrossRef
112.
go back to reference Altorki, N. K., Markowitz, G. J., Gao, D., Port, J. L., Saxena, A., Stiles, B., et al. (2019). The lung microenvironment: an important regulator of tumour growth and metastasis. Nature Reviews Cancer, 19(1), 9–31.PubMedCrossRef Altorki, N. K., Markowitz, G. J., Gao, D., Port, J. L., Saxena, A., Stiles, B., et al. (2019). The lung microenvironment: an important regulator of tumour growth and metastasis. Nature Reviews Cancer, 19(1), 9–31.PubMedCrossRef
113.
go back to reference Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.PubMedCrossRef Erler, J. T., Bennewith, K. L., Cox, T. R., Lang, G., Bird, D., Koong, A., et al. (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1), 35–44.PubMedCrossRef
114.
go back to reference Liu, Y., Gu, Y., Han, Y., Zhang, Q., Jiang, Z., Zhang, X., et al. (2016). Tumor exosomal rnas promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell, 30(2), 243–256.PubMedCrossRef Liu, Y., Gu, Y., Han, Y., Zhang, Q., Jiang, Z., Zhang, X., et al. (2016). Tumor exosomal rnas promote lung pre-metastatic niche formation by activating alveolar epithelial TLR3 to recruit neutrophils. Cancer Cell, 30(2), 243–256.PubMedCrossRef
115.
go back to reference Li, W., Song, Y. Y., Rao, T., Yu, W. M., Ruan, Y., Ning, J. Z., et al. (2022). CircCSNK1G3 up-regulates miR-181b to promote growth and metastasis via TIMP3-mediated epithelial to mesenchymal transitions in renal cell carcinoma. Journal of Cellular and Molecular Medicine, 26(6), 1729–1741.PubMedCrossRef Li, W., Song, Y. Y., Rao, T., Yu, W. M., Ruan, Y., Ning, J. Z., et al. (2022). CircCSNK1G3 up-regulates miR-181b to promote growth and metastasis via TIMP3-mediated epithelial to mesenchymal transitions in renal cell carcinoma. Journal of Cellular and Molecular Medicine, 26(6), 1729–1741.PubMedCrossRef
116.
go back to reference Liu, H., Hu, G., Wang, Z., Liu, Q., Zhang, J., Chen, Y., et al. (2020). circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis. Theranostics, 10(23), 10791–10807.PubMedCrossRef Liu, H., Hu, G., Wang, Z., Liu, Q., Zhang, J., Chen, Y., et al. (2020). circPTCH1 promotes invasion and metastasis in renal cell carcinoma via regulating miR-485-5p/MMP14 axis. Theranostics, 10(23), 10791–10807.PubMedCrossRef
117.
go back to reference Lv, Q., Wang, G., Zhang, Y., Shen, A., Tang, J., Sun, Y., et al. (2021). CircAGAP1 promotes tumor progression by sponging miR-15-5p in clear cell renal cell carcinoma. Journal of Experimental & Clinical Cancer Research : CR, 40(1), 76.CrossRef Lv, Q., Wang, G., Zhang, Y., Shen, A., Tang, J., Sun, Y., et al. (2021). CircAGAP1 promotes tumor progression by sponging miR-15-5p in clear cell renal cell carcinoma. Journal of Experimental & Clinical Cancer Research : CR, 40(1), 76.CrossRef
118.
go back to reference Liang, Y., Cen, J., Huang, Y., Fang, Y., Wang, Y., Shu, G., et al. (2022). CircNTNG1 inhibits renal cell carcinoma progression via HOXA5-mediated epigenetic silencing of Slug. Molecular Cancer, 21(1), 224.PubMedCrossRef Liang, Y., Cen, J., Huang, Y., Fang, Y., Wang, Y., Shu, G., et al. (2022). CircNTNG1 inhibits renal cell carcinoma progression via HOXA5-mediated epigenetic silencing of Slug. Molecular Cancer, 21(1), 224.PubMedCrossRef
119.
go back to reference Zhao, B., Huang, C., Pan, J., Hu, H., Liu, X., Zhang, K., et al. (2022). circPLIN2 promotes clear cell renal cell carcinoma progression by binding IGF2BP proteins and miR-199a-3p. Cell Death & Disease, 13(12), 1030.CrossRef Zhao, B., Huang, C., Pan, J., Hu, H., Liu, X., Zhang, K., et al. (2022). circPLIN2 promotes clear cell renal cell carcinoma progression by binding IGF2BP proteins and miR-199a-3p. Cell Death & Disease, 13(12), 1030.CrossRef
120.
go back to reference Xie, F., Li, Y., Wang, M., Huang, C., Tao, D., Zheng, F., et al. (2018). Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Molecular Cancer, 17(1), 144.PubMedCrossRef Xie, F., Li, Y., Wang, M., Huang, C., Tao, D., Zheng, F., et al. (2018). Circular RNA BCRC-3 suppresses bladder cancer proliferation through miR-182-5p/p27 axis. Molecular Cancer, 17(1), 144.PubMedCrossRef
121.
go back to reference Bi, J., Liu, H., Dong, W., Xie, W., He, Q., Cai, Z., et al. (2019). Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Molecular Cancer, 18(1), 133.PubMedCrossRef Bi, J., Liu, H., Dong, W., Xie, W., He, Q., Cai, Z., et al. (2019). Circular RNA circ-ZKSCAN1 inhibits bladder cancer progression through miR-1178-3p/p21 axis and acts as a prognostic factor of recurrence. Molecular Cancer, 18(1), 133.PubMedCrossRef
122.
go back to reference Zhu, J., Luo, Y., Zhao, Y., Kong, Y., Zheng, H., Li, Y., et al. (2021). circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling. Molecular Therapy : The Journal of the American Society of Gene Therapy, 29(5), 1838–1852.PubMedCrossRef Zhu, J., Luo, Y., Zhao, Y., Kong, Y., Zheng, H., Li, Y., et al. (2021). circEHBP1 promotes lymphangiogenesis and lymphatic metastasis of bladder cancer via miR-130a-3p/TGFβR1/VEGF-D signaling. Molecular Therapy : The Journal of the American Society of Gene Therapy, 29(5), 1838–1852.PubMedCrossRef
123.
go back to reference Su, H., Tao, T., Yang, Z., Kang, X., Zhang, X., Kang, D., et al. (2019). Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Molecular Cancer, 18(1), 27.PubMedCrossRef Su, H., Tao, T., Yang, Z., Kang, X., Zhang, X., Kang, D., et al. (2019). Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder carcinoma progression. Molecular Cancer, 18(1), 27.PubMedCrossRef
124.
go back to reference Gu, C., Zhou, N., Wang, Z., Li, G., Kou, Y., Yu, S., et al. (2018). circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Molecular Therapy--Nucleic Acids, 13, 633–641.PubMedCrossRef Gu, C., Zhou, N., Wang, Z., Li, G., Kou, Y., Yu, S., et al. (2018). circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-targeting peptide. Molecular Therapy--Nucleic Acids, 13, 633–641.PubMedCrossRef
125.
go back to reference Li, Y., Kong, Y., An, M., Luo, Y., Zheng, H., Lin, Y., et al. (2023). ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. Journal of Experimental & Clinical Cancer Research : CR, 42(1), 191.CrossRef Li, Y., Kong, Y., An, M., Luo, Y., Zheng, H., Lin, Y., et al. (2023). ZEB1-mediated biogenesis of circNIPBL sustains the metastasis of bladder cancer via Wnt/β-catenin pathway. Journal of Experimental & Clinical Cancer Research : CR, 42(1), 191.CrossRef
126.
go back to reference Kong, Z., Wan, X., Lu, Y., Zhang, Y., Huang, Y., Xu, Y., et al. (2020). Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. Journal of Cellular and Molecular Medicine, 24(1), 799–813.PubMedCrossRef Kong, Z., Wan, X., Lu, Y., Zhang, Y., Huang, Y., Xu, Y., et al. (2020). Circular RNA circFOXO3 promotes prostate cancer progression through sponging miR-29a-3p. Journal of Cellular and Molecular Medicine, 24(1), 799–813.PubMedCrossRef
127.
go back to reference Lilja, H., Ulmert, D., & Vickers, A. J. (2008). Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nature Reviews Cancer, 8(4), 268–278.PubMedCrossRef Lilja, H., Ulmert, D., & Vickers, A. J. (2008). Prostate-specific antigen and prostate cancer: Prediction, detection and monitoring. Nature Reviews Cancer, 8(4), 268–278.PubMedCrossRef
128.
go back to reference Unger, F. T., Witte, I., & David, K. A. (2015). Prediction of individual response to anticancer therapy: historical and future perspectives. Cellular and Molecular Life Sciences: CMLS, 72(4), 729–757.PubMedCrossRef Unger, F. T., Witte, I., & David, K. A. (2015). Prediction of individual response to anticancer therapy: historical and future perspectives. Cellular and Molecular Life Sciences: CMLS, 72(4), 729–757.PubMedCrossRef
129.
go back to reference Ragnarsson, O. (2020). Cushing’s syndrome - Disease monitoring: Recurrence, surveillance with biomarkers or imaging studies. Best Practice & Research. Clinical Endocrinology & Metabolism, 34(2), 101382.CrossRef Ragnarsson, O. (2020). Cushing’s syndrome - Disease monitoring: Recurrence, surveillance with biomarkers or imaging studies. Best Practice & Research. Clinical Endocrinology & Metabolism, 34(2), 101382.CrossRef
130.
go back to reference Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., et al. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY), 19(2), 141–157.CrossRef Jeck, W. R., Sorrentino, J. A., Wang, K., Slevin, M. K., Burd, C. E., Liu, J., et al. (2013). Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA (New York, NY), 19(2), 141–157.CrossRef
131.
go back to reference Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., et al. (2011). Global quantification of mammalian gene expression control. Nature, 473(7347), 337–342.PubMedCrossRef Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., et al. (2011). Global quantification of mammalian gene expression control. Nature, 473(7347), 337–342.PubMedCrossRef
132.
go back to reference Rybak-Wolf, A., Stottmeister, C., Glažar, P., Jens, M., Pino, N., Giusti, S., et al. (2015). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell, 58(5), 870–885.PubMedCrossRef Rybak-Wolf, A., Stottmeister, C., Glažar, P., Jens, M., Pino, N., Giusti, S., et al. (2015). Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Molecular Cell, 58(5), 870–885.PubMedCrossRef
133.
go back to reference Shen, T., Han, M., Wei, G., & Ni, T. (2015). An intriguing RNA species--Perspectives of circularized RNA. Protein & Cell, 6(12), 871–880.CrossRef Shen, T., Han, M., Wei, G., & Ni, T. (2015). An intriguing RNA species--Perspectives of circularized RNA. Protein & Cell, 6(12), 871–880.CrossRef
134.
go back to reference Wang, P. L., Bao, Y., Yee, M. C., Barrett, S. P., Hogan, G. J., Olsen, M. N., et al. (2014). Circular RNA is expressed across the eukaryotic tree of life. PLoS One, 9(6), e90859.PubMedPubMedCentralCrossRef Wang, P. L., Bao, Y., Yee, M. C., Barrett, S. P., Hogan, G. J., Olsen, M. N., et al. (2014). Circular RNA is expressed across the eukaryotic tree of life. PLoS One, 9(6), e90859.PubMedPubMedCentralCrossRef
135.
go back to reference Danan, M., Schwartz, S., Edelheit, S., & Sorek, R. (2012). Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Research, 40(7), 3131–3142.PubMedCrossRef Danan, M., Schwartz, S., Edelheit, S., & Sorek, R. (2012). Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Research, 40(7), 3131–3142.PubMedCrossRef
136.
go back to reference Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., et al. (2015). Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Research, 25(8), 981–984.PubMedPubMedCentralCrossRef Li, Y., Zheng, Q., Bao, C., Li, S., Guo, W., Zhao, J., et al. (2015). Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis. Cell Research, 25(8), 981–984.PubMedPubMedCentralCrossRef
137.
go back to reference Luo, J., Li, Y., Zheng, W., Xie, N., Shi, Y., Long, Z., et al. (2019). Characterization of a Prostate- and Prostate Cancer-Specific Circular RNA Encoded by the Androgen Receptor Gene. Molecular Therapy--Nucleic Acids, 18, 916–926.PubMedPubMedCentralCrossRef Luo, J., Li, Y., Zheng, W., Xie, N., Shi, Y., Long, Z., et al. (2019). Characterization of a Prostate- and Prostate Cancer-Specific Circular RNA Encoded by the Androgen Receptor Gene. Molecular Therapy--Nucleic Acids, 18, 916–926.PubMedPubMedCentralCrossRef
138.
go back to reference Dahl, M., Husby, S., Eskelund, C. W., Besenbacher, S., Fjelstrup, S., Côme, C., et al. (2022). Expression patterns and prognostic potential of circular RNAs in mantle cell lymphoma: A study of younger patients from the MCL2 and MCL3 clinical trials. Leukemia, 36(1), 177–188.PubMedCrossRef Dahl, M., Husby, S., Eskelund, C. W., Besenbacher, S., Fjelstrup, S., Côme, C., et al. (2022). Expression patterns and prognostic potential of circular RNAs in mantle cell lymphoma: A study of younger patients from the MCL2 and MCL3 clinical trials. Leukemia, 36(1), 177–188.PubMedCrossRef
139.
go back to reference Zuo, L., Zhang, L., Zu, J., Wang, Z., Han, B., Chen, B., et al. (2020). Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke, 51(1), 319–323.PubMedCrossRef Zuo, L., Zhang, L., Zu, J., Wang, Z., Han, B., Chen, B., et al. (2020). Circulating circular RNAs as biomarkers for the diagnosis and prediction of outcomes in acute ischemic stroke. Stroke, 51(1), 319–323.PubMedCrossRef
140.
go back to reference Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., et al. (2020). Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Research, 48(D1), D1031-D1d41.PubMed Wang, Y., Zhang, S., Li, F., Zhou, Y., Zhang, Y., Wang, Z., et al. (2020). Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics. Nucleic Acids Research, 48(D1), D1031-D1d41.PubMed
141.
go back to reference Williford, J. M., Wu, J., Ren, Y., Archang, M. M., Leong, K. W., & Mao, H. Q. (2014). Recent advances in nanoparticle-mediated siRNA delivery. Annual Review of Biomedical Engineering, 16, 347–370.PubMedCrossRef Williford, J. M., Wu, J., Ren, Y., Archang, M. M., Leong, K. W., & Mao, H. Q. (2014). Recent advances in nanoparticle-mediated siRNA delivery. Annual Review of Biomedical Engineering, 16, 347–370.PubMedCrossRef
142.
go back to reference Yu, C., Zhang, Y., Wang, N., Wei, W., Cao, K., Zhang, Q., et al. (2022). Treatment of bladder cancer by geoinspired synthetic chrysotile nanocarrier-delivered circPRMT5 siRNA. Biomaterials Research, 26(1), 6.PubMedCrossRef Yu, C., Zhang, Y., Wang, N., Wei, W., Cao, K., Zhang, Q., et al. (2022). Treatment of bladder cancer by geoinspired synthetic chrysotile nanocarrier-delivered circPRMT5 siRNA. Biomaterials Research, 26(1), 6.PubMedCrossRef
143.
go back to reference Mao, W., Wang, K., Xu, B., Zhang, H., Sun, S., Hu, Q., et al. (2021). ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma. Molecular Cancer, 20(1), 142.PubMedCrossRef Mao, W., Wang, K., Xu, B., Zhang, H., Sun, S., Hu, Q., et al. (2021). ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma. Molecular Cancer, 20(1), 142.PubMedCrossRef
144.
go back to reference Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.PubMedPubMedCentralCrossRef Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281–2308.PubMedPubMedCentralCrossRef
145.
go back to reference Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., et al. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications, 7, 11215.PubMedPubMedCentralCrossRef Zheng, Q., Bao, C., Guo, W., Li, S., Chen, J., Chen, B., et al. (2016). Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nature Communications, 7, 11215.PubMedPubMedCentralCrossRef
146.
go back to reference Piwecka, M., Glažar, P., Hernandez-Miranda, L. R., Memczak, S., Wolf, S. A., Rybak-Wolf, A., et al. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science (New York, NY), 357(6357). Piwecka, M., Glažar, P., Hernandez-Miranda, L. R., Memczak, S., Wolf, S. A., Rybak-Wolf, A., et al. (2017). Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science (New York, NY), 357(6357).
147.
go back to reference Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., et al. (2019). Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 139(25), 2857–2876.PubMedPubMedCentralCrossRef Huang, S., Li, X., Zheng, H., Si, X., Li, B., Wei, G., et al. (2019). Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation, 139(25), 2857–2876.PubMedPubMedCentralCrossRef
148.
go back to reference Li, S., Li, X., Xue, W., Zhang, L., Yang, L. Z., Cao, S. M., et al. (2021). Screening for functional circular RNAs using the CRISPR-Cas13 system. Nature Methods, 18(1), 51–59.PubMedCrossRef Li, S., Li, X., Xue, W., Zhang, L., Yang, L. Z., Cao, S. M., et al. (2021). Screening for functional circular RNAs using the CRISPR-Cas13 system. Nature Methods, 18(1), 51–59.PubMedCrossRef
149.
go back to reference Bennett, C. F., & Swayze, E. E. (2010). RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annual Review of Pharmacology and Toxicology, 50, 259–293.PubMedCrossRef Bennett, C. F., & Swayze, E. E. (2010). RNA targeting therapeutics: Molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annual Review of Pharmacology and Toxicology, 50, 259–293.PubMedCrossRef
150.
go back to reference Wesselhoeft, R. A., Kowalski, P. S., & Anderson, D. G. (2018). Engineering circular RNA for potent and stable translation in eukaryotic cells. Nature Communications, 9(1), 2629.PubMedPubMedCentralCrossRef Wesselhoeft, R. A., Kowalski, P. S., & Anderson, D. G. (2018). Engineering circular RNA for potent and stable translation in eukaryotic cells. Nature Communications, 9(1), 2629.PubMedPubMedCentralCrossRef
151.
go back to reference Verduci, L., Strano, S., Yarden, Y., & Blandino, G. (2019). The circRNA-microRNA code: Emerging implications for cancer diagnosis and treatment. Molecular Oncology, 13(4), 669–680.PubMedPubMedCentralCrossRef Verduci, L., Strano, S., Yarden, Y., & Blandino, G. (2019). The circRNA-microRNA code: Emerging implications for cancer diagnosis and treatment. Molecular Oncology, 13(4), 669–680.PubMedPubMedCentralCrossRef
153.
go back to reference Wurster, S. E., & Maher, L. J., 3rd. (2008). Selection and characterization of anti-NF-kappaB p65 RNA aptamers. RNA (New York, NY), 14(6), 1037–1047.CrossRef Wurster, S. E., & Maher, L. J., 3rd. (2008). Selection and characterization of anti-NF-kappaB p65 RNA aptamers. RNA (New York, NY), 14(6), 1037–1047.CrossRef
154.
go back to reference Filonov, G. S., Moon, J. D., Svensen, N., & Jaffrey, S. R. (2014). Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. Journal of the American Chemical Society, 136(46), 16299–16308.PubMedPubMedCentralCrossRef Filonov, G. S., Moon, J. D., Svensen, N., & Jaffrey, S. R. (2014). Broccoli: Rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. Journal of the American Chemical Society, 136(46), 16299–16308.PubMedPubMedCentralCrossRef
155.
go back to reference Pfafenrot, C., Schneider, T., Müller, C., Hung, L. H., Schreiner, S., Ziebuhr, J., et al. (2021). Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs. Nucleic Acids Research, 49(21), 12502–12516.PubMedPubMedCentralCrossRef Pfafenrot, C., Schneider, T., Müller, C., Hung, L. H., Schreiner, S., Ziebuhr, J., et al. (2021). Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs. Nucleic Acids Research, 49(21), 12502–12516.PubMedPubMedCentralCrossRef
156.
go back to reference Qu, L., Yi, Z., Shen, Y., Lin, L., Chen, F., Xu, Y., et al. (2022). Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 185(10), 1728–44.e16.PubMedPubMedCentralCrossRef Qu, L., Yi, Z., Shen, Y., Lin, L., Chen, F., Xu, Y., et al. (2022). Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell, 185(10), 1728–44.e16.PubMedPubMedCentralCrossRef
157.
go back to reference Greene, J., Baird, A. M., Brady, L., Lim, M., Gray, S. G., McDermott, R., et al. (2017). Circular RNAs: Biogenesis, function and role in human diseases. Frontiers in Molecular Biosciences, 4, 38.PubMedPubMedCentralCrossRef Greene, J., Baird, A. M., Brady, L., Lim, M., Gray, S. G., McDermott, R., et al. (2017). Circular RNAs: Biogenesis, function and role in human diseases. Frontiers in Molecular Biosciences, 4, 38.PubMedPubMedCentralCrossRef
158.
go back to reference Shim, M. S., & Kwon, Y. J. (2010). Efficient and targeted delivery of siRNA in vivo. The FEBS Journal, 277(23), 4814–4827.PubMedCrossRef Shim, M. S., & Kwon, Y. J. (2010). Efficient and targeted delivery of siRNA in vivo. The FEBS Journal, 277(23), 4814–4827.PubMedCrossRef
159.
go back to reference Huang, L., & Liu, Y. (2011). In vivo delivery of RNAi with lipid-based nanoparticles. Annual Review of Biomedical Engineering, 13, 507–530.PubMedCrossRef Huang, L., & Liu, Y. (2011). In vivo delivery of RNAi with lipid-based nanoparticles. Annual Review of Biomedical Engineering, 13, 507–530.PubMedCrossRef
160.
go back to reference Fan, Q., Yang, L., Zhang, X., Peng, X., Wei, S., Su, D., et al. (2018). The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Letters, 414, 107–115.PubMedCrossRef Fan, Q., Yang, L., Zhang, X., Peng, X., Wei, S., Su, D., et al. (2018). The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Letters, 414, 107–115.PubMedCrossRef
161.
go back to reference Wang, A. Z., Langer, R., & Farokhzad, O. C. (2012). Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 63, 185–198.PubMedCrossRef Wang, A. Z., Langer, R., & Farokhzad, O. C. (2012). Nanoparticle delivery of cancer drugs. Annual Review of Medicine, 63, 185–198.PubMedCrossRef
162.
go back to reference Du, W. W., Fang, L., Yang, W., Wu, N., Awan, F. M., Yang, Z., et al. (2017). Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death and Differentiation, 24(2), 357–370.PubMedCrossRef Du, W. W., Fang, L., Yang, W., Wu, N., Awan, F. M., Yang, Z., et al. (2017). Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death and Differentiation, 24(2), 357–370.PubMedCrossRef
163.
go back to reference Liu, X., Zhang, Y., Zhou, S., Dain, L., Mei, L., & Zhu, G. (2022). Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. Journal of Controlled Release: Official Journal of the Controlled Release Society, 348, 84–94.PubMedCrossRef Liu, X., Zhang, Y., Zhou, S., Dain, L., Mei, L., & Zhu, G. (2022). Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. Journal of Controlled Release: Official Journal of the Controlled Release Society, 348, 84–94.PubMedCrossRef
164.
go back to reference Li, H., Peng, K., Yang, K., Ma, W., Qi, S., Yu, X., et al. (2022). Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics, 12(14), 6422–6436.PubMedPubMedCentralCrossRef Li, H., Peng, K., Yang, K., Ma, W., Qi, S., Yu, X., et al. (2022). Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics, 12(14), 6422–6436.PubMedPubMedCentralCrossRef
Metadata
Title
The role of circular RNA during the urological cancer metastasis: exploring regulatory mechanisms and potential therapeutic targets
Authors
Yan Xu
Zhipeng Gao
Xiaoyu Sun
Jun Li
Toshinori Ozaki
Du Shi
Meng Yu
Yuyan Zhu
Publication date
01-04-2024
Publisher
Springer US
Published in
Cancer and Metastasis Reviews
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-024-10182-x
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine