Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2019

Open Access 01-06-2019 | Metastasis

Cause and effect of microenvironmental acidosis on bone metastases

Authors: Sofia Avnet, Gemma Di Pompo, Silvia Lemma, Nicola Baldini

Published in: Cancer and Metastasis Reviews | Issue 1-2/2019

Login to get access

Abstract

Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients.
Literature
1.
2.
go back to reference Mercadante, S. (1997). Malignant bone pain: pathophysiology and treatment. Pain, 69(1–2), 1–18.CrossRefPubMed Mercadante, S. (1997). Malignant bone pain: pathophysiology and treatment. Pain, 69(1–2), 1–18.CrossRefPubMed
3.
go back to reference Rucci, N., & Teti, A. (2018). Osteomimicry: how the seed grows in the soil. Calcified Tissue International, 102(2), 131–140.CrossRefPubMed Rucci, N., & Teti, A. (2018). Osteomimicry: how the seed grows in the soil. Calcified Tissue International, 102(2), 131–140.CrossRefPubMed
4.
go back to reference Clezardin, P. (2017). Pathophysiology of bone metastases from solid malignancies. Joint, Bone, Spine, 84(6), 677–684.CrossRef Clezardin, P. (2017). Pathophysiology of bone metastases from solid malignancies. Joint, Bone, Spine, 84(6), 677–684.CrossRef
6.
go back to reference Compton, J. T., & Lee, F. Y. (2014). A review of osteocyte function and the emerging importance of sclerostin. The Journal of Bone and Joint Surgery. American Volume, 96(19), 1659–1668.CrossRefPubMedPubMedCentral Compton, J. T., & Lee, F. Y. (2014). A review of osteocyte function and the emerging importance of sclerostin. The Journal of Bone and Joint Surgery. American Volume, 96(19), 1659–1668.CrossRefPubMedPubMedCentral
7.
go back to reference Sottnik, J. L., Dai, J., Zhang, H., Campbell, B., & Keller, E. T. (2015). Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Research, 75(11), 2151–2158.CrossRefPubMedPubMedCentral Sottnik, J. L., Dai, J., Zhang, H., Campbell, B., & Keller, E. T. (2015). Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer Research, 75(11), 2151–2158.CrossRefPubMedPubMedCentral
8.
go back to reference Yoneda, T., Hiasa, M., & Okui, T. (2018). Crosstalk between sensory nerves and cancer in bone. Current Osteoporosis Reports, 16(6), 648–656.CrossRefPubMed Yoneda, T., Hiasa, M., & Okui, T. (2018). Crosstalk between sensory nerves and cancer in bone. Current Osteoporosis Reports, 16(6), 648–656.CrossRefPubMed
10.
go back to reference Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B., & Gillies, R. J. (2006). Acid-mediated tumor invasion: a multidisciplinary study. Cancer Research, 66(10), 5216–5223.CrossRefPubMed Gatenby, R. A., Gawlinski, E. T., Gmitro, A. F., Kaylor, B., & Gillies, R. J. (2006). Acid-mediated tumor invasion: a multidisciplinary study. Cancer Research, 66(10), 5216–5223.CrossRefPubMed
11.
go back to reference Kolosenko, I., Avnet, S., Baldini, N., Viklund, J., & De Milito, A. (2017). Therapeutic implications of tumor interstitial acidification. Seminars in Cancer Biology, 43, 119–133.CrossRefPubMed Kolosenko, I., Avnet, S., Baldini, N., Viklund, J., & De Milito, A. (2017). Therapeutic implications of tumor interstitial acidification. Seminars in Cancer Biology, 43, 119–133.CrossRefPubMed
12.
go back to reference Corbet, C., & Feron, O. (2017). Tumour acidosis: from the passenger to the driver’s seat. Nature Reviews. Cancer, 17(10), 577–593.CrossRefPubMed Corbet, C., & Feron, O. (2017). Tumour acidosis: from the passenger to the driver’s seat. Nature Reviews. Cancer, 17(10), 577–593.CrossRefPubMed
13.
go back to reference Lloyd, M. C., Cunningham, J. J., Bui, M. M., Gillies, R. J., Brown, J. S., & Gatenby, R. A. (2016). Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Research, 76(11), 3136–3144.CrossRefPubMedPubMedCentral Lloyd, M. C., Cunningham, J. J., Bui, M. M., Gillies, R. J., Brown, J. S., & Gatenby, R. A. (2016). Darwinian dynamics of intratumoral heterogeneity: not solely random mutations but also variable environmental selection forces. Cancer Research, 76(11), 3136–3144.CrossRefPubMedPubMedCentral
14.
go back to reference Mantyh, P. W., Clohisy, D. R., Koltzenburg, M., & Hunt, S. P. (2002). Molecular mechanisms of cancer pain. Nature Reviews. Cancer, 2(3), 201–209.CrossRefPubMed Mantyh, P. W., Clohisy, D. R., Koltzenburg, M., & Hunt, S. P. (2002). Molecular mechanisms of cancer pain. Nature Reviews. Cancer, 2(3), 201–209.CrossRefPubMed
15.
go back to reference Kedika, R. R., Souza, R. F., & Spechler, S. J. (2009). Potential anti-inflammatory effects of proton pump inhibitors: a review and discussion of the clinical implications. Digestive Diseases and Sciences, 54(11), 2312–2317.CrossRefPubMedPubMedCentral Kedika, R. R., Souza, R. F., & Spechler, S. J. (2009). Potential anti-inflammatory effects of proton pump inhibitors: a review and discussion of the clinical implications. Digestive Diseases and Sciences, 54(11), 2312–2317.CrossRefPubMedPubMedCentral
16.
go back to reference Rousselle, A. V., & Heymann, D. (2002). Osteoclastic acidification pathways during bone resorption. Bone, 30(4), 533–540.CrossRefPubMed Rousselle, A. V., & Heymann, D. (2002). Osteoclastic acidification pathways during bone resorption. Bone, 30(4), 533–540.CrossRefPubMed
17.
go back to reference Avnet, S., Di Pompo, G., Lemma, S., Salerno, M., Perut, F., Bonuccelli, G., et al. (2013). V-ATPase is a candidate therapeutic target for Ewing sarcoma. Biochimica et Biophysica Acta, 1832(8), 1105–1116.CrossRefPubMed Avnet, S., Di Pompo, G., Lemma, S., Salerno, M., Perut, F., Bonuccelli, G., et al. (2013). V-ATPase is a candidate therapeutic target for Ewing sarcoma. Biochimica et Biophysica Acta, 1832(8), 1105–1116.CrossRefPubMed
18.
go back to reference Martinez-Zaguilan, R., Martinez, G. M., Gomez, A., Hendrix, M. J., & Gillies, R. J. (1998). Distinct regulation of pHin and [Ca2+]in in human melanoma cells with different metastatic potential. Journal of Cellular Physiology, 176(1), 196–205.CrossRefPubMed Martinez-Zaguilan, R., Martinez, G. M., Gomez, A., Hendrix, M. J., & Gillies, R. J. (1998). Distinct regulation of pHin and [Ca2+]in in human melanoma cells with different metastatic potential. Journal of Cellular Physiology, 176(1), 196–205.CrossRefPubMed
19.
go back to reference Mazhab-Jafari, M. T., Rohou, A., Schmidt, C., Bueler, S. A., Benlekbir, S., Robinson, C. V., et al. (2016). Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature, 539(7627), 118–122.CrossRefPubMedPubMedCentral Mazhab-Jafari, M. T., Rohou, A., Schmidt, C., Bueler, S. A., Benlekbir, S., Robinson, C. V., et al. (2016). Atomic model for the membrane-embedded VO motor of a eukaryotic V-ATPase. Nature, 539(7627), 118–122.CrossRefPubMedPubMedCentral
20.
go back to reference Kane, P. M. (1995). Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. The Journal of Biological Chemistry, 270(28), 17025–17032.PubMed Kane, P. M. (1995). Disassembly and reassembly of the yeast vacuolar H(+)-ATPase in vivo. The Journal of Biological Chemistry, 270(28), 17025–17032.PubMed
21.
go back to reference Xu, T., Vasilyeva, E., & Forgac, M. (1999). Subunit interactions in the clathrin-coated vesicle vacuolar (H(+))-ATPase complex. The Journal of Biological Chemistry, 274(41), 28909–28915.CrossRefPubMed Xu, T., Vasilyeva, E., & Forgac, M. (1999). Subunit interactions in the clathrin-coated vesicle vacuolar (H(+))-ATPase complex. The Journal of Biological Chemistry, 274(41), 28909–28915.CrossRefPubMed
22.
go back to reference Sumner, J. P., Dow, J. A., Earley, F. G., Klein, U., Jager, D., & Wieczorek, H. (1995). Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. The Journal of Biological Chemistry, 270(10), 5649–5653.CrossRefPubMed Sumner, J. P., Dow, J. A., Earley, F. G., Klein, U., Jager, D., & Wieczorek, H. (1995). Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. The Journal of Biological Chemistry, 270(10), 5649–5653.CrossRefPubMed
23.
go back to reference Hinton, A., Sennoune, S. R., Bond, S., Fang, M., Reuveni, M., Sahagian, G. G., et al. (2009). Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. The Journal of Biological Chemistry, 284(24), 16400–16408.CrossRefPubMedPubMedCentral Hinton, A., Sennoune, S. R., Bond, S., Fang, M., Reuveni, M., Sahagian, G. G., et al. (2009). Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. The Journal of Biological Chemistry, 284(24), 16400–16408.CrossRefPubMedPubMedCentral
24.
go back to reference Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y., & Futai, M. (2000). Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. The Journal of Biological Chemistry, 275(12), 8760–8765.CrossRefPubMed Toyomura, T., Oka, T., Yamaguchi, C., Wada, Y., & Futai, M. (2000). Three subunit a isoforms of mouse vacuolar H(+)-ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. The Journal of Biological Chemistry, 275(12), 8760–8765.CrossRefPubMed
25.
go back to reference Whitton, B., Okamoto, H., Packham, G., & Crabb, S. J. (2018). Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Medicine, 7(8), 3800–3811.CrossRefPubMedPubMedCentral Whitton, B., Okamoto, H., Packham, G., & Crabb, S. J. (2018). Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Medicine, 7(8), 3800–3811.CrossRefPubMedPubMedCentral
26.
go back to reference Sennoune, S. R., Bakunts, K., Martinez, G. M., Chua-Tuan, J. L., Kebir, Y., Attaya, M. N., et al. (2004). Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. American Journal of Physiology. Cell Physiology, 286(6), C1443–C1452.CrossRefPubMed Sennoune, S. R., Bakunts, K., Martinez, G. M., Chua-Tuan, J. L., Kebir, Y., Attaya, M. N., et al. (2004). Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. American Journal of Physiology. Cell Physiology, 286(6), C1443–C1452.CrossRefPubMed
27.
go back to reference Nishisho, T., Hata, K., Nakanishi, M., Morita, Y., Sun-Wada, G. H., Wada, Y., et al. (2011). The a3 isoform vacuolar type H(+)-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Molecular Cancer Research, 9(7), 845–855.CrossRefPubMed Nishisho, T., Hata, K., Nakanishi, M., Morita, Y., Sun-Wada, G. H., Wada, Y., et al. (2011). The a3 isoform vacuolar type H(+)-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Molecular Cancer Research, 9(7), 845–855.CrossRefPubMed
28.
go back to reference Capecci, J., & Forgac, M. (2013). The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. The Journal of Biological Chemistry, 288(45), 32731–32741.CrossRefPubMedPubMedCentral Capecci, J., & Forgac, M. (2013). The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. The Journal of Biological Chemistry, 288(45), 32731–32741.CrossRefPubMedPubMedCentral
29.
go back to reference McConnell, M., Feng, S., Chen, W., Zhu, G., Shen, D., Ponnazhagan, S., et al. (2017). Osteoclast proton pump regulator Atp6v1c1 enhances breast cancer growth by activating the mTORC1 pathway and bone metastasis by increasing V-ATPase activity. Oncotarget, 8(29), 47675–47690.CrossRefPubMedPubMedCentral McConnell, M., Feng, S., Chen, W., Zhu, G., Shen, D., Ponnazhagan, S., et al. (2017). Osteoclast proton pump regulator Atp6v1c1 enhances breast cancer growth by activating the mTORC1 pathway and bone metastasis by increasing V-ATPase activity. Oncotarget, 8(29), 47675–47690.CrossRefPubMedPubMedCentral
30.
go back to reference Di Pompo, G., Lemma, S., Canti, L., Rucci, N., Ponzetti, M., Errani, C., et al. (2017). Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma. Oncotarget, 8(33), 54478–54496.CrossRefPubMedPubMedCentral Di Pompo, G., Lemma, S., Canti, L., Rucci, N., Ponzetti, M., Errani, C., et al. (2017). Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma. Oncotarget, 8(33), 54478–54496.CrossRefPubMedPubMedCentral
31.
go back to reference Kim, H. M., Jung, W. H., & Koo, J. S. (2014). Site-specific metabolic phenotypes in metastatic breast cancer. Journal of Translational Medicine, 12, 354.CrossRefPubMedPubMedCentral Kim, H. M., Jung, W. H., & Koo, J. S. (2014). Site-specific metabolic phenotypes in metastatic breast cancer. Journal of Translational Medicine, 12, 354.CrossRefPubMedPubMedCentral
32.
go back to reference Lemma, S., Di Pompo, G., Porporato, P. E., Sboarina, M., Russell, S., Gillies, R. J., et al. (2017). MDA-MB-231 breast cancer cells fuel osteoclast metabolism and activity: a new rationale for the pathogenesis of osteolytic bone metastases. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(12), 3254–3264.CrossRefPubMed Lemma, S., Di Pompo, G., Porporato, P. E., Sboarina, M., Russell, S., Gillies, R. J., et al. (2017). MDA-MB-231 breast cancer cells fuel osteoclast metabolism and activity: a new rationale for the pathogenesis of osteolytic bone metastases. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(12), 3254–3264.CrossRefPubMed
33.
go back to reference Song, I., Kim, J. H., Kim, K., Jin, H. M., Youn, B. U., & Kim, N. (2009). Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Letters, 583(14), 2435–2440.CrossRefPubMed Song, I., Kim, J. H., Kim, K., Jin, H. M., Youn, B. U., & Kim, N. (2009). Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Letters, 583(14), 2435–2440.CrossRefPubMed
34.
go back to reference Sreenivas, A., & Sastry, P. S. (1995). Purification and partial characterization of acyl carrier proteins from developing oil seeds of pisa (Actinodaphne hookeri) and ground nut (Arachis hypogaea). Indian Journal of Biochemistry & Biophysics, 32(3), 137–146. Sreenivas, A., & Sastry, P. S. (1995). Purification and partial characterization of acyl carrier proteins from developing oil seeds of pisa (Actinodaphne hookeri) and ground nut (Arachis hypogaea). Indian Journal of Biochemistry & Biophysics, 32(3), 137–146.
35.
go back to reference Massey, H. M., & Flanagan, A. M. (1999). Human osteoclasts derive from CD14-positive monocytes. British Journal of Haematology, 106(1), 167–170.CrossRefPubMed Massey, H. M., & Flanagan, A. M. (1999). Human osteoclasts derive from CD14-positive monocytes. British Journal of Haematology, 106(1), 167–170.CrossRefPubMed
36.
go back to reference Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423(6937), 337–342.CrossRefPubMed Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423(6937), 337–342.CrossRefPubMed
37.
go back to reference Evangelisti, C., Bernasconi, P., Cavalcante, P., Cappelletti, C., D’Apice, M. R., Sbraccia, P., et al. (2015). Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins. Oncotarget, 6(10), 7424–7437.CrossRefPubMedPubMedCentral Evangelisti, C., Bernasconi, P., Cavalcante, P., Cappelletti, C., D’Apice, M. R., Sbraccia, P., et al. (2015). Modulation of TGFbeta 2 levels by lamin A in U2-OS osteoblast-like cells: understanding the osteolytic process triggered by altered lamins. Oncotarget, 6(10), 7424–7437.CrossRefPubMedPubMedCentral
38.
go back to reference Mulari, M. T., Zhao, H., Lakkakorpi, P. T., & Vaananen, H. K. (2003). Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic, 4(2), 113–125.CrossRefPubMed Mulari, M. T., Zhao, H., Lakkakorpi, P. T., & Vaananen, H. K. (2003). Osteoclast ruffled border has distinct subdomains for secretion and degraded matrix uptake. Traffic, 4(2), 113–125.CrossRefPubMed
39.
go back to reference Baron, R., Neff, L., Louvard, D., & Courtoy, P. J. (1985). Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. The Journal of Cell Biology, 101(6), 2210–2222.CrossRefPubMed Baron, R., Neff, L., Louvard, D., & Courtoy, P. J. (1985). Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. The Journal of Cell Biology, 101(6), 2210–2222.CrossRefPubMed
40.
go back to reference Silver, I. A., Murrills, R. J., & Etherington, D. J. (1988). Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Experimental Cell Research, 175(2), 266–276.CrossRefPubMed Silver, I. A., Murrills, R. J., & Etherington, D. J. (1988). Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Experimental Cell Research, 175(2), 266–276.CrossRefPubMed
41.
go back to reference Blair, H. C., Teitelbaum, S. L., Ghiselli, R., & Gluck, S. (1989). Osteoclastic bone resorption by a polarized vacuolar proton pump. Science, 245(4920), 855–857.CrossRefPubMed Blair, H. C., Teitelbaum, S. L., Ghiselli, R., & Gluck, S. (1989). Osteoclastic bone resorption by a polarized vacuolar proton pump. Science, 245(4920), 855–857.CrossRefPubMed
42.
go back to reference Lee, B. S., Holliday, L. S., Ojikutu, B., Krits, I., & Gluck, S. L. (1996). Osteoclasts express the B2 isoform of vacuolar H(+)-ATPase intracellularly and on their plasma membranes. The American Journal of Physiology, 270(1 Pt 1), C382–C388.CrossRefPubMed Lee, B. S., Holliday, L. S., Ojikutu, B., Krits, I., & Gluck, S. L. (1996). Osteoclasts express the B2 isoform of vacuolar H(+)-ATPase intracellularly and on their plasma membranes. The American Journal of Physiology, 270(1 Pt 1), C382–C388.CrossRefPubMed
43.
go back to reference Qin, A., Cheng, T. S., Pavlos, N. J., Lin, Z., Dai, K. R., & Zheng, M. H. (2012). V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. The International Journal of Biochemistry & Cell Biology, 44(9), 1422–1435.CrossRef Qin, A., Cheng, T. S., Pavlos, N. J., Lin, Z., Dai, K. R., & Zheng, M. H. (2012). V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. The International Journal of Biochemistry & Cell Biology, 44(9), 1422–1435.CrossRef
45.
go back to reference Kelly, M. E., Dixon, S. J., & Sims, S. M. (1994). Outwardly rectifying chloride current in rabbit osteoclasts is activated by hyposmotic stimulation. The Journal of Physiology, 475(3), 377–389.CrossRefPubMedPubMedCentral Kelly, M. E., Dixon, S. J., & Sims, S. M. (1994). Outwardly rectifying chloride current in rabbit osteoclasts is activated by hyposmotic stimulation. The Journal of Physiology, 475(3), 377–389.CrossRefPubMedPubMedCentral
46.
go back to reference Lee, S. H., Kim, T., Park, E. S., Yang, S., Jeong, D., Choi, Y., et al. (2008). NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochemical and Biophysical Research Communications, 369(2), 320–326.CrossRefPubMed Lee, S. H., Kim, T., Park, E. S., Yang, S., Jeong, D., Choi, Y., et al. (2008). NHE10, an osteoclast-specific member of the Na+/H+ exchanger family, regulates osteoclast differentiation and survival [corrected]. Biochemical and Biophysical Research Communications, 369(2), 320–326.CrossRefPubMed
47.
go back to reference Riihonen, R., Nielsen, S., Vaananen, H. K., Laitala-Leinonen, T., & Kwon, T. H. (2010). Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biology, 29(4), 287–294.CrossRefPubMed Riihonen, R., Nielsen, S., Vaananen, H. K., Laitala-Leinonen, T., & Kwon, T. H. (2010). Degradation of hydroxyapatite in vivo and in vitro requires osteoclastic sodium-bicarbonate co-transporter NBCn1. Matrix Biology, 29(4), 287–294.CrossRefPubMed
48.
go back to reference Wu, J., Glimcher, L. H., & Aliprantis, A. O. (2008). HCO3-/Cl- anion exchanger SLC4A2 is required for proper osteoclast differentiation and function. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 16934–16939.CrossRefPubMedPubMedCentral Wu, J., Glimcher, L. H., & Aliprantis, A. O. (2008). HCO3-/Cl- anion exchanger SLC4A2 is required for proper osteoclast differentiation and function. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 16934–16939.CrossRefPubMedPubMedCentral
49.
go back to reference Gupta, A., Edwards, J. C., & Hruska, K. A. (1996). Cellular distribution and regulation of NHE-1 isoform of the NA-H exchanger in the avian osteoclast. Bone, 18(2), 87–95.CrossRefPubMed Gupta, A., Edwards, J. C., & Hruska, K. A. (1996). Cellular distribution and regulation of NHE-1 isoform of the NA-H exchanger in the avian osteoclast. Bone, 18(2), 87–95.CrossRefPubMed
50.
go back to reference Brisson, L., Reshkin, S. J., Gore, J., & Roger, S. (2012). pH regulators in invadosomal functioning: proton delivery for matrix tasting. European Journal of Cell Biology, 91(11–12), 847–860.CrossRefPubMed Brisson, L., Reshkin, S. J., Gore, J., & Roger, S. (2012). pH regulators in invadosomal functioning: proton delivery for matrix tasting. European Journal of Cell Biology, 91(11–12), 847–860.CrossRefPubMed
51.
go back to reference Lemma, S., Sboarina, M., Porporato, P. E., Zini, N., Sonveaux, P., Di Pompo, G., et al. (2016). Energy metabolism in osteoclast formation and activity. The International Journal of Biochemistry & Cell Biology, 79, 168–180.CrossRef Lemma, S., Sboarina, M., Porporato, P. E., Zini, N., Sonveaux, P., Di Pompo, G., et al. (2016). Energy metabolism in osteoclast formation and activity. The International Journal of Biochemistry & Cell Biology, 79, 168–180.CrossRef
52.
go back to reference Zecchin, A., Stapor, P. C., Goveia, J., & Carmeliet, P. (2015). Metabolic pathway compartmentalization: an underappreciated opportunity? Current Opinion in Biotechnology, 34, 73–81.CrossRefPubMed Zecchin, A., Stapor, P. C., Goveia, J., & Carmeliet, P. (2015). Metabolic pathway compartmentalization: an underappreciated opportunity? Current Opinion in Biotechnology, 34, 73–81.CrossRefPubMed
53.
go back to reference Iwamoto, T., Mamiya, N., Masushige, S., & Kida, S. (2005). PLCgamma2 activates CREB-dependent transcription in PC12 cells through phosphorylation of CREB at serine 133. Cytotechnology, 47(1–3), 107–116.CrossRefPubMedPubMedCentral Iwamoto, T., Mamiya, N., Masushige, S., & Kida, S. (2005). PLCgamma2 activates CREB-dependent transcription in PC12 cells through phosphorylation of CREB at serine 133. Cytotechnology, 47(1–3), 107–116.CrossRefPubMedPubMedCentral
54.
go back to reference Pollari, S., Kakonen, S. M., Edgren, H., Wolf, M., Kohonen, P., Sara, H., et al. (2011). Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Research and Treatment, 125(2), 421–430.CrossRefPubMed Pollari, S., Kakonen, S. M., Edgren, H., Wolf, M., Kohonen, P., Sara, H., et al. (2011). Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis. Breast Cancer Research and Treatment, 125(2), 421–430.CrossRefPubMed
55.
go back to reference Locasale, J. W., Grassian, A. R., Melman, T., Lyssiotis, C. A., Mattaini, K. R., Bass, A. J., et al. (2011). Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 43(9), 869–874.CrossRefPubMedPubMedCentral Locasale, J. W., Grassian, A. R., Melman, T., Lyssiotis, C. A., Mattaini, K. R., Bass, A. J., et al. (2011). Phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis. Nature Genetics, 43(9), 869–874.CrossRefPubMedPubMedCentral
56.
go back to reference Khacho, M., Tarabay, M., Patten, D., Khacho, P., MacLaurin, J. G., Guadagno, J., et al. (2014). Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nature Communications, 5, 3550.CrossRefPubMed Khacho, M., Tarabay, M., Patten, D., Khacho, P., MacLaurin, J. G., Guadagno, J., et al. (2014). Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival. Nature Communications, 5, 3550.CrossRefPubMed
57.
go back to reference Mueller, S. C., & Chen, W. T. (1991). Cellular invasion into matrix beads: localization of beta 1 integrins and fibronectin to the invadopodia. Journal of Cell Science, 99(Pt 2), 213–225.PubMed Mueller, S. C., & Chen, W. T. (1991). Cellular invasion into matrix beads: localization of beta 1 integrins and fibronectin to the invadopodia. Journal of Cell Science, 99(Pt 2), 213–225.PubMed
58.
go back to reference Murphy, D. A., & Courtneidge, S. A. (2011). The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nature Reviews. Molecular Cell Biology, 12(7), 413–426.CrossRefPubMedPubMedCentral Murphy, D. A., & Courtneidge, S. A. (2011). The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nature Reviews. Molecular Cell Biology, 12(7), 413–426.CrossRefPubMedPubMedCentral
59.
go back to reference Destaing, O., Saltel, F., Geminard, J. C., Jurdic, P., & Bard, F. (2003). Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Molecular Biology of the Cell, 14(2), 407–416.CrossRefPubMedPubMedCentral Destaing, O., Saltel, F., Geminard, J. C., Jurdic, P., & Bard, F. (2003). Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Molecular Biology of the Cell, 14(2), 407–416.CrossRefPubMedPubMedCentral
60.
go back to reference Linder, S., Nelson, D., Weiss, M., & Aepfelbacher, M. (1999). Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9648–9653.CrossRefPubMedPubMedCentral Linder, S., Nelson, D., Weiss, M., & Aepfelbacher, M. (1999). Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proceedings of the National Academy of Sciences of the United States of America, 96(17), 9648–9653.CrossRefPubMedPubMedCentral
61.
go back to reference Binks, M., Jones, G. E., Brickell, P. M., Kinnon, C., Katz, D. R., & Thrasher, A. J. (1998). Intrinsic dendritic cell abnormalities in Wiskott-Aldrich syndrome. European Journal of Immunology, 28(10), 3259–3267.CrossRefPubMed Binks, M., Jones, G. E., Brickell, P. M., Kinnon, C., Katz, D. R., & Thrasher, A. J. (1998). Intrinsic dendritic cell abnormalities in Wiskott-Aldrich syndrome. European Journal of Immunology, 28(10), 3259–3267.CrossRefPubMed
62.
go back to reference Moreau, V., Tatin, F., Varon, C., & Genot, E. (2003). Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Molecular and Cellular Biology, 23(19), 6809–6822.CrossRefPubMedPubMedCentral Moreau, V., Tatin, F., Varon, C., & Genot, E. (2003). Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA. Molecular and Cellular Biology, 23(19), 6809–6822.CrossRefPubMedPubMedCentral
63.
go back to reference Burgstaller, G., & Gimona, M. (2005). Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H3001–H3005.CrossRefPubMed Burgstaller, G., & Gimona, M. (2005). Podosome-mediated matrix resorption and cell motility in vascular smooth muscle cells. American Journal of Physiology. Heart and Circulatory Physiology, 288(6), H3001–H3005.CrossRefPubMed
64.
go back to reference Buccione, R., Orth, J. D., & McNiven, M. A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nature Reviews. Molecular Cell Biology, 5(8), 647–657.CrossRefPubMed Buccione, R., Orth, J. D., & McNiven, M. A. (2004). Foot and mouth: podosomes, invadopodia and circular dorsal ruffles. Nature Reviews. Molecular Cell Biology, 5(8), 647–657.CrossRefPubMed
65.
go back to reference Ayala, I., Baldassarre, M., Giacchetti, G., Caldieri, G., Tete, S., Luini, A., et al. (2008). Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. Journal of Cell Science, 121(Pt 3), 369–378.CrossRefPubMed Ayala, I., Baldassarre, M., Giacchetti, G., Caldieri, G., Tete, S., Luini, A., et al. (2008). Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. Journal of Cell Science, 121(Pt 3), 369–378.CrossRefPubMed
66.
go back to reference Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E., et al. (2010). NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. The FASEB Journal, 24(10), 3903–3915.CrossRefPubMed Busco, G., Cardone, R. A., Greco, M. R., Bellizzi, A., Colella, M., Antelmi, E., et al. (2010). NHE1 promotes invadopodial ECM proteolysis through acidification of the peri-invadopodial space. The FASEB Journal, 24(10), 3903–3915.CrossRefPubMed
67.
go back to reference Licon-Munoz, Y., Michel, V., Fordyce, C. A., & Parra, K. J. (2017). F-actin reorganization by V-ATPase inhibition in prostate cancer. Biology Open, 6(11), 1734–1744.CrossRefPubMedPubMedCentral Licon-Munoz, Y., Michel, V., Fordyce, C. A., & Parra, K. J. (2017). F-actin reorganization by V-ATPase inhibition in prostate cancer. Biology Open, 6(11), 1734–1744.CrossRefPubMedPubMedCentral
68.
go back to reference Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R., & Gilad, E. (2004). CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. The Journal of Biological Chemistry, 279(26), 26991–27007.CrossRefPubMed Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R., & Gilad, E. (2004). CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. The Journal of Biological Chemistry, 279(26), 26991–27007.CrossRefPubMed
69.
go back to reference Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwarzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. The Journal of Cell Biology, 146(4), 843–854.CrossRefPubMedPubMedCentral Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwarzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. The Journal of Cell Biology, 146(4), 843–854.CrossRefPubMedPubMedCentral
70.
go back to reference Steffan, J. J., Snider, J. L., Skalli, O., Welbourne, T., & Cardelli, J. A. (2009). Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic, 10(6), 737–753.CrossRefPubMed Steffan, J. J., Snider, J. L., Skalli, O., Welbourne, T., & Cardelli, J. A. (2009). Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic, 10(6), 737–753.CrossRefPubMed
71.
go back to reference Magalhaes, M. A., Larson, D. R., Mader, C. C., Bravo-Cordero, J. J., Gil-Henn, H., Oser, M., et al. (2011). Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. The Journal of Cell Biology, 195(5), 903–920.CrossRefPubMedPubMedCentral Magalhaes, M. A., Larson, D. R., Mader, C. C., Bravo-Cordero, J. J., Gil-Henn, H., Oser, M., et al. (2011). Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. The Journal of Cell Biology, 195(5), 903–920.CrossRefPubMedPubMedCentral
72.
go back to reference Cardone, R. A., Greco, M. R., Capulli, M., Weinman, E. J., Busco, G., Bellizzi, A., et al. (2012). NHERF1 acts as a molecular switch to program metastatic behavior and organotropism via its PDZ domains. Molecular Biology of the Cell, 23(11), 2028–2040.CrossRefPubMedPubMedCentral Cardone, R. A., Greco, M. R., Capulli, M., Weinman, E. J., Busco, G., Bellizzi, A., et al. (2012). NHERF1 acts as a molecular switch to program metastatic behavior and organotropism via its PDZ domains. Molecular Biology of the Cell, 23(11), 2028–2040.CrossRefPubMedPubMedCentral
73.
go back to reference Delaisse, J. M., Engsig, M. T., Everts, V., del Carmen Ovejero, M., Ferreras, M., Lund, L., et al. (2000). Proteinases in bone resorption: obvious and less obvious roles. Clinica Chimica Acta, 291(2), 223–234.CrossRef Delaisse, J. M., Engsig, M. T., Everts, V., del Carmen Ovejero, M., Ferreras, M., Lund, L., et al. (2000). Proteinases in bone resorption: obvious and less obvious roles. Clinica Chimica Acta, 291(2), 223–234.CrossRef
74.
go back to reference Vaananen, H. K., & Laitala-Leinonen, T. (2008). Osteoclast lineage and function. Archives of Biochemistry and Biophysics, 473(2), 132–138.CrossRefPubMed Vaananen, H. K., & Laitala-Leinonen, T. (2008). Osteoclast lineage and function. Archives of Biochemistry and Biophysics, 473(2), 132–138.CrossRefPubMed
75.
go back to reference Lin, H. M., Nakamura, H., Noda, T., & Ozawa, H. (1994). Localization of H(+)-ATPase and carbonic anhydrase II in ameloblasts at maturation. Calcified Tissue International, 55(1), 38–45.CrossRefPubMed Lin, H. M., Nakamura, H., Noda, T., & Ozawa, H. (1994). Localization of H(+)-ATPase and carbonic anhydrase II in ameloblasts at maturation. Calcified Tissue International, 55(1), 38–45.CrossRefPubMed
76.
go back to reference Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G. H., Wada, Y., et al. (2003). From lysosomes to the plasma membrane: localization of vacuolar-type H+ -ATPase with the a3 isoform during osteoclast differentiation. The Journal of Biological Chemistry, 278(24), 22023–22030.CrossRefPubMed Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G. H., Wada, Y., et al. (2003). From lysosomes to the plasma membrane: localization of vacuolar-type H+ -ATPase with the a3 isoform during osteoclast differentiation. The Journal of Biological Chemistry, 278(24), 22023–22030.CrossRefPubMed
77.
go back to reference Tomura, H., Wang, J. Q., Liu, J. P., Komachi, M., Damirin, A., Mogi, C., et al. (2008). Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line. Journal of Bone and Mineral Research, 23(7), 1129–1139.CrossRefPubMed Tomura, H., Wang, J. Q., Liu, J. P., Komachi, M., Damirin, A., Mogi, C., et al. (2008). Cyclooxygenase-2 expression and prostaglandin E2 production in response to acidic pH through OGR1 in a human osteoblastic cell line. Journal of Bone and Mineral Research, 23(7), 1129–1139.CrossRefPubMed
78.
go back to reference Komarova, S. V., Pereverzev, A., Shum, J. W., Sims, S. M., & Dixon, S. J. (2005). Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2643–2648.CrossRefPubMedPubMedCentral Komarova, S. V., Pereverzev, A., Shum, J. W., Sims, S. M., & Dixon, S. J. (2005). Convergent signaling by acidosis and receptor activator of NF-kappaB ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proceedings of the National Academy of Sciences of the United States of America, 102(7), 2643–2648.CrossRefPubMedPubMedCentral
79.
go back to reference Pereverzev, A., Komarova, S. V., Korcok, J., Armstrong, S., Tremblay, G. B., Dixon, S. J., et al. (2008). Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone, 42(1), 150–161.CrossRefPubMed Pereverzev, A., Komarova, S. V., Korcok, J., Armstrong, S., Tremblay, G. B., Dixon, S. J., et al. (2008). Extracellular acidification enhances osteoclast survival through an NFAT-independent, protein kinase C-dependent pathway. Bone, 42(1), 150–161.CrossRefPubMed
80.
go back to reference Okito, A., Nakahama, K., Akiyama, M., Ono, T., & Morita, I. (2015). Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment. Biochemical and Biophysical Research Communications, 458(2), 435–440.CrossRefPubMed Okito, A., Nakahama, K., Akiyama, M., Ono, T., & Morita, I. (2015). Involvement of the G-protein-coupled receptor 4 in RANKL expression by osteoblasts in an acidic environment. Biochemical and Biophysical Research Communications, 458(2), 435–440.CrossRefPubMed
81.
go back to reference Hikiji, H., Endo, D., Horie, K., Harayama, T., Akahoshi, N., Igarashi, H., et al. (2014). TDAG8 activation inhibits osteoclastic bone resorption. The FASEB Journal, 28(2), 871–879.CrossRefPubMed Hikiji, H., Endo, D., Horie, K., Harayama, T., Akahoshi, N., Igarashi, H., et al. (2014). TDAG8 activation inhibits osteoclastic bone resorption. The FASEB Journal, 28(2), 871–879.CrossRefPubMed
82.
go back to reference Jahr, H., van Driel, M., van Osch, G. J., Weinans, H., & van Leeuwen, J. P. (2005). Identification of acid-sensing ion channels in bone. Biochemical and Biophysical Research Communications, 337(1), 349–354.CrossRefPubMed Jahr, H., van Driel, M., van Osch, G. J., Weinans, H., & van Leeuwen, J. P. (2005). Identification of acid-sensing ion channels in bone. Biochemical and Biophysical Research Communications, 337(1), 349–354.CrossRefPubMed
83.
go back to reference Lieben, L., & Carmeliet, G. (2012). The involvement of TRP channels in bone homeostasis. Frontiers in Endocrinology (Lausanne), 3, 99. Lieben, L., & Carmeliet, G. (2012). The involvement of TRP channels in bone homeostasis. Frontiers in Endocrinology (Lausanne), 3, 99.
84.
go back to reference Kato, K., & Morita, I. (2013). Promotion of osteoclast differentiation and activation in spite of impeded osteoblast-lineage differentiation under acidosis: effects of acidosis on bone metabolism. Bioscience Trends, 7(1), 33–41.PubMed Kato, K., & Morita, I. (2013). Promotion of osteoclast differentiation and activation in spite of impeded osteoblast-lineage differentiation under acidosis: effects of acidosis on bone metabolism. Bioscience Trends, 7(1), 33–41.PubMed
85.
go back to reference Idris, A. I., Landao-Bassonga, E., & Ralston, S. H. (2010). The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone, 46(4), 1089–1099.CrossRefPubMed Idris, A. I., Landao-Bassonga, E., & Ralston, S. H. (2010). The TRPV1 ion channel antagonist capsazepine inhibits osteoclast and osteoblast differentiation in vitro and ovariectomy induced bone loss in vivo. Bone, 46(4), 1089–1099.CrossRefPubMed
86.
go back to reference Abed, E., Labelle, D., Martineau, C., Loghin, A., & Moreau, R. (2009). Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Molecular Membrane Biology, 26(3), 146–158.CrossRefPubMed Abed, E., Labelle, D., Martineau, C., Loghin, A., & Moreau, R. (2009). Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Molecular Membrane Biology, 26(3), 146–158.CrossRefPubMed
87.
go back to reference Tomura, H., Mogi, C., Sato, K., & Okajima, F. (2005). Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cellular Signalling, 17(12), 1466–1476.CrossRefPubMed Tomura, H., Mogi, C., Sato, K., & Okajima, F. (2005). Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cellular Signalling, 17(12), 1466–1476.CrossRefPubMed
88.
go back to reference Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., et al. (2003). Proton-sensing G-protein-coupled receptors. Nature, 425(6953), 93–98.CrossRefPubMed Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., et al. (2003). Proton-sensing G-protein-coupled receptors. Nature, 425(6953), 93–98.CrossRefPubMed
89.
go back to reference Krishtal, O. (2003). The ASICs: signaling molecules? Modulators? Trends in Neurosciences, 26(9), 477–483.CrossRefPubMed Krishtal, O. (2003). The ASICs: signaling molecules? Modulators? Trends in Neurosciences, 26(9), 477–483.CrossRefPubMed
90.
go back to reference Tominaga, M., & Tominaga, T. (2005). Structure and function of TRPV1. Pflügers Archiv, 451(1), 143–150.CrossRefPubMed Tominaga, M., & Tominaga, T. (2005). Structure and function of TRPV1. Pflügers Archiv, 451(1), 143–150.CrossRefPubMed
91.
go back to reference Ishii, S., Kihara, Y., & Shimizu, T. (2005). Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. The Journal of Biological Chemistry, 280(10), 9083–9087.CrossRefPubMed Ishii, S., Kihara, Y., & Shimizu, T. (2005). Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. The Journal of Biological Chemistry, 280(10), 9083–9087.CrossRefPubMed
92.
go back to reference Murakami, N., Yokomizo, T., Okuno, T., & Shimizu, T. (2004). G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. The Journal of Biological Chemistry, 279(41), 42484–42491.CrossRefPubMed Murakami, N., Yokomizo, T., Okuno, T., & Shimizu, T. (2004). G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. The Journal of Biological Chemistry, 279(41), 42484–42491.CrossRefPubMed
93.
go back to reference Frick, K. K., Krieger, N. S., Nehrke, K., & Bushinsky, D. A. (2009). Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. Journal of Bone and Mineral Research, 24(2), 305–313.CrossRefPubMed Frick, K. K., Krieger, N. S., Nehrke, K., & Bushinsky, D. A. (2009). Metabolic acidosis increases intracellular calcium in bone cells through activation of the proton receptor OGR1. Journal of Bone and Mineral Research, 24(2), 305–313.CrossRefPubMed
94.
go back to reference Yang, M., Mailhot, G., Birnbaum, M. J., MacKay, C. A., Mason-Savas, A., & Odgren, P. R. (2006). Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. The Journal of Biological Chemistry, 281(33), 23598–23605.CrossRefPubMed Yang, M., Mailhot, G., Birnbaum, M. J., MacKay, C. A., Mason-Savas, A., & Odgren, P. R. (2006). Expression of and role for ovarian cancer G-protein-coupled receptor 1 (OGR1) during osteoclastogenesis. The Journal of Biological Chemistry, 281(33), 23598–23605.CrossRefPubMed
95.
go back to reference Li, H., Wang, D., Singh, L. S., Berk, M., Tan, H., Zhao, Z., et al. (2009). Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS One, 4(5), e5705.CrossRefPubMedPubMedCentral Li, H., Wang, D., Singh, L. S., Berk, M., Tan, H., Zhao, Z., et al. (2009). Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1. PLoS One, 4(5), e5705.CrossRefPubMedPubMedCentral
96.
go back to reference Arnett, T. R. (2010). Acidosis, hypoxia and bone. Archives of Biochemistry and Biophysics, 503(1), 103–109.CrossRefPubMed Arnett, T. R. (2010). Acidosis, hypoxia and bone. Archives of Biochemistry and Biophysics, 503(1), 103–109.CrossRefPubMed
97.
go back to reference Granchi, D., Torreggiani, E., Massa, A., Caudarella, R., Di Pompo, G., & Baldini, N. (2017). Potassium citrate prevents increased osteoclastogenesis resulting from acidic conditions: implication for the treatment of postmenopausal bone loss. PLoS One, 12(7), e0181230.CrossRefPubMedPubMedCentral Granchi, D., Torreggiani, E., Massa, A., Caudarella, R., Di Pompo, G., & Baldini, N. (2017). Potassium citrate prevents increased osteoclastogenesis resulting from acidic conditions: implication for the treatment of postmenopausal bone loss. PLoS One, 12(7), e0181230.CrossRefPubMedPubMedCentral
98.
go back to reference Salamanna, F., Borsari, V., Contartese, D., Nicoli Aldini, N., & Fini, M. (2018). Link between estrogen deficiency osteoporosis and susceptibility to bone metastases: a way towards precision medicine in cancer patients. Breast, 41, 42–50.CrossRefPubMed Salamanna, F., Borsari, V., Contartese, D., Nicoli Aldini, N., & Fini, M. (2018). Link between estrogen deficiency osteoporosis and susceptibility to bone metastases: a way towards precision medicine in cancer patients. Breast, 41, 42–50.CrossRefPubMed
99.
go back to reference Pagani, S., Fini, M., Giavaresi, G., Salamanna, F., & Borsari, V. (2015). The active role of osteoporosis in the interaction between osteoblasts and bone metastases. Bone, 79, 176–182.CrossRefPubMed Pagani, S., Fini, M., Giavaresi, G., Salamanna, F., & Borsari, V. (2015). The active role of osteoporosis in the interaction between osteoblasts and bone metastases. Bone, 79, 176–182.CrossRefPubMed
100.
go back to reference Kato, K., & Morita, I. (2011). Acidosis environment promotes osteoclast formation by acting on the last phase of preosteoclast differentiation: a study to elucidate the action points of acidosis and search for putative target molecules. European Journal of Pharmacology, 663(1–3), 27–39.CrossRefPubMed Kato, K., & Morita, I. (2011). Acidosis environment promotes osteoclast formation by acting on the last phase of preosteoclast differentiation: a study to elucidate the action points of acidosis and search for putative target molecules. European Journal of Pharmacology, 663(1–3), 27–39.CrossRefPubMed
101.
go back to reference Kato, K., & Matsushita, M. (2014). Proton concentrations can be a major contributor to the modification of osteoclast and osteoblast differentiation, working independently of extracellular bicarbonate ions. Journal of Bone and Mineral Metabolism, 32(1), 17–28.CrossRefPubMed Kato, K., & Matsushita, M. (2014). Proton concentrations can be a major contributor to the modification of osteoclast and osteoblast differentiation, working independently of extracellular bicarbonate ions. Journal of Bone and Mineral Metabolism, 32(1), 17–28.CrossRefPubMed
102.
go back to reference Meghji, S., Morrison, M. S., Henderson, B., & Arnett, T. R. (2001). pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. American Journal of Physiology. Endocrinology and Metabolism, 280(1), E112–E119.CrossRefPubMed Meghji, S., Morrison, M. S., Henderson, B., & Arnett, T. R. (2001). pH dependence of bone resorption: mouse calvarial osteoclasts are activated by acidosis. American Journal of Physiology. Endocrinology and Metabolism, 280(1), E112–E119.CrossRefPubMed
103.
go back to reference Teti, A., Blair, H. C., Schlesinger, P., Grano, M., Zambonin-Zallone, A., Kahn, A. J., et al. (1989). Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. The Journal of Clinical Investigation, 84(3), 773–780.CrossRefPubMedPubMedCentral Teti, A., Blair, H. C., Schlesinger, P., Grano, M., Zambonin-Zallone, A., Kahn, A. J., et al. (1989). Extracellular protons acidify osteoclasts, reduce cytosolic calcium, and promote expression of cell-matrix attachment structures. The Journal of Clinical Investigation, 84(3), 773–780.CrossRefPubMedPubMedCentral
104.
go back to reference Arnett, T. R., & Spowage, M. (1996). Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone, 18(3), 277–279.CrossRefPubMed Arnett, T. R., & Spowage, M. (1996). Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. Bone, 18(3), 277–279.CrossRefPubMed
105.
go back to reference Yuan, F. L., Xu, M. H., Li, X., Xinlong, H., Fang, W., & Dong, J. (2016). The roles of acidosis in osteoclast biology. Frontiers in Physiology, 7, 222.CrossRefPubMedPubMedCentral Yuan, F. L., Xu, M. H., Li, X., Xinlong, H., Fang, W., & Dong, J. (2016). The roles of acidosis in osteoclast biology. Frontiers in Physiology, 7, 222.CrossRefPubMedPubMedCentral
106.
go back to reference Biskobing, D. M., & Fan, D. (2000). Acid pH increases carbonic anhydrase II and calcitonin receptor mRNA expression in mature osteoclasts. Calcified Tissue International, 67(2), 178–183.CrossRefPubMed Biskobing, D. M., & Fan, D. (2000). Acid pH increases carbonic anhydrase II and calcitonin receptor mRNA expression in mature osteoclasts. Calcified Tissue International, 67(2), 178–183.CrossRefPubMed
107.
go back to reference Nordstrom, T., Shrode, L. D., Rotstein, O. D., Romanek, R., Goto, T., Heersche, J. N., et al. (1997). Chronic extracellular acidosis induces plasmalemmal vacuolar type H+ ATPase activity in osteoclasts. The Journal of Biological Chemistry, 272(10), 6354–6360.CrossRefPubMed Nordstrom, T., Shrode, L. D., Rotstein, O. D., Romanek, R., Goto, T., Heersche, J. N., et al. (1997). Chronic extracellular acidosis induces plasmalemmal vacuolar type H+ ATPase activity in osteoclasts. The Journal of Biological Chemistry, 272(10), 6354–6360.CrossRefPubMed
108.
go back to reference Miyazaki, T., Katagiri, H., Kanegae, Y., Takayanagi, H., Sawada, Y., Yamamoto, A., et al. (2000). Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. The Journal of Cell Biology, 148(2), 333–342.CrossRefPubMedPubMedCentral Miyazaki, T., Katagiri, H., Kanegae, Y., Takayanagi, H., Sawada, Y., Yamamoto, A., et al. (2000). Reciprocal role of ERK and NF-kappaB pathways in survival and activation of osteoclasts. The Journal of Cell Biology, 148(2), 333–342.CrossRefPubMedPubMedCentral
109.
go back to reference Frick, K. K., & Bushinsky, D. A. (2003). Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism. Journal of Bone and Mineral Research, 18(7), 1317–1325.CrossRefPubMed Frick, K. K., & Bushinsky, D. A. (2003). Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism. Journal of Bone and Mineral Research, 18(7), 1317–1325.CrossRefPubMed
110.
go back to reference Frick, K. K., LaPlante, K., & Bushinsky, D. A. (2005). RANK ligand and TNF-alpha mediate acid-induced bone calcium efflux in vitro. American Journal of Physiology. Renal Physiology, 289(5), F1005–F1011.CrossRefPubMed Frick, K. K., LaPlante, K., & Bushinsky, D. A. (2005). RANK ligand and TNF-alpha mediate acid-induced bone calcium efflux in vitro. American Journal of Physiology. Renal Physiology, 289(5), F1005–F1011.CrossRefPubMed
111.
go back to reference Disthabanchong, S., Martin, K. J., McConkey, C. L., & Gonzalez, E. A. (2002). Metabolic acidosis up-regulates PTH/PTHrP receptors in UMR 106-01 osteoblast-like cells. Kidney International, 62(4), 1171–1177.CrossRefPubMed Disthabanchong, S., Martin, K. J., McConkey, C. L., & Gonzalez, E. A. (2002). Metabolic acidosis up-regulates PTH/PTHrP receptors in UMR 106-01 osteoblast-like cells. Kidney International, 62(4), 1171–1177.CrossRefPubMed
112.
go back to reference Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.CrossRefPubMed Dvorak, H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England Journal of Medicine, 315(26), 1650–1659.CrossRefPubMed
113.
go back to reference Borriello, L., Nakata, R., Sheard, M. A., Fernandez, G. E., Sposto, R., Malvar, J., et al. (2017). Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Research, 77(18), 5142–5157.CrossRefPubMedPubMedCentral Borriello, L., Nakata, R., Sheard, M. A., Fernandez, G. E., Sposto, R., Malvar, J., et al. (2017). Cancer-associated fibroblasts share characteristics and protumorigenic activity with mesenchymal stromal cells. Cancer Research, 77(18), 5142–5157.CrossRefPubMedPubMedCentral
114.
go back to reference Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews. Cancer, 16(9), 582–598.CrossRefPubMed Kalluri, R. (2016). The biology and function of fibroblasts in cancer. Nature Reviews. Cancer, 16(9), 582–598.CrossRefPubMed
115.
go back to reference Barcellos-de-Souza, P., Gori, V., Bambi, F., & Chiarugi, P. (2013). Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochimica et Biophysica Acta, 1836(2), 321–335.PubMed Barcellos-de-Souza, P., Gori, V., Bambi, F., & Chiarugi, P. (2013). Tumor microenvironment: bone marrow-mesenchymal stem cells as key players. Biochimica et Biophysica Acta, 1836(2), 321–335.PubMed
116.
go back to reference Chakkalakal, D. A., Mashoof, A. A., Novak, J., Strates, B. S., & McGuire, M. H. (1994). Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. Journal of Biomedical Materials Research, 28(12), 1439–1443.CrossRefPubMed Chakkalakal, D. A., Mashoof, A. A., Novak, J., Strates, B. S., & McGuire, M. H. (1994). Mineralization and pH relationships in healing skeletal defects grafted with demineralized bone matrix. Journal of Biomedical Materials Research, 28(12), 1439–1443.CrossRefPubMed
117.
go back to reference Massa, A., Perut, F., Chano, T., Woloszyk, A., Mitsiadis, T. A., Avnet, S., et al. (2017). The effect of extracellular acidosis on the behaviour of mesenchymal stem cells in vitro. European Cells & Materials, 33, 252–267.CrossRef Massa, A., Perut, F., Chano, T., Woloszyk, A., Mitsiadis, T. A., Avnet, S., et al. (2017). The effect of extracellular acidosis on the behaviour of mesenchymal stem cells in vitro. European Cells & Materials, 33, 252–267.CrossRef
118.
go back to reference Bischoff, D. S., Zhu, J. H., Makhijani, N. S., & Yamaguchi, D. T. (2008). Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways. Journal of Cellular Biochemistry, 104(4), 1378–1392.CrossRefPubMed Bischoff, D. S., Zhu, J. H., Makhijani, N. S., & Yamaguchi, D. T. (2008). Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways. Journal of Cellular Biochemistry, 104(4), 1378–1392.CrossRefPubMed
119.
go back to reference Peppicelli, S., Bianchini, F., Toti, A., Laurenzana, A., Fibbi, G., & Calorini, L. (2015). Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression. Cell Cycle, 14(19), 3088–3100.CrossRefPubMedPubMedCentral Peppicelli, S., Bianchini, F., Toti, A., Laurenzana, A., Fibbi, G., & Calorini, L. (2015). Extracellular acidity strengthens mesenchymal stem cells to promote melanoma progression. Cell Cycle, 14(19), 3088–3100.CrossRefPubMedPubMedCentral
120.
go back to reference Crane, J. L., & Cao, X. (2014). Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. The Journal of Clinical Investigation, 124(2), 466–472.CrossRefPubMedPubMedCentral Crane, J. L., & Cao, X. (2014). Bone marrow mesenchymal stem cells and TGF-beta signaling in bone remodeling. The Journal of Clinical Investigation, 124(2), 466–472.CrossRefPubMedPubMedCentral
121.
go back to reference Sterling, J. A., Edwards, J. R., Martin, T. J., & Mundy, G. R. (2011). Advances in the biology of bone metastasis: how the skeleton affects tumor behavior. Bone, 48(1), 6–15.CrossRefPubMed Sterling, J. A., Edwards, J. R., Martin, T. J., & Mundy, G. R. (2011). Advances in the biology of bone metastasis: how the skeleton affects tumor behavior. Bone, 48(1), 6–15.CrossRefPubMed
122.
go back to reference Juarez, P., & Guise, T. A. (2011). TGF-beta in cancer and bone: implications for treatment of bone metastases. Bone, 48(1), 23–29.CrossRefPubMed Juarez, P., & Guise, T. A. (2011). TGF-beta in cancer and bone: implications for treatment of bone metastases. Bone, 48(1), 23–29.CrossRefPubMed
124.
go back to reference Avnet, S., Di Pompo, G., Chano, T., Errani, C., Ibrahim-Hashim, A., Gillies, R. J., et al. (2017). Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-kappaB activation. International Journal of Cancer, 140(6), 1331–1345.CrossRefPubMedPubMedCentral Avnet, S., Di Pompo, G., Chano, T., Errani, C., Ibrahim-Hashim, A., Gillies, R. J., et al. (2017). Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-kappaB activation. International Journal of Cancer, 140(6), 1331–1345.CrossRefPubMedPubMedCentral
125.
go back to reference Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5(10), 749–759.CrossRefPubMed Karin, M., & Greten, F. R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nature Reviews. Immunology, 5(10), 749–759.CrossRefPubMed
126.
go back to reference Sims, N. A. (2016). Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. The International Journal of Biochemistry & Cell Biology, 79, 14–23.CrossRef Sims, N. A. (2016). Cell-specific paracrine actions of IL-6 family cytokines from bone, marrow and muscle that control bone formation and resorption. The International Journal of Biochemistry & Cell Biology, 79, 14–23.CrossRef
127.
go back to reference Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical Cancer Research, 12(20 Pt 2), 6243s–6249s.CrossRefPubMed Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical Cancer Research, 12(20 Pt 2), 6243s–6249s.CrossRefPubMed
128.
go back to reference Delaney, A., Fleetwood-Walker, S. M., Colvin, L. A., & Fallon, M. (2008). Translational medicine: cancer pain mechanisms and management. British Journal of Anaesthesia, 101(1), 87–94.CrossRefPubMed Delaney, A., Fleetwood-Walker, S. M., Colvin, L. A., & Fallon, M. (2008). Translational medicine: cancer pain mechanisms and management. British Journal of Anaesthesia, 101(1), 87–94.CrossRefPubMed
129.
go back to reference Yoneda, T., Hiasa, M., Nagata, Y., Okui, T., & White, F. A. (2015). Acidic microenvironment and bone pain in cancer-colonized bone. Bonekey Report, 4, 690.CrossRef Yoneda, T., Hiasa, M., Nagata, Y., Okui, T., & White, F. A. (2015). Acidic microenvironment and bone pain in cancer-colonized bone. Bonekey Report, 4, 690.CrossRef
130.
go back to reference Mach, D. B., Rogers, S. D., Sabino, M. C., Luger, N. M., Schwei, M. J., Pomonis, J. D., et al. (2002). Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience, 113(1), 155–166.CrossRefPubMed Mach, D. B., Rogers, S. D., Sabino, M. C., Luger, N. M., Schwei, M. J., Pomonis, J. D., et al. (2002). Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience, 113(1), 155–166.CrossRefPubMed
131.
go back to reference Julius, D., & Basbaum, A. I. (2001). Molecular mechanisms of nociception. Nature, 413(6852), 203–210.CrossRefPubMed Julius, D., & Basbaum, A. I. (2001). Molecular mechanisms of nociception. Nature, 413(6852), 203–210.CrossRefPubMed
132.
133.
go back to reference Tessier-Lavigne, M., & Placzek, M. (1991). Target attraction: are developing axons guided by chemotropism? Trends in Neurosciences, 14(7), 303–310.CrossRefPubMed Tessier-Lavigne, M., & Placzek, M. (1991). Target attraction: are developing axons guided by chemotropism? Trends in Neurosciences, 14(7), 303–310.CrossRefPubMed
134.
go back to reference Li, Y., Jia, Y. C., Cui, K., Li, N., Zheng, Z. Y., Wang, Y. Z., et al. (2005). Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature, 434(7035), 894–898.CrossRefPubMed Li, Y., Jia, Y. C., Cui, K., Li, N., Zheng, Z. Y., Wang, Y. Z., et al. (2005). Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature, 434(7035), 894–898.CrossRefPubMed
135.
go back to reference Simmons, J. K., Hildreth, B. E., 3rd, Supsavhad, W., Elshafae, S. M., Hassan, B. B., Dirksen, W. P., et al. (2015). Animal models of bone metastasis. Veterinary Pathology, 52(5), 827–841.CrossRefPubMedPubMedCentral Simmons, J. K., Hildreth, B. E., 3rd, Supsavhad, W., Elshafae, S. M., Hassan, B. B., Dirksen, W. P., et al. (2015). Animal models of bone metastasis. Veterinary Pathology, 52(5), 827–841.CrossRefPubMedPubMedCentral
136.
go back to reference Slosky, L. M., Largent-Milnes, T. M., & Vanderah, T. W. (2015). Use of animal models in understanding cancer-induced bone pain. Cancer Growth Metastasis, 8(Suppl 1), 47–62.PubMedPubMedCentral Slosky, L. M., Largent-Milnes, T. M., & Vanderah, T. W. (2015). Use of animal models in understanding cancer-induced bone pain. Cancer Growth Metastasis, 8(Suppl 1), 47–62.PubMedPubMedCentral
137.
go back to reference Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F., et al. (2009). Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Research, 69(6), 2260–2268.CrossRefPubMedPubMedCentral Robey, I. F., Baggett, B. K., Kirkpatrick, N. D., Roe, D. J., Dosescu, J., Sloane, B. F., et al. (2009). Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Research, 69(6), 2260–2268.CrossRefPubMedPubMedCentral
138.
go back to reference Ibrahim-Hashim, A., Wojtkowiak, J. W., de Lourdes Coelho Ribeiro, M., Estrella, V., Bailey, K. M., Cornnell, H. H., et al. (2011). Free base lysine increases survival and reduces metastasis in prostate cancer model. Journal of Cancer Science and Therapy, Suppl 1(4). Ibrahim-Hashim, A., Wojtkowiak, J. W., de Lourdes Coelho Ribeiro, M., Estrella, V., Bailey, K. M., Cornnell, H. H., et al. (2011). Free base lysine increases survival and reduces metastasis in prostate cancer model. Journal of Cancer Science and Therapy, Suppl 1(4).
139.
go back to reference Silva, A. S., Yunes, J. A., Gillies, R. J., & Gatenby, R. A. (2009). The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Research, 69(6), 2677–2684.CrossRefPubMedPubMedCentral Silva, A. S., Yunes, J. A., Gillies, R. J., & Gatenby, R. A. (2009). The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion. Cancer Research, 69(6), 2677–2684.CrossRefPubMedPubMedCentral
140.
go back to reference Gillies, R. J., Pilot, C., Marunaka, Y., & Fais, S. (2019). Targeting acidity in cancer and diabetes. Biochimica et Biophysica Acta, Reviews on Cancer, 1871(2), 273–280.CrossRefPubMed Gillies, R. J., Pilot, C., Marunaka, Y., & Fais, S. (2019). Targeting acidity in cancer and diabetes. Biochimica et Biophysica Acta, Reviews on Cancer, 1871(2), 273–280.CrossRefPubMed
141.
go back to reference Huss, M., & Wieczorek, H. (2009). Inhibitors of V-ATPases: old and new players. The Journal of Experimental Biology, 212(Pt 3), 341–346.CrossRefPubMed Huss, M., & Wieczorek, H. (2009). Inhibitors of V-ATPases: old and new players. The Journal of Experimental Biology, 212(Pt 3), 341–346.CrossRefPubMed
142.
go back to reference Mattsson, J. P., Vaananen, K., Wallmark, B., & Lorentzon, P. (1991). Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Biochimica et Biophysica Acta, 1065(2), 261–268.CrossRefPubMed Mattsson, J. P., Vaananen, K., Wallmark, B., & Lorentzon, P. (1991). Omeprazole and bafilomycin, two proton pump inhibitors: differentiation of their effects on gastric, kidney and bone H(+)-translocating ATPases. Biochimica et Biophysica Acta, 1065(2), 261–268.CrossRefPubMed
143.
go back to reference Marchetti, P., Milano, A., D’Antonio, C., Romiti, A., Falcone, R., Roberto, M., et al. (2016). Association between proton pump inhibitors and metronomic capecitabine as salvage treatment for patients with advanced gastrointestinal tumors: a randomized phase II trial. Clinical Colorectal Cancer, 15(4), 377–380.CrossRefPubMed Marchetti, P., Milano, A., D’Antonio, C., Romiti, A., Falcone, R., Roberto, M., et al. (2016). Association between proton pump inhibitors and metronomic capecitabine as salvage treatment for patients with advanced gastrointestinal tumors: a randomized phase II trial. Clinical Colorectal Cancer, 15(4), 377–380.CrossRefPubMed
144.
go back to reference Wang, B. Y., Zhang, J., Wang, J. L., Sun, S., Wang, Z. H., Wang, L. P., et al. (2015). Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. Journal of Experimental & Clinical Cancer Research, 34, 85.CrossRef Wang, B. Y., Zhang, J., Wang, J. L., Sun, S., Wang, Z. H., Wang, L. P., et al. (2015). Intermittent high dose proton pump inhibitor enhances the antitumor effects of chemotherapy in metastatic breast cancer. Journal of Experimental & Clinical Cancer Research, 34, 85.CrossRef
145.
go back to reference Spugnini, E. P., Buglioni, S., Carocci, F., Francesco, M., Vincenzi, B., Fanciulli, M., et al. (2014). High dose lansoprazole combined with metronomic chemotherapy: a phase I/II study in companion animals with spontaneously occurring tumors. Journal of Translational Medicine, 12, 225.CrossRefPubMedPubMedCentral Spugnini, E. P., Buglioni, S., Carocci, F., Francesco, M., Vincenzi, B., Fanciulli, M., et al. (2014). High dose lansoprazole combined with metronomic chemotherapy: a phase I/II study in companion animals with spontaneously occurring tumors. Journal of Translational Medicine, 12, 225.CrossRefPubMedPubMedCentral
146.
go back to reference Hiasa, M., Okui, T., Allette, Y. M., Ripsch, M. S., Sun-Wada, G. H., Wakabayashi, H., et al. (2017). Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Research, 77(6), 1283–1295.CrossRefPubMedPubMedCentral Hiasa, M., Okui, T., Allette, Y. M., Ripsch, M. S., Sun-Wada, G. H., Wakabayashi, H., et al. (2017). Bone pain induced by multiple myeloma is reduced by targeting V-ATPase and ASIC3. Cancer Research, 77(6), 1283–1295.CrossRefPubMedPubMedCentral
147.
go back to reference Nagae, M., Hiraga, T., Wakabayashi, H., Wang, L., Iwata, K., & Yoneda, T. (2006). Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone, 39(5), 1107–1115.CrossRefPubMed Nagae, M., Hiraga, T., Wakabayashi, H., Wang, L., Iwata, K., & Yoneda, T. (2006). Osteoclasts play a part in pain due to the inflammation adjacent to bone. Bone, 39(5), 1107–1115.CrossRefPubMed
148.
go back to reference Izumi, M., Ikeuchi, M., Ji, Q., & Tani, T. (2012). Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. Journal of Biomedical Science, 19, 77.CrossRefPubMedPubMedCentral Izumi, M., Ikeuchi, M., Ji, Q., & Tani, T. (2012). Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. Journal of Biomedical Science, 19, 77.CrossRefPubMedPubMedCentral
149.
go back to reference Karczewski, J., Spencer, R. H., Garsky, V. M., Liang, A., Leitl, M. D., Cato, M. J., et al. (2010). Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. British Journal of Pharmacology, 161(4), 950–960.CrossRefPubMedPubMedCentral Karczewski, J., Spencer, R. H., Garsky, V. M., Liang, A., Leitl, M. D., Cato, M. J., et al. (2010). Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. British Journal of Pharmacology, 161(4), 950–960.CrossRefPubMedPubMedCentral
150.
go back to reference Ghilardi, J. R., Rohrich, H., Lindsay, T. H., Sevcik, M. A., Schwei, M. J., Kubota, K., et al. (2005). Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. The Journal of Neuroscience, 25(12), 3126–3131.CrossRefPubMedPubMedCentral Ghilardi, J. R., Rohrich, H., Lindsay, T. H., Sevcik, M. A., Schwei, M. J., Kubota, K., et al. (2005). Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. The Journal of Neuroscience, 25(12), 3126–3131.CrossRefPubMedPubMedCentral
151.
go back to reference Fuseya, S., Yamamoto, K., Minemura, H., Yamaori, S., Kawamata, T., & Kawamata, M. (2016). Systemic QX-314 reduces bone cancer pain through selective inhibition of transient receptor potential vanilloid subfamily 1-expressing primary afferents in mice. Anesthesiology, 125(1), 204–218.CrossRefPubMed Fuseya, S., Yamamoto, K., Minemura, H., Yamaori, S., Kawamata, T., & Kawamata, M. (2016). Systemic QX-314 reduces bone cancer pain through selective inhibition of transient receptor potential vanilloid subfamily 1-expressing primary afferents in mice. Anesthesiology, 125(1), 204–218.CrossRefPubMed
152.
go back to reference Niiyama, Y., Kawamata, T., Yamamoto, J., Furuse, S., & Namiki, A. (2009). SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. British Journal of Anaesthesia, 102(2), 251–258.CrossRefPubMed Niiyama, Y., Kawamata, T., Yamamoto, J., Furuse, S., & Namiki, A. (2009). SB366791, a TRPV1 antagonist, potentiates analgesic effects of systemic morphine in a murine model of bone cancer pain. British Journal of Anaesthesia, 102(2), 251–258.CrossRefPubMed
153.
go back to reference Supuran, C. T., & Winum, J. Y. (2015). Carbonic anhydrase IX inhibitors in cancer therapy: an update. Future Medicinal Chemistry, 7(11), 1407–1414.CrossRefPubMed Supuran, C. T., & Winum, J. Y. (2015). Carbonic anhydrase IX inhibitors in cancer therapy: an update. Future Medicinal Chemistry, 7(11), 1407–1414.CrossRefPubMed
154.
go back to reference Pastorek, J., & Pastorekova, S. (2015). Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Seminars in Cancer Biology, 31, 52–64.CrossRefPubMed Pastorek, J., & Pastorekova, S. (2015). Hypoxia-induced carbonic anhydrase IX as a target for cancer therapy: from biology to clinical use. Seminars in Cancer Biology, 31, 52–64.CrossRefPubMed
155.
go back to reference Supuran, C. T. (2018). Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opinion on Investigational Drugs, 27(12), 963–970.CrossRefPubMed Supuran, C. T. (2018). Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors. Expert Opinion on Investigational Drugs, 27(12), 963–970.CrossRefPubMed
156.
go back to reference Tauro, M., Loiodice, F., Ceruso, M., Supuran, C. T., & Tortorella, P. (2014). Dual carbonic anhydrase/matrix metalloproteinase inhibitors incorporating bisphosphonic acid moieties targeting bone tumors. Bioorganic & Medicinal Chemistry Letters, 24(12), 2617–2620.CrossRef Tauro, M., Loiodice, F., Ceruso, M., Supuran, C. T., & Tortorella, P. (2014). Dual carbonic anhydrase/matrix metalloproteinase inhibitors incorporating bisphosphonic acid moieties targeting bone tumors. Bioorganic & Medicinal Chemistry Letters, 24(12), 2617–2620.CrossRef
157.
go back to reference Zhang, X., Lin, Y., & Gillies, R. J. (2010). Tumor pH and its measurement. Journal of Nuclear Medicine, 51(8), 1167–1170.CrossRefPubMed Zhang, X., Lin, Y., & Gillies, R. J. (2010). Tumor pH and its measurement. Journal of Nuclear Medicine, 51(8), 1167–1170.CrossRefPubMed
Metadata
Title
Cause and effect of microenvironmental acidosis on bone metastases
Authors
Sofia Avnet
Gemma Di Pompo
Silvia Lemma
Nicola Baldini
Publication date
01-06-2019
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2019
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09790-9

Other articles of this Issue 1-2/2019

Cancer and Metastasis Reviews 1-2/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine