Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2019

01-06-2019 | Pancreatic Cancer | NON-THEMATIC REVIEW

Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers

Authors: Ian S. Reynolds, Michael Fichtner, Deborah A. McNamara, Elaine W. Kay, Jochen H.M. Prehn, John P. Burke

Published in: Cancer and Metastasis Reviews | Issue 1-2/2019

Login to get access

Abstract

Overexpression of mucin glycoproteins has been demonstrated in many epithelial-derived cancers. The significance of this overexpression remains uncertain. The aim of this paper was to define the association of mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers by performing a systematic review of all published data. A systematic review of PubMed, Embase, and the Cochrane Central Register of Controlled Trials was performed to identify all papers that evaluated the association between mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers. PRISMA guidelines were adhered to. Results of individual studies were extracted and pooled together based on the organ in which the cancer was derived from. The initial search revealed 2031 papers, of which 90 were deemed eligible for inclusion in the study. The studies included details on MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16. The majority of studies evaluated MUC1. MUC1 overexpression was consistently associated with resistance to apoptosis and resistance to chemotherapy. There was also evidence that overexpression of MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16 conferred resistance to apoptosis in epithelial-derived cancers. The overexpression of mucin glycoproteins is associated with resistance to apoptosis in numerous epithelial cancers. They cause resistance through diverse signaling pathways. Targeting the expression of mucin glycoproteins represents a potential therapeutic target in the treatment of epithelial-derived cancers.
Literature
1.
go back to reference Krysko, O., Aaes, T. L., Kagan, V. E., D’Herde, K., Bachert, C., Leybaert, L., et al. (2017). Necroptotic cell death in anti-cancer therapy. Immunological Reviews, 280(1), 207–219.CrossRefPubMed Krysko, O., Aaes, T. L., Kagan, V. E., D’Herde, K., Bachert, C., Leybaert, L., et al. (2017). Necroptotic cell death in anti-cancer therapy. Immunological Reviews, 280(1), 207–219.CrossRefPubMed
2.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.CrossRefPubMed Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.CrossRefPubMed
3.
go back to reference Laubenbacher, R., Hower, V., Jarrah, A., Torti, S. V., Shulaev, V., Mendes, P., et al. (2009). A systems biology view of cancer. Biochimica et Biophysica Acta, 1796(2), 129–139.PubMedPubMedCentral Laubenbacher, R., Hower, V., Jarrah, A., Torti, S. V., Shulaev, V., Mendes, P., et al. (2009). A systems biology view of cancer. Biochimica et Biophysica Acta, 1796(2), 129–139.PubMedPubMedCentral
4.
go back to reference Eum, K. H., & Lee, M. (2011). Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Molecular and Cellular Biochemistry, 348(1–2), 61–68.CrossRefPubMed Eum, K. H., & Lee, M. (2011). Crosstalk between autophagy and apoptosis in the regulation of paclitaxel-induced cell death in v-Ha-ras-transformed fibroblasts. Molecular and Cellular Biochemistry, 348(1–2), 61–68.CrossRefPubMed
5.
go back to reference Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26(4), 239–257.CrossRefPubMedPubMedCentral Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26(4), 239–257.CrossRefPubMedPubMedCentral
6.
go back to reference Ghobrial, I. M., Witzig, T. E., & Adjei, A. A. (2005). Targeting apoptosis pathways in cancer therapy. CA: a Cancer Journal for Clinicians, 55(3), 178–194. Ghobrial, I. M., Witzig, T. E., & Adjei, A. A. (2005). Targeting apoptosis pathways in cancer therapy. CA: a Cancer Journal for Clinicians, 55(3), 178–194.
7.
go back to reference Joshi, S., Kumar, S., Choudhury, A., Ponnusamy, M. P., & Batra, S. K. (2014). Altered mucins (MUC) trafficking in benign and malignant conditions. Oncotarget, 5(17), 7272–7284.CrossRefPubMedPubMedCentral Joshi, S., Kumar, S., Choudhury, A., Ponnusamy, M. P., & Batra, S. K. (2014). Altered mucins (MUC) trafficking in benign and malignant conditions. Oncotarget, 5(17), 7272–7284.CrossRefPubMedPubMedCentral
8.
go back to reference Jonckheere, N., Skrypek, N., Frenois, F., & Van Seuningen, I. (2013). Membrane-bound mucin modular domains: from structure to function. Biochimie, 95(6), 1077–1086.CrossRefPubMed Jonckheere, N., Skrypek, N., Frenois, F., & Van Seuningen, I. (2013). Membrane-bound mucin modular domains: from structure to function. Biochimie, 95(6), 1077–1086.CrossRefPubMed
9.
go back to reference Albrecht, H., & Carraway, K. L., 3rd. (2011). MUC1 and MUC4: switching the emphasis from large to small. Cancer Biotherapy & Radiopharmaceuticals., 26(3), 261–271.CrossRef Albrecht, H., & Carraway, K. L., 3rd. (2011). MUC1 and MUC4: switching the emphasis from large to small. Cancer Biotherapy & Radiopharmaceuticals., 26(3), 261–271.CrossRef
11.
go back to reference Senapati, S., Das, S., & Batra, S. K. (2010). Mucin-interacting proteins: from function to therapeutics. Trends in Biochemical Sciences., 35(4), 236–245.CrossRefPubMed Senapati, S., Das, S., & Batra, S. K. (2010). Mucin-interacting proteins: from function to therapeutics. Trends in Biochemical Sciences., 35(4), 236–245.CrossRefPubMed
12.
go back to reference Rachagani, S., Torres, M. P., Moniaux, N., & Batra, S. K. (2009). Current status of mucins in the diagnosis and therapy of cancer. BioFactors (Oxford, England)., 35(6), 509–527.CrossRefPubMedCentral Rachagani, S., Torres, M. P., Moniaux, N., & Batra, S. K. (2009). Current status of mucins in the diagnosis and therapy of cancer. BioFactors (Oxford, England)., 35(6), 509–527.CrossRefPubMedCentral
13.
go back to reference Kaur, S., Kumar, S., Momi, N., Sasson, A. R., & Batra, S. K. (2013). Mucins in pancreatic cancer and its microenvironment. Nature Reviews Gastroenterology & Hepatology., 10(10), 607–620.CrossRef Kaur, S., Kumar, S., Momi, N., Sasson, A. R., & Batra, S. K. (2013). Mucins in pancreatic cancer and its microenvironment. Nature Reviews Gastroenterology & Hepatology., 10(10), 607–620.CrossRef
14.
go back to reference Chaturvedi, P., Singh, A. P., & Batra, S. K. (2008). Structure, evolution, and biology of the MUC4 mucin. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology., 22(4), 966–981.CrossRef Chaturvedi, P., Singh, A. P., & Batra, S. K. (2008). Structure, evolution, and biology of the MUC4 mucin. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology., 22(4), 966–981.CrossRef
15.
go back to reference Tarang, S., Kumar, S., & Batra, S. K. (2012). Mucins and toll-like receptors: kith and kin in infection and cancer. Cancer Letters., 321(2), 110–119.CrossRefPubMedPubMedCentral Tarang, S., Kumar, S., & Batra, S. K. (2012). Mucins and toll-like receptors: kith and kin in infection and cancer. Cancer Letters., 321(2), 110–119.CrossRefPubMedPubMedCentral
16.
go back to reference van der Sluis, M., Melis, M. H., Jonckheere, N., Ducourouble, M. P., Buller, H. A., Renes, I., et al. (2004). The murine Muc2 mucin gene is transcriptionally regulated by the zinc-finger GATA-4 transcription factor in intestinal cells. Biochemical and Biophysical Research Communications., 325(3), 952–960.CrossRefPubMed van der Sluis, M., Melis, M. H., Jonckheere, N., Ducourouble, M. P., Buller, H. A., Renes, I., et al. (2004). The murine Muc2 mucin gene is transcriptionally regulated by the zinc-finger GATA-4 transcription factor in intestinal cells. Biochemical and Biophysical Research Communications., 325(3), 952–960.CrossRefPubMed
17.
go back to reference Niv, Y. (2016). Mucin gene expression in the intestine of ulcerative colitis patients: a systematic review and meta-analysis. European Journal of Gastroenterology & Hepatology, 28(11), 1241–1245.CrossRef Niv, Y. (2016). Mucin gene expression in the intestine of ulcerative colitis patients: a systematic review and meta-analysis. European Journal of Gastroenterology & Hepatology, 28(11), 1241–1245.CrossRef
18.
go back to reference Jonckheere, N., Skrypek, N., & Van Seuningen, I. (2014). Mucins and tumor resistance to chemotherapeutic drugs. Biochimica et Biophysica Acta, 1846(1), 142–151.PubMed Jonckheere, N., Skrypek, N., & Van Seuningen, I. (2014). Mucins and tumor resistance to chemotherapeutic drugs. Biochimica et Biophysica Acta, 1846(1), 142–151.PubMed
19.
go back to reference Moniaux, N., Andrianifahanana, M., Brand, R. E., & Batra, S. K. (2004). Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. British Journal of Cancer., 91(9), 1633–1638.CrossRefPubMedPubMedCentral Moniaux, N., Andrianifahanana, M., Brand, R. E., & Batra, S. K. (2004). Multiple roles of mucins in pancreatic cancer, a lethal and challenging malignancy. British Journal of Cancer., 91(9), 1633–1638.CrossRefPubMedPubMedCentral
20.
go back to reference Jonckheere, N., & Van Seuningen, I. (2010). The membrane-bound mucins: from cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie, 92(1), 1–11.CrossRefPubMed Jonckheere, N., & Van Seuningen, I. (2010). The membrane-bound mucins: from cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie, 92(1), 1–11.CrossRefPubMed
21.
go back to reference Mukhopadhyay, P., Chakraborty, S., Ponnusamy, M. P., Lakshmanan, I., Jain, M., & Batra, S. K. (2011). Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochimica et Biophysica Acta, 1815(2), 224–240.PubMedPubMedCentral Mukhopadhyay, P., Chakraborty, S., Ponnusamy, M. P., Lakshmanan, I., Jain, M., & Batra, S. K. (2011). Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochimica et Biophysica Acta, 1815(2), 224–240.PubMedPubMedCentral
22.
go back to reference Lakshmanan, I., Ponnusamy, M. P., Macha, M. A., Haridas, D., Majhi, P. D., Kaur, S., et al. (2015). Mucins in lung cancer: diagnostic, prognostic, and therapeutic implications. Journal of Thoracic Oncology: official publication of the International Association for the Study of Lung Cancer., 10(1), 19–27.CrossRef Lakshmanan, I., Ponnusamy, M. P., Macha, M. A., Haridas, D., Majhi, P. D., Kaur, S., et al. (2015). Mucins in lung cancer: diagnostic, prognostic, and therapeutic implications. Journal of Thoracic Oncology: official publication of the International Association for the Study of Lung Cancer., 10(1), 19–27.CrossRef
23.
go back to reference Krishn, S. R., Kaur, S., Smith, L. M., Johansson, S. L., Jain, M., Patel, A., et al. (2016). Mucins and associated glycan signatures in colon adenoma-carcinoma sequence: prospective pathological implication(s) for early diagnosis of colon cancer. Cancer letters., 374(2), 304–314.CrossRefPubMedPubMedCentral Krishn, S. R., Kaur, S., Smith, L. M., Johansson, S. L., Jain, M., Patel, A., et al. (2016). Mucins and associated glycan signatures in colon adenoma-carcinoma sequence: prospective pathological implication(s) for early diagnosis of colon cancer. Cancer letters., 374(2), 304–314.CrossRefPubMedPubMedCentral
24.
go back to reference Pai, P., Rachagani, S., Dhawan, P., & Batra, S. K. (2016). Mucins and Wnt/beta-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis, 37(3), 223–232.CrossRefPubMedPubMedCentral Pai, P., Rachagani, S., Dhawan, P., & Batra, S. K. (2016). Mucins and Wnt/beta-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis, 37(3), 223–232.CrossRefPubMedPubMedCentral
25.
go back to reference Kumar, S., Das, S., Rachagani, S., Kaur, S., Joshi, S., Johansson, S. L., et al. (2015). NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene, 34(37), 4879–4889.CrossRefPubMed Kumar, S., Das, S., Rachagani, S., Kaur, S., Joshi, S., Johansson, S. L., et al. (2015). NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene, 34(37), 4879–4889.CrossRefPubMed
26.
go back to reference Perrais, M., Rousseaux, C., Ducourouble, M. P., Courcol, R., Vincent, P., Jonckheere, N., et al. (2014). Helicobacter pylori urease and flagellin alter mucin gene expression in human gastric cancer cells. Gastric Cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association., 17(2), 235–246.CrossRef Perrais, M., Rousseaux, C., Ducourouble, M. P., Courcol, R., Vincent, P., Jonckheere, N., et al. (2014). Helicobacter pylori urease and flagellin alter mucin gene expression in human gastric cancer cells. Gastric Cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association., 17(2), 235–246.CrossRef
27.
go back to reference Shibahara, H., Higashi, M., Yokoyama, S., Rousseau, K., Kitazono, I., Osako, M., et al. (2014). A comprehensive expression analysis of mucins in appendiceal carcinoma in a multicenter study: MUC3 is a novel prognostic factor. PLoS One, 9(12), e115613.CrossRefPubMedPubMedCentral Shibahara, H., Higashi, M., Yokoyama, S., Rousseau, K., Kitazono, I., Osako, M., et al. (2014). A comprehensive expression analysis of mucins in appendiceal carcinoma in a multicenter study: MUC3 is a novel prognostic factor. PLoS One, 9(12), e115613.CrossRefPubMedPubMedCentral
28.
go back to reference Jonckheere, N., & Van Seuningen, I. (2008). The membrane-bound mucins: how large O-glycoproteins play key roles in epithelial cancers and hold promise as biological tools for gene-based and immunotherapies. Critical Reviews in Oncogenesis., 14(2–3), 177–196.CrossRefPubMed Jonckheere, N., & Van Seuningen, I. (2008). The membrane-bound mucins: how large O-glycoproteins play key roles in epithelial cancers and hold promise as biological tools for gene-based and immunotherapies. Critical Reviews in Oncogenesis., 14(2–3), 177–196.CrossRefPubMed
29.
go back to reference Andrianifahanana, M., Moniaux, N., Schmied, B. M., Ringel, J., Friess, H., Hollingsworth, M. A., et al. (2001). Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clinical Cancer Research : an official journal of the American Association for Cancer Research, 7(12), 4033–4040. Andrianifahanana, M., Moniaux, N., Schmied, B. M., Ringel, J., Friess, H., Hollingsworth, M. A., et al. (2001). Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clinical Cancer Research : an official journal of the American Association for Cancer Research, 7(12), 4033–4040.
30.
go back to reference Mukhopadhyay, P., Lakshmanan, I., Ponnusamy, M. P., Chakraborty, S., Jain, M., Pai, P., et al. (2013). MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS One, 8(2), e54455.CrossRefPubMedPubMedCentral Mukhopadhyay, P., Lakshmanan, I., Ponnusamy, M. P., Chakraborty, S., Jain, M., Pai, P., et al. (2013). MUC4 overexpression augments cell migration and metastasis through EGFR family proteins in triple negative breast cancer cells. PLoS One, 8(2), e54455.CrossRefPubMedPubMedCentral
31.
go back to reference Senapati, S., Chaturvedi, P., Sharma, P., Venkatraman, G., Meza, J. L., El-Rifai, W., et al. (2008). Deregulation of MUC4 in gastric adenocarcinoma: potential pathobiological implication in poorly differentiated non-signet ring cell type gastric cancer. British Journal of Cancer, 99(6), 949–956.CrossRefPubMedPubMedCentral Senapati, S., Chaturvedi, P., Sharma, P., Venkatraman, G., Meza, J. L., El-Rifai, W., et al. (2008). Deregulation of MUC4 in gastric adenocarcinoma: potential pathobiological implication in poorly differentiated non-signet ring cell type gastric cancer. British Journal of Cancer, 99(6), 949–956.CrossRefPubMedPubMedCentral
32.
go back to reference Singh, A. P., Chauhan, S. C., Bafna, S., Johansson, S. L., Smith, L. M., Moniaux, N., et al. (2006). Aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. The Prostate, 66(4), 421–429.CrossRefPubMed Singh, A. P., Chauhan, S. C., Bafna, S., Johansson, S. L., Smith, L. M., Moniaux, N., et al. (2006). Aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. The Prostate, 66(4), 421–429.CrossRefPubMed
33.
go back to reference Kaur, S., Momi, N., Chakraborty, S., Wagner, D. G., Horn, A. J., Lele, S. M., et al. (2014). Altered expression of transmembrane mucins, MUC1 and MUC4, in bladder cancer: pathological implications in diagnosis. PLoS One, 9(3), e92742.CrossRefPubMedPubMedCentral Kaur, S., Momi, N., Chakraborty, S., Wagner, D. G., Horn, A. J., Lele, S. M., et al. (2014). Altered expression of transmembrane mucins, MUC1 and MUC4, in bladder cancer: pathological implications in diagnosis. PLoS One, 9(3), e92742.CrossRefPubMedPubMedCentral
34.
go back to reference Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1.CrossRefPubMedPubMedCentral Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., et al. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4, 1.CrossRefPubMedPubMedCentral
35.
go back to reference Dilly, A. K., Honick, B. D., Lee, Y. J., Guo, Z. S., Zeh, H. J., Bartlett, D. L., et al. (2017). Targeting G-protein coupled receptor-related signaling pathway in a murine xenograft model of appendiceal pseudomyxoma peritonei. Oncotarget, 8(63), 106888–106900.CrossRefPubMedPubMedCentral Dilly, A. K., Honick, B. D., Lee, Y. J., Guo, Z. S., Zeh, H. J., Bartlett, D. L., et al. (2017). Targeting G-protein coupled receptor-related signaling pathway in a murine xenograft model of appendiceal pseudomyxoma peritonei. Oncotarget, 8(63), 106888–106900.CrossRefPubMedPubMedCentral
36.
go back to reference Garcia, E. P., Tiscornia, I., Libisch, G., Trajtenberg, F., Bollati-Fogolin, M., Rodriguez, E., et al. (2016). MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells. International Journal of Oncology, 48(5), 2113–2123.CrossRefPubMed Garcia, E. P., Tiscornia, I., Libisch, G., Trajtenberg, F., Bollati-Fogolin, M., Rodriguez, E., et al. (2016). MUC5B silencing reduces chemo-resistance of MCF-7 breast tumor cells and impairs maturation of dendritic cells. International Journal of Oncology, 48(5), 2113–2123.CrossRefPubMed
37.
go back to reference Lakshmanan, I., Ponnusamy, M. P., Das, S., Chakraborty, S., Haridas, D., Mukhopadhyay, P., et al. (2012). MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells. Oncogene, 31(7), 805–817.CrossRefPubMed Lakshmanan, I., Ponnusamy, M. P., Das, S., Chakraborty, S., Haridas, D., Mukhopadhyay, P., et al. (2012). MUC16 induced rapid G2/M transition via interactions with JAK2 for increased proliferation and anti-apoptosis in breast cancer cells. Oncogene, 31(7), 805–817.CrossRefPubMed
38.
go back to reference Workman, H. C., Sweeney, C., & Carraway, K. L., 3rd. (2009). The membrane mucin Muc4 inhibits apoptosis induced by multiple insults via ErbB2-dependent and ErbB2-independent mechanisms. Cancer Research, 69(7), 2845–2852.CrossRefPubMedPubMedCentral Workman, H. C., Sweeney, C., & Carraway, K. L., 3rd. (2009). The membrane mucin Muc4 inhibits apoptosis induced by multiple insults via ErbB2-dependent and ErbB2-independent mechanisms. Cancer Research, 69(7), 2845–2852.CrossRefPubMedPubMedCentral
39.
go back to reference Hattrup, C. L., & Gendler, S. J. (2006). MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Research, 8(4), R37.CrossRefPubMedPubMedCentral Hattrup, C. L., & Gendler, S. J. (2006). MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Research, 8(4), R37.CrossRefPubMedPubMedCentral
40.
go back to reference Schroeder, J. A., Masri, A. A., Adriance, M. C., Tessier, J. C., Kotlarczyk, K. L., Thompson, M. C., et al. (2004). MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene, 23(34), 5739–5747.CrossRefPubMed Schroeder, J. A., Masri, A. A., Adriance, M. C., Tessier, J. C., Kotlarczyk, K. L., Thompson, M. C., et al. (2004). MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene, 23(34), 5739–5747.CrossRefPubMed
41.
go back to reference Li, Y., Pang, Z., Dong, X., Liao, X., Deng, H., Liao, C., et al. (2018). MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer. Oncotarget, 9(3), 3446–3458.PubMed Li, Y., Pang, Z., Dong, X., Liao, X., Deng, H., Liao, C., et al. (2018). MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer. Oncotarget, 9(3), 3446–3458.PubMed
42.
go back to reference Jin, W., Liao, X., Lv, Y., Pang, Z., Wang, Y., Li, Q., et al. (2017). MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death & Disease, 8(8), e2980.CrossRef Jin, W., Liao, X., Lv, Y., Pang, Z., Wang, Y., Li, Q., et al. (2017). MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death & Disease, 8(8), e2980.CrossRef
43.
go back to reference Zhu, X., Long, X., Luo, X., Song, Z., Li, S., & Wang, H. (2016). Abrogation of MUC5AC expression contributes to the apoptosis and cell cycle arrest of colon cancer cells. Cancer Biotherapy & Radiopharmaceuticals, 31(7), 261–267.CrossRef Zhu, X., Long, X., Luo, X., Song, Z., Li, S., & Wang, H. (2016). Abrogation of MUC5AC expression contributes to the apoptosis and cell cycle arrest of colon cancer cells. Cancer Biotherapy & Radiopharmaceuticals, 31(7), 261–267.CrossRef
44.
go back to reference Sheng, Y. H., He, Y., Hasnain, S. Z., Wang, R., Tong, H., Clarke, D. T., et al. (2017). MUC13 protects colorectal cancer cells from death by activating the NF-kappaB pathway and is a potential therapeutic target. Oncogene, 36(5), 700–713.CrossRefPubMed Sheng, Y. H., He, Y., Hasnain, S. Z., Wang, R., Tong, H., Clarke, D. T., et al. (2017). MUC13 protects colorectal cancer cells from death by activating the NF-kappaB pathway and is a potential therapeutic target. Oncogene, 36(5), 700–713.CrossRefPubMed
45.
go back to reference Chen, Q., Li, D., Ren, J., Li, C., & Xiao, Z. X. (2013). MUC1 activates JNK1 and inhibits apoptosis under genotoxic stress. Biochemical and Biophysical Research Communications, 440(1), 179–183.CrossRefPubMed Chen, Q., Li, D., Ren, J., Li, C., & Xiao, Z. X. (2013). MUC1 activates JNK1 and inhibits apoptosis under genotoxic stress. Biochemical and Biophysical Research Communications, 440(1), 179–183.CrossRefPubMed
46.
go back to reference Ren, J., Agata, N., Chen, D., Li, Y., Yu, W. H., Huang, L., et al. (2004). Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell, 5(2), 163–175.CrossRefPubMedPubMedCentral Ren, J., Agata, N., Chen, D., Li, Y., Yu, W. H., Huang, L., et al. (2004). Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell, 5(2), 163–175.CrossRefPubMedPubMedCentral
47.
go back to reference Costa, N. R., Paulo, P., Caffrey, T., Hollingsworth, M. A., & Santos-Silva, F. (2011). Impact of MUC1 mucin downregulation in the phenotypic characteristics of MKN45 gastric carcinoma cell line. PLoS One, 6(11), e26970.CrossRefPubMedPubMedCentral Costa, N. R., Paulo, P., Caffrey, T., Hollingsworth, M. A., & Santos-Silva, F. (2011). Impact of MUC1 mucin downregulation in the phenotypic characteristics of MKN45 gastric carcinoma cell line. PLoS One, 6(11), e26970.CrossRefPubMedPubMedCentral
48.
go back to reference Yi, F. T., & Lu, Q. P. (2017). Mucin 1 promotes radioresistance in hepatocellular carcinoma cells through activation of JAK2/STAT3 signaling. Oncology Letters, 14(6), 7571–7576.PubMedPubMedCentral Yi, F. T., & Lu, Q. P. (2017). Mucin 1 promotes radioresistance in hepatocellular carcinoma cells through activation of JAK2/STAT3 signaling. Oncology Letters, 14(6), 7571–7576.PubMedPubMedCentral
49.
go back to reference Yuan, H., Wang, J., Wang, F., Zhang, N., Li, Q., Xie, F., et al. (2015). Mucin 1 gene silencing inhibits the growth of SMMC-7721 human hepatoma cells through Bax-mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways. Molecular Medicine Reports, 12(5), 6782–6788.CrossRefPubMedPubMedCentral Yuan, H., Wang, J., Wang, F., Zhang, N., Li, Q., Xie, F., et al. (2015). Mucin 1 gene silencing inhibits the growth of SMMC-7721 human hepatoma cells through Bax-mediated mitochondrial and caspase-8-mediated death receptor apoptotic pathways. Molecular Medicine Reports, 12(5), 6782–6788.CrossRefPubMedPubMedCentral
50.
go back to reference Li, Q., Wang, F., Liu, G., Yuan, H., Chen, T., Wang, J., et al. (2014). Impact of Mucin1 knockdown on the phenotypic characteristics of the human hepatocellular carcinoma cell line SMMC-7721. Oncology Reports, 31(6), 2811–2819.CrossRefPubMed Li, Q., Wang, F., Liu, G., Yuan, H., Chen, T., Wang, J., et al. (2014). Impact of Mucin1 knockdown on the phenotypic characteristics of the human hepatocellular carcinoma cell line SMMC-7721. Oncology Reports, 31(6), 2811–2819.CrossRefPubMed
51.
go back to reference Xu, T., Li, D., Wang, H., Zheng, T., Wang, G., & Xin, Y. (2017). MUC1 downregulation inhibits non-small cell lung cancer progression in human cell lines. Experimental and Therapeutic Medicine, 14(5), 4443–4447.PubMedPubMedCentral Xu, T., Li, D., Wang, H., Zheng, T., Wang, G., & Xin, Y. (2017). MUC1 downregulation inhibits non-small cell lung cancer progression in human cell lines. Experimental and Therapeutic Medicine, 14(5), 4443–4447.PubMedPubMedCentral
52.
go back to reference Xu, X., Wells, A., Padilla, M. T., Kato, K., Kim, K. C., & Lin, Y. (2014). A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis, 35(11), 2457–2466.CrossRefPubMedPubMedCentral Xu, X., Wells, A., Padilla, M. T., Kato, K., Kim, K. C., & Lin, Y. (2014). A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis, 35(11), 2457–2466.CrossRefPubMedPubMedCentral
53.
go back to reference Gao, J., McConnell, M. J., Yu, B., Li, J., Balko, J. M., Black, E. P., et al. (2009). MUC1 is a downstream target of STAT3 and regulates lung cancer cell survival and invasion. International Journal of Oncology, 35(2), 337–345.PubMedPubMedCentral Gao, J., McConnell, M. J., Yu, B., Li, J., Balko, J. M., Black, E. P., et al. (2009). MUC1 is a downstream target of STAT3 and regulates lung cancer cell survival and invasion. International Journal of Oncology, 35(2), 337–345.PubMedPubMedCentral
54.
go back to reference Grover, P., Nath, S., Nye, M. D., Zhou, R., Ahmad, M., & Mukherjee, P. (2018). SMAD4-independent activation of TGF-beta signaling by MUC1 in a human pancreatic cancer cell line. Oncotarget, 9(6), 6897–6910.CrossRefPubMedPubMedCentral Grover, P., Nath, S., Nye, M. D., Zhou, R., Ahmad, M., & Mukherjee, P. (2018). SMAD4-independent activation of TGF-beta signaling by MUC1 in a human pancreatic cancer cell line. Oncotarget, 9(6), 6897–6910.CrossRefPubMedPubMedCentral
55.
go back to reference Zhao, P., Meng, M., Xu, B., Dong, A., Ni, G., & Lu, L. (2017). Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway. Cancer Biomarkers, 20(4), 469–476.CrossRefPubMed Zhao, P., Meng, M., Xu, B., Dong, A., Ni, G., & Lu, L. (2017). Decreased expression of MUC1 induces apoptosis and inhibits migration in pancreatic cancer PANC-1 cells via regulation of Slug pathway. Cancer Biomarkers, 20(4), 469–476.CrossRefPubMed
56.
go back to reference Trehoux, S., Duchene, B., Jonckheere, N., & Van Seuningen, I. (2015). The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42-44 MAPK, Akt, Bcl-2 and MMP13 pathways. Biochemical and Biophysical Research Communications, 456(3), 757–762.CrossRefPubMed Trehoux, S., Duchene, B., Jonckheere, N., & Van Seuningen, I. (2015). The MUC1 oncomucin regulates pancreatic cancer cell biological properties and chemoresistance. Implication of p42-44 MAPK, Akt, Bcl-2 and MMP13 pathways. Biochemical and Biophysical Research Communications, 456(3), 757–762.CrossRefPubMed
57.
go back to reference Jonckheere, N., Skrypek, N., Merlin, J., Dessein, A. F., Dumont, P., Leteurtre, E., et al. (2012). The mucin MUC4 and its membrane partner ErbB2 regulate biological properties of human CAPAN-2 pancreatic cancer cells via different signalling pathways. PLoS One, 7(2), e32232.CrossRefPubMedPubMedCentral Jonckheere, N., Skrypek, N., Merlin, J., Dessein, A. F., Dumont, P., Leteurtre, E., et al. (2012). The mucin MUC4 and its membrane partner ErbB2 regulate biological properties of human CAPAN-2 pancreatic cancer cells via different signalling pathways. PLoS One, 7(2), e32232.CrossRefPubMedPubMedCentral
58.
go back to reference Bafna, S., Kaur, S., Momi, N., & Batra, S. K. (2009). Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin. British Journal of Cancer, 101(7), 1155–1161.CrossRefPubMedPubMedCentral Bafna, S., Kaur, S., Momi, N., & Batra, S. K. (2009). Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin. British Journal of Cancer, 101(7), 1155–1161.CrossRefPubMedPubMedCentral
59.
go back to reference Chaturvedi, P., Singh, A. P., Moniaux, N., Senapati, S., Chakraborty, S., Meza, J. L., et al. (2007). MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Molecular Cancer Research: MCR, 5(4), 309–320.CrossRefPubMed Chaturvedi, P., Singh, A. P., Moniaux, N., Senapati, S., Chakraborty, S., Meza, J. L., et al. (2007). MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Molecular Cancer Research: MCR, 5(4), 309–320.CrossRefPubMed
60.
go back to reference Hoshi, H., Sawada, T., Uchida, M., Iijima, H., Kimura, K., Hirakawa, K., et al. (2013). MUC5AC protects pancreatic cancer cells from TRAIL-induced death pathways. International Journal of Oncology, 42(3), 887–893.CrossRefPubMed Hoshi, H., Sawada, T., Uchida, M., Iijima, H., Kimura, K., Hirakawa, K., et al. (2013). MUC5AC protects pancreatic cancer cells from TRAIL-induced death pathways. International Journal of Oncology, 42(3), 887–893.CrossRefPubMed
61.
go back to reference Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., et al. (2017). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140(10), 2351–2363.CrossRefPubMed Sheng, Y., Ng, C. P., Lourie, R., Shah, E. T., He, Y., Wong, K. Y., et al. (2017). MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. International Journal of Cancer, 140(10), 2351–2363.CrossRefPubMed
62.
go back to reference Zhao, Q., Piyush, T., Chen, C., Hollingsworth, M. A., Hilkens, J., Rhodes, J. M., et al. (2014). MUC1 extracellular domain confers resistance of epithelial cancer cells to anoikis. Cell Death & Disease, e1438, 5. Zhao, Q., Piyush, T., Chen, C., Hollingsworth, M. A., Hilkens, J., Rhodes, J. M., et al. (2014). MUC1 extracellular domain confers resistance of epithelial cancer cells to anoikis. Cell Death & Disease, e1438, 5.
63.
go back to reference Yin, L., Li, Y., Ren, J., Kuwahara, H., & Kufe, D. (2003). Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. The Journal of Biological Chemistry, 278(37), 35458–35464.CrossRefPubMed Yin, L., Li, Y., Ren, J., Kuwahara, H., & Kufe, D. (2003). Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. The Journal of Biological Chemistry, 278(37), 35458–35464.CrossRefPubMed
64.
go back to reference Raina, D., Ahmad, R., Kumar, S., Ren, J., Yoshida, K., Kharbanda, S., et al. (2006). MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. The EMBO Journal, 25(16), 3774–3783.CrossRefPubMedPubMedCentral Raina, D., Ahmad, R., Kumar, S., Ren, J., Yoshida, K., Kharbanda, S., et al. (2006). MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. The EMBO Journal, 25(16), 3774–3783.CrossRefPubMedPubMedCentral
65.
go back to reference Rowson-Hodel, A. R., Wald, J. H., Hatakeyama, J., O’Neal, W. K., Stonebraker, J. R., VanderVorst, K., et al. (2018). Membrane mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer. Oncogene, 37(2), 197–207.CrossRefPubMed Rowson-Hodel, A. R., Wald, J. H., Hatakeyama, J., O’Neal, W. K., Stonebraker, J. R., VanderVorst, K., et al. (2018). Membrane mucin Muc4 promotes blood cell association with tumor cells and mediates efficient metastasis in a mouse model of breast cancer. Oncogene, 37(2), 197–207.CrossRefPubMed
66.
go back to reference Astashchanka, A., Shroka, T. M., & Jacobsen, B. M. (2018). Mucin 2 (MUC2) modulates the aggressiveness of breast cancer. Breast Cancer Research and Treatment. Astashchanka, A., Shroka, T. M., & Jacobsen, B. M. (2018). Mucin 2 (MUC2) modulates the aggressiveness of breast cancer. Breast Cancer Research and Treatment.
67.
go back to reference Reinartz, S., Failer, S., Schuell, T., & Wagner, U. (2012). CA125 (MUC16) gene silencing suppresses growth properties of ovarian and breast cancer cells. European Journal of Cancer (Oxford, England: 1990), 48(10), 1558–1569.CrossRef Reinartz, S., Failer, S., Schuell, T., & Wagner, U. (2012). CA125 (MUC16) gene silencing suppresses growth properties of ovarian and breast cancer cells. European Journal of Cancer (Oxford, England: 1990), 48(10), 1558–1569.CrossRef
68.
go back to reference Liu, Q., Cheng, Z., Luo, L., Yang, Y., Zhang, Z., Ma, H., et al. (2016). C-terminus of MUC16 activates Wnt signaling pathway through its interaction with beta-catenin to promote tumorigenesis and metastasis. Oncotarget, 7(24), 36800–36813.PubMedPubMedCentral Liu, Q., Cheng, Z., Luo, L., Yang, Y., Zhang, Z., Ma, H., et al. (2016). C-terminus of MUC16 activates Wnt signaling pathway through its interaction with beta-catenin to promote tumorigenesis and metastasis. Oncotarget, 7(24), 36800–36813.PubMedPubMedCentral
69.
go back to reference Valque, H., Gouyer, V., Gottrand, F., & Desseyn, J. L. (2012). MUC5B leads to aggressive behavior of breast cancer MCF7 cells. PLoS One, 7(10), e46699.CrossRefPubMedPubMedCentral Valque, H., Gouyer, V., Gottrand, F., & Desseyn, J. L. (2012). MUC5B leads to aggressive behavior of breast cancer MCF7 cells. PLoS One, 7(10), e46699.CrossRefPubMedPubMedCentral
70.
go back to reference Fessler, S. P., Wotkowicz, M. T., Mahanta, S. K., & Bamdad, C. (2009). MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Research and Treatment, 118(1), 113–124.CrossRefPubMed Fessler, S. P., Wotkowicz, M. T., Mahanta, S. K., & Bamdad, C. (2009). MUC1* is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells. Breast Cancer Research and Treatment, 118(1), 113–124.CrossRefPubMed
71.
go back to reference Chen, A. C., Migliaccio, I., Rimawi, M., Lopez-Tarruella, S., Creighton, C. J., Massarweh, S., et al. (2012). Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies. Breast Cancer Research and Treatment, 134(2), 583–593.CrossRefPubMedPubMedCentral Chen, A. C., Migliaccio, I., Rimawi, M., Lopez-Tarruella, S., Creighton, C. J., Massarweh, S., et al. (2012). Upregulation of mucin4 in ER-positive/HER2-overexpressing breast cancer xenografts with acquired resistance to endocrine and HER2-targeted therapies. Breast Cancer Research and Treatment, 134(2), 583–593.CrossRefPubMedPubMedCentral
72.
go back to reference Maeda, T., Hiraki, M., Jin, C., Rajabi, H., Tagde, A., Alam, M., et al. (2018). MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer Research., 78(1), 205–215.CrossRefPubMed Maeda, T., Hiraki, M., Jin, C., Rajabi, H., Tagde, A., Alam, M., et al. (2018). MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer Research., 78(1), 205–215.CrossRefPubMed
73.
go back to reference Alam, M., Rajabi, H., Ahmad, R., Jin, C., & Kufe, D. (2014). Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells. Oncotarget, 5(9), 2622–2634.CrossRefPubMedPubMedCentral Alam, M., Rajabi, H., Ahmad, R., Jin, C., & Kufe, D. (2014). Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells. Oncotarget, 5(9), 2622–2634.CrossRefPubMedPubMedCentral
74.
go back to reference Kharbanda, A., Rajabi, H., Jin, C., Raina, D., & Kufe, D. (2013). Oncogenic MUC1-C promotes tamoxifen resistance in human breast cancer. Molecular Cancer Research: MCR, 11(7), 714–723.CrossRefPubMed Kharbanda, A., Rajabi, H., Jin, C., Raina, D., & Kufe, D. (2013). Oncogenic MUC1-C promotes tamoxifen resistance in human breast cancer. Molecular Cancer Research: MCR, 11(7), 714–723.CrossRefPubMed
75.
go back to reference Raina, D., Uchida, Y., Kharbanda, A., Rajabi, H., Panchamoorthy, G., Jin, C., et al. (2014). Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene, 33(26), 3422–3431.CrossRefPubMed Raina, D., Uchida, Y., Kharbanda, A., Rajabi, H., Panchamoorthy, G., Jin, C., et al. (2014). Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene, 33(26), 3422–3431.CrossRefPubMed
76.
go back to reference Uchida, Y., Raina, D., Kharbanda, S., & Kufe, D. (2013). Inhibition of the MUC1-C oncoprotein is synergistic with cytotoxic agents in the treatment of breast cancer cells. Cancer Biology & Therapy, 14(2), 127–134.CrossRef Uchida, Y., Raina, D., Kharbanda, S., & Kufe, D. (2013). Inhibition of the MUC1-C oncoprotein is synergistic with cytotoxic agents in the treatment of breast cancer cells. Cancer Biology & Therapy, 14(2), 127–134.CrossRef
77.
go back to reference Das, S., Rachagani, S., Sheinin, Y., Smith, L. M., Gurumurthy, C. B., Roy, H. K., et al. (2016). Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer. Oncogene, 35(20), 2645–2654.CrossRefPubMed Das, S., Rachagani, S., Sheinin, Y., Smith, L. M., Gurumurthy, C. B., Roy, H. K., et al. (2016). Mice deficient in Muc4 are resistant to experimental colitis and colitis-associated colorectal cancer. Oncogene, 35(20), 2645–2654.CrossRefPubMed
78.
go back to reference Gupta, B. K., Maher, D. M., Ebeling, M. C., Stephenson, P. D., Puumala, S. E., Koch, M. R., et al. (2014). Functions and regulation of MUC13 mucin in colon cancer cells. Journal of Gastroenterology, 49(10), 1378–1391.CrossRefPubMed Gupta, B. K., Maher, D. M., Ebeling, M. C., Stephenson, P. D., Puumala, S. E., Koch, M. R., et al. (2014). Functions and regulation of MUC13 mucin in colon cancer cells. Journal of Gastroenterology, 49(10), 1378–1391.CrossRefPubMed
79.
go back to reference Bruyere, E., Jonckheere, N., Frenois, F., Mariette, C., & Van Seuningen, I. (2011). The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein. Biochemical and Biophysical Research Communications, 413(2), 325–329.CrossRefPubMed Bruyere, E., Jonckheere, N., Frenois, F., Mariette, C., & Van Seuningen, I. (2011). The MUC4 membrane-bound mucin regulates esophageal cancer cell proliferation and migration properties: Implication for S100A4 protein. Biochemical and Biophysical Research Communications, 413(2), 325–329.CrossRefPubMed
80.
go back to reference Gronnier, C., Bruyere, E., Lahdaoui, F., Jonckheere, N., Perrais, M., Leteurtre, E., et al. (2014). The MUC1 mucin regulates the tumorigenic properties of human esophageal adenocarcinomatous cells. Biochimica et Biophysica Acta, 1843(11), 2432–2437.CrossRefPubMed Gronnier, C., Bruyere, E., Lahdaoui, F., Jonckheere, N., Perrais, M., Leteurtre, E., et al. (2014). The MUC1 mucin regulates the tumorigenic properties of human esophageal adenocarcinomatous cells. Biochimica et Biophysica Acta, 1843(11), 2432–2437.CrossRefPubMed
81.
go back to reference Lahdaoui, F., Messager, M., Vincent, A., Hec, F., Gandon, A., Warlaumont, M., et al. (2017). Depletion of MUC5B mucin in gastrointestinal cancer cells alters their tumorigenic properties: implication of the Wnt/beta-catenin pathway. The Biochemical Journal, 474(22), 3733–3746.CrossRefPubMed Lahdaoui, F., Messager, M., Vincent, A., Hec, F., Gandon, A., Warlaumont, M., et al. (2017). Depletion of MUC5B mucin in gastrointestinal cancer cells alters their tumorigenic properties: implication of the Wnt/beta-catenin pathway. The Biochemical Journal, 474(22), 3733–3746.CrossRefPubMed
82.
go back to reference Deng, M., Jing, D. D., & Meng, X. J. (2013). Effect of MUC1 siRNA on drug resistance of gastric cancer cells to trastuzumab. Asian Pacific Journal of Cancer Prevention: APJCP, 14(1), 127–131.CrossRefPubMed Deng, M., Jing, D. D., & Meng, X. J. (2013). Effect of MUC1 siRNA on drug resistance of gastric cancer cells to trastuzumab. Asian Pacific Journal of Cancer Prevention: APJCP, 14(1), 127–131.CrossRefPubMed
83.
go back to reference Shi, M., Yang, Z., Hu, M., Liu, D., Hu, Y., Qian, L., et al. (2013). Catecholamine-induced beta2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression. Journal of Immunology (Baltimore, Md: 1950), 190(11), 5600–5608.CrossRef Shi, M., Yang, Z., Hu, M., Liu, D., Hu, Y., Qian, L., et al. (2013). Catecholamine-induced beta2-adrenergic receptor activation mediates desensitization of gastric cancer cells to trastuzumab by upregulating MUC4 expression. Journal of Immunology (Baltimore, Md: 1950), 190(11), 5600–5608.CrossRef
84.
go back to reference Macha, M. A., Rachagani, S., Pai, P., Gupta, S., Lydiatt, W. M., Smith, R. B., et al. (2015). MUC4 regulates cellular senescence in head and neck squamous cell carcinoma through p16/Rb pathway. Oncogene, 34(13), 1698–1708.CrossRefPubMed Macha, M. A., Rachagani, S., Pai, P., Gupta, S., Lydiatt, W. M., Smith, R. B., et al. (2015). MUC4 regulates cellular senescence in head and neck squamous cell carcinoma through p16/Rb pathway. Oncogene, 34(13), 1698–1708.CrossRefPubMed
85.
go back to reference Lakshmanan, I., Salfity, S., Seshacharyulu, P., Rachagani, S., Thomas, A., Das, S., et al. (2017). MUC16 regulates TSPYL5 for lung cancer cell growth and chemoresistance by suppressing p53. Clinical Cancer Research, 23(14), 3906–3917.CrossRefPubMedPubMedCentral Lakshmanan, I., Salfity, S., Seshacharyulu, P., Rachagani, S., Thomas, A., Das, S., et al. (2017). MUC16 regulates TSPYL5 for lung cancer cell growth and chemoresistance by suppressing p53. Clinical Cancer Research, 23(14), 3906–3917.CrossRefPubMedPubMedCentral
86.
go back to reference Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S. R., Paknikar, S., Seshacharyulu, P., et al. (2016). MUC5AC interactions with integrin beta4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 35(31), 4112–4121.CrossRefPubMedPubMedCentral Lakshmanan, I., Rachagani, S., Hauke, R., Krishn, S. R., Paknikar, S., Seshacharyulu, P., et al. (2016). MUC5AC interactions with integrin beta4 enhances the migration of lung cancer cells through FAK signaling. Oncogene, 35(31), 4112–4121.CrossRefPubMedPubMedCentral
87.
go back to reference Majhi, P. D., Lakshmanan, I., Ponnusamy, M. P., Jain, M., Das, S., Kaur, S., et al. (2013). Pathobiological implications of MUC4 in non-small-cell lung cancer. Journal of Thoracic Oncology: official publication of the International Association for the Study of Lung Cancer, 8(4), 398–407.CrossRef Majhi, P. D., Lakshmanan, I., Ponnusamy, M. P., Jain, M., Das, S., Kaur, S., et al. (2013). Pathobiological implications of MUC4 in non-small-cell lung cancer. Journal of Thoracic Oncology: official publication of the International Association for the Study of Lung Cancer, 8(4), 398–407.CrossRef
88.
go back to reference Kanwal, M., Ding, X. J., Song, X., Zhou, G. B., & Cao, Y. (2018). MUC16 overexpression induced by gene mutations promotes lung cancer cell growth and invasion. Oncotarget, 9(15), 12226–12239.CrossRefPubMedPubMedCentral Kanwal, M., Ding, X. J., Song, X., Zhou, G. B., & Cao, Y. (2018). MUC16 overexpression induced by gene mutations promotes lung cancer cell growth and invasion. Oncotarget, 9(15), 12226–12239.CrossRefPubMedPubMedCentral
89.
go back to reference Raina, D., Kosugi, M., Ahmad, R., Panchamoorthy, G., Rajabi, H., Alam, M., et al. (2011). Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Molecular Cancer Therapeutics, 10(5), 806–816.CrossRefPubMedPubMedCentral Raina, D., Kosugi, M., Ahmad, R., Panchamoorthy, G., Rajabi, H., Alam, M., et al. (2011). Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Molecular Cancer Therapeutics, 10(5), 806–816.CrossRefPubMedPubMedCentral
90.
go back to reference Bouillez, A., Gnemmi, V., Gaudelot, K., Hemon, B., Ringot, B., Pottier, N., et al. (2014). MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway. Oncotarget, 5(3), 754–763.CrossRefPubMedPubMedCentral Bouillez, A., Gnemmi, V., Gaudelot, K., Hemon, B., Ringot, B., Pottier, N., et al. (2014). MUC1-C nuclear localization drives invasiveness of renal cancer cells through a sheddase/gamma secretase dependent pathway. Oncotarget, 5(3), 754–763.CrossRefPubMedPubMedCentral
91.
go back to reference Aubert, S., Fauquette, V., Hemon, B., Lepoivre, R., Briez, N., Bernard, D., et al. (2009). MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Research, 69(14), 5707–5715.CrossRefPubMed Aubert, S., Fauquette, V., Hemon, B., Lepoivre, R., Briez, N., Bernard, D., et al. (2009). MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Research, 69(14), 5707–5715.CrossRefPubMed
92.
go back to reference Alam, M., Ahmad, R., Rajabi, H., Kharbanda, A., & Kufe, D. (2013). MUC1-C oncoprotein activates ERK-->C/EBPbeta signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. The Journal of Biological Chemistry, 288(43), 30892–30903.CrossRefPubMedPubMedCentral Alam, M., Ahmad, R., Rajabi, H., Kharbanda, A., & Kufe, D. (2013). MUC1-C oncoprotein activates ERK-->C/EBPbeta signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. The Journal of Biological Chemistry, 288(43), 30892–30903.CrossRefPubMedPubMedCentral
93.
go back to reference Mimeault, M., Johansson, S. L., Senapati, S., Momi, N., Chakraborty, S., & Batra, S. K. (2010). MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies. Cancer Letters, 295(1), 69–84.CrossRefPubMedPubMedCentral Mimeault, M., Johansson, S. L., Senapati, S., Momi, N., Chakraborty, S., & Batra, S. K. (2010). MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies. Cancer Letters, 295(1), 69–84.CrossRefPubMedPubMedCentral
94.
go back to reference Huang, W. C., Chan, M. L., Chen, M. J., Tsai, T. H., & Chen, Y. J. (2016). Modulation of macrophage polarization and lung cancer cell stemness by MUC1 and development of a related small-molecule inhibitor pterostilbene. Oncotarget, 7(26), 39363–39375.PubMedPubMedCentral Huang, W. C., Chan, M. L., Chen, M. J., Tsai, T. H., & Chen, Y. J. (2016). Modulation of macrophage polarization and lung cancer cell stemness by MUC1 and development of a related small-molecule inhibitor pterostilbene. Oncotarget, 7(26), 39363–39375.PubMedPubMedCentral
95.
go back to reference Wang, R., Yang, L., Li, S., Ye, D., Yang, L., Liu, Q., et al. (2018). Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Medical Science Monitor: international medical journal of experimental and clinical research, 24, 412–420.CrossRef Wang, R., Yang, L., Li, S., Ye, D., Yang, L., Liu, Q., et al. (2018). Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Medical Science Monitor: international medical journal of experimental and clinical research, 24, 412–420.CrossRef
96.
go back to reference Hiraki, M., Maeda, T., Bouillez, A., Alam, M., Tagde, A., Hinohara, K., et al. (2017). MUC1-C activates BMI1 in human cancer cells. Oncogene, 36(20), 2791–2801.CrossRefPubMed Hiraki, M., Maeda, T., Bouillez, A., Alam, M., Tagde, A., Hinohara, K., et al. (2017). MUC1-C activates BMI1 in human cancer cells. Oncogene, 36(20), 2791–2801.CrossRefPubMed
97.
go back to reference Zhou, N., Zhang, Y., Zhang, X., Lei, Z., Hu, R., Li, H., et al. (2015). Exposure of tumor-associated macrophages to apoptotic MCF-7 cells promotes breast cancer growth and metastasis. International Journal of Molecular Sciences, 16(6), 11966–11982.CrossRefPubMedPubMedCentral Zhou, N., Zhang, Y., Zhang, X., Lei, Z., Hu, R., Li, H., et al. (2015). Exposure of tumor-associated macrophages to apoptotic MCF-7 cells promotes breast cancer growth and metastasis. International Journal of Molecular Sciences, 16(6), 11966–11982.CrossRefPubMedPubMedCentral
98.
go back to reference Engelmann, K., Shen, H., & Finn, O. J. (2008). MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer research, 68(7), 2419–2426.CrossRefPubMed Engelmann, K., Shen, H., & Finn, O. J. (2008). MCF7 side population cells with characteristics of cancer stem/progenitor cells express the tumor antigen MUC1. Cancer research, 68(7), 2419–2426.CrossRefPubMed
99.
go back to reference Das, S., Rachagani, S., Torres-Gonzalez, M. P., Lakshmanan, I., Majhi, P. D., Smith, L. M., et al. (2015). Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 6(8), 5772–5787.CrossRefPubMedPubMedCentral Das, S., Rachagani, S., Torres-Gonzalez, M. P., Lakshmanan, I., Majhi, P. D., Smith, L. M., et al. (2015). Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells. Oncotarget, 6(8), 5772–5787.CrossRefPubMedPubMedCentral
100.
go back to reference Skrypek, N., Duchene, B., Hebbar, M., Leteurtre, E., van Seuningen, I., & Jonckheere, N. (2013). The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene, 32(13), 1714–1723.CrossRefPubMed Skrypek, N., Duchene, B., Hebbar, M., Leteurtre, E., van Seuningen, I., & Jonckheere, N. (2013). The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family. Oncogene, 32(13), 1714–1723.CrossRefPubMed
101.
go back to reference Lahdaoui, F., Delpu, Y., Vincent, A., Renaud, F., Messager, M., Duchene, B., et al. (2015). miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene, 34(6), 780–788.CrossRefPubMed Lahdaoui, F., Delpu, Y., Vincent, A., Renaud, F., Messager, M., Duchene, B., et al. (2015). miR-219-1-3p is a negative regulator of the mucin MUC4 expression and is a tumor suppressor in pancreatic cancer. Oncogene, 34(6), 780–788.CrossRefPubMed
102.
go back to reference Trehoux, S., Lahdaoui, F., Delpu, Y., Renaud, F., Leteurtre, E., Torrisani, J., et al. (2015). Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochimica et Biophysica Acta, 1853(10 Pt A), 2392–2403.CrossRefPubMed Trehoux, S., Lahdaoui, F., Delpu, Y., Renaud, F., Leteurtre, E., Torrisani, J., et al. (2015). Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochimica et Biophysica Acta, 1853(10 Pt A), 2392–2403.CrossRefPubMed
103.
go back to reference Jahan, R., Macha, M. A., Rachagani, S., Das, S., Smith, L. M., Kaur, S., et al. (2018). Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-beta1/FAK/ERK pathway. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1864(8), 2538–2549.CrossRefPubMed Jahan, R., Macha, M. A., Rachagani, S., Das, S., Smith, L. M., Kaur, S., et al. (2018). Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-beta1/FAK/ERK pathway. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1864(8), 2538–2549.CrossRefPubMed
104.
go back to reference Muniyan, S., Haridas, D., Chugh, S., Rachagani, S., Lakshmanan, I., Gupta, S., et al. (2016). MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes & Cancer, 7(3–4), 110–124. Muniyan, S., Haridas, D., Chugh, S., Rachagani, S., Lakshmanan, I., Gupta, S., et al. (2016). MUC16 contributes to the metastasis of pancreatic ductal adenocarcinoma through focal adhesion mediated signaling mechanism. Genes & Cancer, 7(3–4), 110–124.
105.
go back to reference Seshacharyulu, P., Ponnusamy, M. P., Rachagani, S., Lakshmanan, I., Haridas, D., Yan, Y., et al. (2015). Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget, 6(7), 5164–5181.CrossRefPubMed Seshacharyulu, P., Ponnusamy, M. P., Rachagani, S., Lakshmanan, I., Haridas, D., Yan, Y., et al. (2015). Targeting EGF-receptor(s) - STAT1 axis attenuates tumor growth and metastasis through downregulation of MUC4 mucin in human pancreatic cancer. Oncotarget, 6(7), 5164–5181.CrossRefPubMed
106.
go back to reference Lakshmanan, I., Seshacharyulu, P., Haridas, D., Rachagani, S., Gupta, S., Joshi, S., et al. (2015). Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Oncotarget, 6(25), 21085–21099.CrossRefPubMedPubMedCentral Lakshmanan, I., Seshacharyulu, P., Haridas, D., Rachagani, S., Gupta, S., Joshi, S., et al. (2015). Novel HER3/MUC4 oncogenic signaling aggravates the tumorigenic phenotypes of pancreatic cancer cells. Oncotarget, 6(25), 21085–21099.CrossRefPubMedPubMedCentral
107.
go back to reference Pai, P., Rachagani, S., Lakshmanan, I., Macha, M. A., Sheinin, Y., Smith, L. M., et al. (2016). The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Molecular Oncology, 10(2), 224–239.CrossRefPubMed Pai, P., Rachagani, S., Lakshmanan, I., Macha, M. A., Sheinin, Y., Smith, L. M., et al. (2016). The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Molecular Oncology, 10(2), 224–239.CrossRefPubMed
108.
go back to reference Rachagani, S., Macha, M. A., Ponnusamy, M. P., Haridas, D., Kaur, S., Jain, M., et al. (2012). MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis, 33(10), 1953–1964.CrossRefPubMedPubMedCentral Rachagani, S., Macha, M. A., Ponnusamy, M. P., Haridas, D., Kaur, S., Jain, M., et al. (2012). MUC4 potentiates invasion and metastasis of pancreatic cancer cells through stabilization of fibroblast growth factor receptor 1. Carcinogenesis, 33(10), 1953–1964.CrossRefPubMedPubMedCentral
109.
go back to reference Momi, N., Ponnusamy, M. P., Kaur, S., Rachagani, S., Kunigal, S. S., Chellappan, S., et al. (2013). Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through alpha7nAChR-mediated MUC4 upregulation. Oncogene, 32(11), 1384–1395.CrossRefPubMed Momi, N., Ponnusamy, M. P., Kaur, S., Rachagani, S., Kunigal, S. S., Chellappan, S., et al. (2013). Nicotine/cigarette smoke promotes metastasis of pancreatic cancer through alpha7nAChR-mediated MUC4 upregulation. Oncogene, 32(11), 1384–1395.CrossRefPubMed
110.
go back to reference Moniaux, N., Chaturvedi, P., Varshney, G. C., Meza, J. L., Rodriguez-Sierra, J. F., Aubert, J. P., et al. (2007). Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. British Journal of Cancer, 97(3), 345–357.CrossRefPubMedPubMedCentral Moniaux, N., Chaturvedi, P., Varshney, G. C., Meza, J. L., Rodriguez-Sierra, J. F., Aubert, J. P., et al. (2007). Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. British Journal of Cancer, 97(3), 345–357.CrossRefPubMedPubMedCentral
111.
go back to reference Senapati, S., Gnanapragassam, V. S., Moniaux, N., Momi, N., & Batra, S. K. (2012). Role of MUC4-NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells. Oncogene, 31(28), 3346–3356.CrossRefPubMed Senapati, S., Gnanapragassam, V. S., Moniaux, N., Momi, N., & Batra, S. K. (2012). Role of MUC4-NIDO domain in the MUC4-mediated metastasis of pancreatic cancer cells. Oncogene, 31(28), 3346–3356.CrossRefPubMed
112.
go back to reference Shukla, S. K., Gunda, V., Abrego, J., Haridas, D., Mishra, A., Souchek, J., et al. (2015). MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget, 6(22), 19118–19131.CrossRefPubMedPubMedCentral Shukla, S. K., Gunda, V., Abrego, J., Haridas, D., Mishra, A., Souchek, J., et al. (2015). MUC16-mediated activation of mTOR and c-Myc reprograms pancreatic cancer metabolism. Oncotarget, 6(22), 19118–19131.CrossRefPubMedPubMedCentral
113.
go back to reference Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L., & Batra, S. K. (2004). Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Research, 64(2), 622–630.CrossRefPubMed Singh, A. P., Moniaux, N., Chauhan, S. C., Meza, J. L., & Batra, S. K. (2004). Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Research, 64(2), 622–630.CrossRefPubMed
114.
go back to reference Torres, M. P., Ponnusamy, M. P., Chakraborty, S., Smith, L. M., Das, S., Arafat, H. A., et al. (2010). Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Molecular Cancer Therapeutics, 9(5), 1419–1431.CrossRefPubMedPubMedCentral Torres, M. P., Ponnusamy, M. P., Chakraborty, S., Smith, L. M., Das, S., Arafat, H. A., et al. (2010). Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Molecular Cancer Therapeutics, 9(5), 1419–1431.CrossRefPubMedPubMedCentral
115.
go back to reference Shimizu, A., Hirono, S., Tani, M., Kawai, M., Okada, K., Miyazawa, M., et al. (2012). Coexpression of MUC16 and mesothelin is related to the invasion process in pancreatic ductal adenocarcinoma. Cancer Science, 103(4), 739–746.CrossRefPubMed Shimizu, A., Hirono, S., Tani, M., Kawai, M., Okada, K., Miyazawa, M., et al. (2012). Coexpression of MUC16 and mesothelin is related to the invasion process in pancreatic ductal adenocarcinoma. Cancer Science, 103(4), 739–746.CrossRefPubMed
116.
go back to reference Lee, J., Lee, J., Yun, J. H., Jeong, D. G., & Kim, J. H. (2016). DUSP28 links regulation of mucin 5B and mucin 16 to migration and survival of AsPC-1 human pancreatic cancer cells. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 37(9), 12193–12202.CrossRef Lee, J., Lee, J., Yun, J. H., Jeong, D. G., & Kim, J. H. (2016). DUSP28 links regulation of mucin 5B and mucin 16 to migration and survival of AsPC-1 human pancreatic cancer cells. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 37(9), 12193–12202.CrossRef
117.
go back to reference Hoshi, H., Sawada, T., Uchida, M., Saito, H., Iijima, H., Toda-Agetsuma, M., et al. (2011). Tumor-associated MUC5AC stimulates in vivo tumorigenicity of human pancreatic cancer. International Journal of Oncology, 38(3), 619–627.PubMed Hoshi, H., Sawada, T., Uchida, M., Saito, H., Iijima, H., Toda-Agetsuma, M., et al. (2011). Tumor-associated MUC5AC stimulates in vivo tumorigenicity of human pancreatic cancer. International Journal of Oncology, 38(3), 619–627.PubMed
118.
go back to reference Yamazoe, S., Tanaka, H., Sawada, T., Amano, R., Yamada, N., Ohira, M., et al. (2010). RNA interference suppression of mucin 5AC (MUC5AC) reduces the adhesive and invasive capacity of human pancreatic cancer cells. Journal of Experimental & Clinical Cancer Research: CR, 29, 53.CrossRef Yamazoe, S., Tanaka, H., Sawada, T., Amano, R., Yamada, N., Ohira, M., et al. (2010). RNA interference suppression of mucin 5AC (MUC5AC) reduces the adhesive and invasive capacity of human pancreatic cancer cells. Journal of Experimental & Clinical Cancer Research: CR, 29, 53.CrossRef
119.
go back to reference Chauhan, S. C., Ebeling, M. C., Maher, D. M., Koch, M. D., Watanabe, A., Aburatani, H., et al. (2012). MUC13 mucin augments pancreatic tumorigenesis. Molecular Cancer Therapeutics, 11(1), 24–33.CrossRefPubMed Chauhan, S. C., Ebeling, M. C., Maher, D. M., Koch, M. D., Watanabe, A., Aburatani, H., et al. (2012). MUC13 mucin augments pancreatic tumorigenesis. Molecular Cancer Therapeutics, 11(1), 24–33.CrossRefPubMed
120.
go back to reference Wissniowski, T. T., Meister, S., Hahn, E. G., Kalden, J. R., Voll, R., & Ocker, M. (2012). Mucin production determines sensitivity to bortezomib and gemcitabine in pancreatic cancer cells. International Journal of Oncology., 40(5), 1581–1589.PubMed Wissniowski, T. T., Meister, S., Hahn, E. G., Kalden, J. R., Voll, R., & Ocker, M. (2012). Mucin production determines sensitivity to bortezomib and gemcitabine in pancreatic cancer cells. International Journal of Oncology., 40(5), 1581–1589.PubMed
121.
go back to reference Nath, S., Daneshvar, K., Roy, L. D., Grover, P., Kidiyoor, A., Mosley, L., et al. (2013). MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogene, e51, 2. Nath, S., Daneshvar, K., Roy, L. D., Grover, P., Kidiyoor, A., Mosley, L., et al. (2013). MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogene, e51, 2.
122.
go back to reference Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., et al. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30(12), 1449–1459.CrossRefPubMed Roy, L. D., Sahraei, M., Subramani, D. B., Besmer, D., Nath, S., Tinder, T. L., et al. (2011). MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene, 30(12), 1449–1459.CrossRefPubMed
123.
go back to reference Komatsu, M., Carraway, C. A., Fregien, N. L., & Carraway, K. L. (1997). Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex. The Journal of Biological Chemistry, 272(52), 33245–33254.CrossRefPubMed Komatsu, M., Carraway, C. A., Fregien, N. L., & Carraway, K. L. (1997). Reversible disruption of cell-matrix and cell-cell interactions by overexpression of sialomucin complex. The Journal of Biological Chemistry, 272(52), 33245–33254.CrossRefPubMed
124.
go back to reference Komatsu, M., Tatum, L., Altman, N. H., Carothers Carraway, C. A., & Carraway, K. L. (2000). Potentiation of metastasis by cell surface sialomucin complex (rat MUC4), a multifunctional anti-adhesive glycoprotein. International Journal of Cancer, 87(4), 480–486.CrossRefPubMed Komatsu, M., Tatum, L., Altman, N. H., Carothers Carraway, C. A., & Carraway, K. L. (2000). Potentiation of metastasis by cell surface sialomucin complex (rat MUC4), a multifunctional anti-adhesive glycoprotein. International Journal of Cancer, 87(4), 480–486.CrossRefPubMed
125.
go back to reference Price-Schiavi, S. A., Jepson, S., Li, P., Arango, M., Rudland, P. S., Yee, L., et al. (2002). Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. International Journal of Cancer, 99(6), 783–791.CrossRefPubMed Price-Schiavi, S. A., Jepson, S., Li, P., Arango, M., Rudland, P. S., Yee, L., et al. (2002). Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. International Journal of Cancer, 99(6), 783–791.CrossRefPubMed
126.
go back to reference Nagy, P., Friedlander, E., Tanner, M., Kapanen, A. I., Carraway, K. L., Isola, J., et al. (2005). Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Research, 65(2), 473–482.PubMed Nagy, P., Friedlander, E., Tanner, M., Kapanen, A. I., Carraway, K. L., Isola, J., et al. (2005). Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing breast cancer cell line. Cancer Research, 65(2), 473–482.PubMed
127.
go back to reference Komatsu, M., Yee, L., & Carraway, K. L. (1999). Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Research, 59(9), 2229–2236.PubMed Komatsu, M., Yee, L., & Carraway, K. L. (1999). Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Research, 59(9), 2229–2236.PubMed
128.
go back to reference Mukherjee, P., Pathangey, L. B., Bradley, J. B., Tinder, T. L., Basu, G. D., Akporiaye, E. T., et al. (2007). MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine, 25(9), 1607–1618.CrossRefPubMed Mukherjee, P., Pathangey, L. B., Bradley, J. B., Tinder, T. L., Basu, G. D., Akporiaye, E. T., et al. (2007). MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine, 25(9), 1607–1618.CrossRefPubMed
129.
go back to reference Kimura, T., McKolanis, J. R., Dzubinski, L. A., Islam, K., Potter, D. M., Salazar, A. M., et al. (2013). MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prevention Research (Philadelphia, Pa.), 6(1), 18–26.CrossRef Kimura, T., McKolanis, J. R., Dzubinski, L. A., Islam, K., Potter, D. M., Salazar, A. M., et al. (2013). MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prevention Research (Philadelphia, Pa.), 6(1), 18–26.CrossRef
130.
go back to reference Leng, Y., Cao, C., Ren, J., Huang, L., Chen, D., Ito, M., et al. (2007). Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. The Journal of Biological Chemistry, 282(27), 19321–19330.CrossRefPubMed Leng, Y., Cao, C., Ren, J., Huang, L., Chen, D., Ito, M., et al. (2007). Nuclear import of the MUC1-C oncoprotein is mediated by nucleoporin Nup62. The Journal of Biological Chemistry, 282(27), 19321–19330.CrossRefPubMed
131.
go back to reference Raina, D., Ahmad, R., Joshi, M. D., Yin, L., Wu, Z., Kawano, T., et al. (2009). Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Research, 69(12), 5133–5141.CrossRefPubMedPubMedCentral Raina, D., Ahmad, R., Joshi, M. D., Yin, L., Wu, Z., Kawano, T., et al. (2009). Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Research, 69(12), 5133–5141.CrossRefPubMedPubMedCentral
132.
go back to reference Ahmad, R., Alam, M., Hasegawa, M., Uchida, Y., Al-Obaid, O., Kharbanda, S., et al. (2017). Targeting MUC1-C inhibits the AKT-S6K1-elF4A pathway regulating TIGAR translation in colorectal cancer. Molecular Cancer, 16(1), 33.CrossRefPubMedPubMedCentral Ahmad, R., Alam, M., Hasegawa, M., Uchida, Y., Al-Obaid, O., Kharbanda, S., et al. (2017). Targeting MUC1-C inhibits the AKT-S6K1-elF4A pathway regulating TIGAR translation in colorectal cancer. Molecular Cancer, 16(1), 33.CrossRefPubMedPubMedCentral
133.
go back to reference Choudhury, A., Singh, R. K., Moniaux, N., El-Metwally, T. H., Aubert, J. P., & Batra, S. K. (2000). Retinoic acid-dependent transforming growth factor-beta 2-mediated induction of MUC4 mucin expression in human pancreatic tumor cells follows retinoic acid receptor-alpha signaling pathway. The Journal of Biological Chemistry, 275(43), 33929–33936.CrossRefPubMed Choudhury, A., Singh, R. K., Moniaux, N., El-Metwally, T. H., Aubert, J. P., & Batra, S. K. (2000). Retinoic acid-dependent transforming growth factor-beta 2-mediated induction of MUC4 mucin expression in human pancreatic tumor cells follows retinoic acid receptor-alpha signaling pathway. The Journal of Biological Chemistry, 275(43), 33929–33936.CrossRefPubMed
134.
go back to reference Jain, M., Venkatraman, G., Moniaux, N., Kaur, S., Kumar, S., Chakraborty, S., et al. (2011). Monoclonal antibodies recognizing the non-tandem repeat regions of the human mucin MUC4 in pancreatic cancer. PLoS One, 6(8), e23344.CrossRefPubMedPubMedCentral Jain, M., Venkatraman, G., Moniaux, N., Kaur, S., Kumar, S., Chakraborty, S., et al. (2011). Monoclonal antibodies recognizing the non-tandem repeat regions of the human mucin MUC4 in pancreatic cancer. PLoS One, 6(8), e23344.CrossRefPubMedPubMedCentral
135.
go back to reference Gautam, S. K., Kumar, S., Cannon, A., Hall, B., Bhatia, R., Nasser, M. W., et al. (2017). MUC4 mucin—a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opinion on Therapeutic Targets, 21(7), 657–669.CrossRefPubMedPubMedCentral Gautam, S. K., Kumar, S., Cannon, A., Hall, B., Bhatia, R., Nasser, M. W., et al. (2017). MUC4 mucin—a therapeutic target for pancreatic ductal adenocarcinoma. Expert Opinion on Therapeutic Targets, 21(7), 657–669.CrossRefPubMedPubMedCentral
136.
go back to reference Moniaux, N., Nollet, S., Porchet, N., Degand, P., Laine, A., & Aubert, J. P. (1999). Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. The Biochemical Journal, 338(Pt 2), 325–333.CrossRefPubMedPubMedCentral Moniaux, N., Nollet, S., Porchet, N., Degand, P., Laine, A., & Aubert, J. P. (1999). Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. The Biochemical Journal, 338(Pt 2), 325–333.CrossRefPubMedPubMedCentral
137.
go back to reference Nollet, S., Moniaux, N., Maury, J., Petitprez, D., Degand, P., Laine, A., et al. (1998). Human mucin gene MUC4: organization of its 5′-region and polymorphism of its central tandem repeat array. The Biochemical Journal, 332(Pt 3), 739–748.CrossRefPubMedPubMedCentral Nollet, S., Moniaux, N., Maury, J., Petitprez, D., Degand, P., Laine, A., et al. (1998). Human mucin gene MUC4: organization of its 5′-region and polymorphism of its central tandem repeat array. The Biochemical Journal, 332(Pt 3), 739–748.CrossRefPubMedPubMedCentral
138.
go back to reference Bafna, S., Singh, A. P., Moniaux, N., Eudy, J. D., Meza, J. L., & Batra, S. K. (2008). MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. Cancer Research, 68(22), 9231–9238.CrossRefPubMedPubMedCentral Bafna, S., Singh, A. P., Moniaux, N., Eudy, J. D., Meza, J. L., & Batra, S. K. (2008). MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. Cancer Research, 68(22), 9231–9238.CrossRefPubMedPubMedCentral
139.
go back to reference Ponnusamy, M. P., Lakshmanan, I., Jain, M., Das, S., Chakraborty, S., Dey, P., et al. (2010). MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene, 29(42), 5741–5754.CrossRefPubMedPubMedCentral Ponnusamy, M. P., Lakshmanan, I., Jain, M., Das, S., Chakraborty, S., Dey, P., et al. (2010). MUC4 mucin-induced epithelial to mesenchymal transition: a novel mechanism for metastasis of human ovarian cancer cells. Oncogene, 29(42), 5741–5754.CrossRefPubMedPubMedCentral
140.
go back to reference Piessen, G., Jonckheere, N., Vincent, A., Hemon, B., Ducourouble, M. P., Copin, M. C., et al. (2007). Regulation of the human mucin MUC4 by taurodeoxycholic and taurochenodeoxycholic bile acids in oesophageal cancer cells is mediated by hepatocyte nuclear factor 1alpha. The Biochemical Journal, 402(1), 81–91.CrossRefPubMedPubMedCentral Piessen, G., Jonckheere, N., Vincent, A., Hemon, B., Ducourouble, M. P., Copin, M. C., et al. (2007). Regulation of the human mucin MUC4 by taurodeoxycholic and taurochenodeoxycholic bile acids in oesophageal cancer cells is mediated by hepatocyte nuclear factor 1alpha. The Biochemical Journal, 402(1), 81–91.CrossRefPubMedPubMedCentral
141.
go back to reference Mariette, C., Perrais, M., Leteurtre, E., Jonckheere, N., Hemon, B., Pigny, P., et al. (2004). Transcriptional regulation of human mucin MUC4 by bile acids in oesophageal cancer cells is promoter-dependent and involves activation of the phosphatidylinositol 3-kinase signalling pathway. The Biochemical Journal, 377(Pt 3), 701–708.CrossRefPubMedPubMedCentral Mariette, C., Perrais, M., Leteurtre, E., Jonckheere, N., Hemon, B., Pigny, P., et al. (2004). Transcriptional regulation of human mucin MUC4 by bile acids in oesophageal cancer cells is promoter-dependent and involves activation of the phosphatidylinositol 3-kinase signalling pathway. The Biochemical Journal, 377(Pt 3), 701–708.CrossRefPubMedPubMedCentral
142.
go back to reference Pai, P., Rachagani, S., Dhawan, P., Sheinin, Y. M., Macha, M. A., Qazi, A. K., et al. (2016). MUC4 is negatively regulated through the Wnt/beta-catenin pathway via the Notch effector Hath1 in colorectal cancer. Genes & Cancer, 7(5–6), 154–168. Pai, P., Rachagani, S., Dhawan, P., Sheinin, Y. M., Macha, M. A., Qazi, A. K., et al. (2016). MUC4 is negatively regulated through the Wnt/beta-catenin pathway via the Notch effector Hath1 in colorectal cancer. Genes & Cancer, 7(5–6), 154–168.
143.
go back to reference Komatsu, M., Jepson, S., Arango, M. E., Carothers Carraway, C. A., & Carraway, K. L. (2001). Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene, 20(4), 461–470.CrossRefPubMed Komatsu, M., Jepson, S., Arango, M. E., Carothers Carraway, C. A., & Carraway, K. L. (2001). Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene, 20(4), 461–470.CrossRefPubMed
145.
go back to reference Jonckheere, N., Perrais, M., Mariette, C., Batra, S. K., Aubert, J. P., Pigny, P., et al. (2004). A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-beta in pancreatic carcinogenesis. Oncogene, 23(34), 5729–5738.CrossRefPubMed Jonckheere, N., Perrais, M., Mariette, C., Batra, S. K., Aubert, J. P., Pigny, P., et al. (2004). A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-beta in pancreatic carcinogenesis. Oncogene, 23(34), 5729–5738.CrossRefPubMed
146.
go back to reference Fauquette, V., Perrais, M., Cerulis, S., Jonckheere, N., Ducourouble, M. P., Aubert, J. P., et al. (2005). The antagonistic regulation of human MUC4 and ErbB-2 genes by the Ets protein PEA3 in pancreatic cancer cells: implications for the proliferation/differentiation balance in the cells. The Biochemical Journal, 386(Pt 1), 35–45.CrossRefPubMedPubMedCentral Fauquette, V., Perrais, M., Cerulis, S., Jonckheere, N., Ducourouble, M. P., Aubert, J. P., et al. (2005). The antagonistic regulation of human MUC4 and ErbB-2 genes by the Ets protein PEA3 in pancreatic cancer cells: implications for the proliferation/differentiation balance in the cells. The Biochemical Journal, 386(Pt 1), 35–45.CrossRefPubMedPubMedCentral
147.
go back to reference Kaur, S., Sharma, N., Krishn, S. R., Lakshmanan, I., Rachagani, S., Baine, M. J., et al. (2014). MUC4-mediated regulation of acute phase protein lipocalin 2 through HER2/AKT/NF-kappaB signaling in pancreatic cancer. Clinical Cancer Research: an official journal of the American Association for Cancer Research, 20(3), 688–700.CrossRef Kaur, S., Sharma, N., Krishn, S. R., Lakshmanan, I., Rachagani, S., Baine, M. J., et al. (2014). MUC4-mediated regulation of acute phase protein lipocalin 2 through HER2/AKT/NF-kappaB signaling in pancreatic cancer. Clinical Cancer Research: an official journal of the American Association for Cancer Research, 20(3), 688–700.CrossRef
148.
go back to reference Singh, A. P., Chauhan, S. C., Andrianifahanana, M., Moniaux, N., Meza, J. L., Copin, M. C., et al. (2007). MUC4 expression is regulated by cystic fibrosis transmembrane conductance regulator in pancreatic adenocarcinoma cells via transcriptional and post-translational mechanisms. Oncogene, 26(1), 30–41.CrossRefPubMed Singh, A. P., Chauhan, S. C., Andrianifahanana, M., Moniaux, N., Meza, J. L., Copin, M. C., et al. (2007). MUC4 expression is regulated by cystic fibrosis transmembrane conductance regulator in pancreatic adenocarcinoma cells via transcriptional and post-translational mechanisms. Oncogene, 26(1), 30–41.CrossRefPubMed
149.
go back to reference Choudhury, A., Moniaux, N., Ulrich, A. B., Schmied, B. M., Standop, J., Pour, P. M., et al. (2004). MUC4 mucin expression in human pancreatic tumours is affected by organ environment: the possible role of TGFbeta2. British Journal of Cancer, 90(3), 657–664.CrossRefPubMedPubMedCentral Choudhury, A., Moniaux, N., Ulrich, A. B., Schmied, B. M., Standop, J., Pour, P. M., et al. (2004). MUC4 mucin expression in human pancreatic tumours is affected by organ environment: the possible role of TGFbeta2. British Journal of Cancer, 90(3), 657–664.CrossRefPubMedPubMedCentral
150.
go back to reference Joshi, S., Cruz, E., Rachagani, S., Guha, S., Brand, R. E., Ponnusamy, M. P., et al. (2016). Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer. Molecular Oncology, 10(7), 1063–1077.CrossRefPubMedPubMedCentral Joshi, S., Cruz, E., Rachagani, S., Guha, S., Brand, R. E., Ponnusamy, M. P., et al. (2016). Bile acids-mediated overexpression of MUC4 via FAK-dependent c-Jun activation in pancreatic cancer. Molecular Oncology, 10(7), 1063–1077.CrossRefPubMedPubMedCentral
151.
go back to reference Andrianifahanana, M., Singh, A. P., Nemos, C., Ponnusamy, M. P., Moniaux, N., Mehta, P. P., et al. (2007). IFN-gamma-induced expression of MUC4 in pancreatic cancer cells is mediated by STAT-1 upregulation: a novel mechanism for IFN-gamma response. Oncogene, 26(51), 7251–7261.CrossRefPubMed Andrianifahanana, M., Singh, A. P., Nemos, C., Ponnusamy, M. P., Moniaux, N., Mehta, P. P., et al. (2007). IFN-gamma-induced expression of MUC4 in pancreatic cancer cells is mediated by STAT-1 upregulation: a novel mechanism for IFN-gamma response. Oncogene, 26(51), 7251–7261.CrossRefPubMed
152.
go back to reference Iacobuzio-Donahue, C. A., Ashfaq, R., Maitra, A., Adsay, N. V., Shen-Ong, G. L., Berg, K., et al. (2003). Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Research, 63(24), 8614–8622.PubMed Iacobuzio-Donahue, C. A., Ashfaq, R., Maitra, A., Adsay, N. V., Shen-Ong, G. L., Berg, K., et al. (2003). Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Research, 63(24), 8614–8622.PubMed
153.
go back to reference Swartz, M. J., Batra, S. K., Varshney, G. C., Hollingsworth, M. A., Yeo, C. J., Cameron, J. L., et al. (2002). MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. American Journal of Clinical Pathology, 117(5), 791–796.CrossRefPubMed Swartz, M. J., Batra, S. K., Varshney, G. C., Hollingsworth, M. A., Yeo, C. J., Cameron, J. L., et al. (2002). MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. American Journal of Clinical Pathology, 117(5), 791–796.CrossRefPubMed
154.
go back to reference Chaturvedi, P., Singh, A. P., Chakraborty, S., Chauhan, S. C., Bafna, S., Meza, J. L., et al. (2008). MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Research, 68(7), 2065–2070.CrossRefPubMedPubMedCentral Chaturvedi, P., Singh, A. P., Chakraborty, S., Chauhan, S. C., Bafna, S., Meza, J. L., et al. (2008). MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Research, 68(7), 2065–2070.CrossRefPubMedPubMedCentral
155.
go back to reference Vasseur, R., Skrypek, N., Duchene, B., Renaud, F., Martinez-Maqueda, D., Vincent, A., et al. (2015). The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-kappaB and RalB signaling pathways. Biochimica et Biophysica Acta, 1849(12), 1375–1384.CrossRefPubMed Vasseur, R., Skrypek, N., Duchene, B., Renaud, F., Martinez-Maqueda, D., Vincent, A., et al. (2015). The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-kappaB and RalB signaling pathways. Biochimica et Biophysica Acta, 1849(12), 1375–1384.CrossRefPubMed
156.
go back to reference Rachagani, S., Torres, M. P., Kumar, S., Haridas, D., Baine, M., Macha, M. A., et al. (2012). Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy. Journal of Hematology & Oncology, 5, 68.CrossRef Rachagani, S., Torres, M. P., Kumar, S., Haridas, D., Baine, M., Macha, M. A., et al. (2012). Mucin (Muc) expression during pancreatic cancer progression in spontaneous mouse model: potential implications for diagnosis and therapy. Journal of Hematology & Oncology, 5, 68.CrossRef
157.
go back to reference Singh, A. P., Chaturvedi, P., & Batra, S. K. (2007). Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer Research, 67(2), 433–436.CrossRefPubMed Singh, A. P., Chaturvedi, P., & Batra, S. K. (2007). Emerging roles of MUC4 in cancer: a novel target for diagnosis and therapy. Cancer Research, 67(2), 433–436.CrossRefPubMed
158.
go back to reference Torres, M. P., Chakraborty, S., Souchek, J., & Batra, S. K. (2012). Mucin-based targeted pancreatic cancer therapy. Current Pharmaceutical Design, 18(17), 2472–2481.CrossRefPubMedPubMedCentral Torres, M. P., Chakraborty, S., Souchek, J., & Batra, S. K. (2012). Mucin-based targeted pancreatic cancer therapy. Current Pharmaceutical Design, 18(17), 2472–2481.CrossRefPubMedPubMedCentral
159.
go back to reference Carraway, K. L., Theodoropoulos, G., Kozloski, G. A., & Carothers Carraway, C. A. (2009). Muc4/MUC4 functions and regulation in cancer. Future Oncology (London, England), 5(10), 1631–1640.CrossRef Carraway, K. L., Theodoropoulos, G., Kozloski, G. A., & Carothers Carraway, C. A. (2009). Muc4/MUC4 functions and regulation in cancer. Future Oncology (London, England), 5(10), 1631–1640.CrossRef
160.
go back to reference Jonckheere, N., & Van Seuningen, I. (2018). Integrative analysis of the cancer genome atlas and cancer cell lines encyclopedia large-scale genomic databases: MUC4/MUC16/MUC20 signature is associated with poor survival in human carcinomas. Journal of Translational Medicine, 16(1), 259.CrossRefPubMedPubMedCentral Jonckheere, N., & Van Seuningen, I. (2018). Integrative analysis of the cancer genome atlas and cancer cell lines encyclopedia large-scale genomic databases: MUC4/MUC16/MUC20 signature is associated with poor survival in human carcinomas. Journal of Translational Medicine, 16(1), 259.CrossRefPubMedPubMedCentral
161.
go back to reference Wei, J., Gao, W., Wu, J., Meng, K., Zhang, J., Chen, J., et al. (2008). Dendritic cells expressing a combined PADRE/MUC4-derived polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Cancer Biotherapy & Radiopharmaceuticals, 23(1), 121–128.CrossRef Wei, J., Gao, W., Wu, J., Meng, K., Zhang, J., Chen, J., et al. (2008). Dendritic cells expressing a combined PADRE/MUC4-derived polyepitope DNA vaccine induce multiple cytotoxic T-cell responses. Cancer Biotherapy & Radiopharmaceuticals, 23(1), 121–128.CrossRef
162.
go back to reference Wu, J., Wei, J., Meng, K., Chen, J., Gao, W., Zhang, J., et al. (2009). Identification of an HLA-A*0201-restrictive CTL epitope from MUC4 for applicable vaccine therapy. Immunopharmacology and Immunotoxicology, 31(3), 468–476.CrossRefPubMed Wu, J., Wei, J., Meng, K., Chen, J., Gao, W., Zhang, J., et al. (2009). Identification of an HLA-A*0201-restrictive CTL epitope from MUC4 for applicable vaccine therapy. Immunopharmacology and Immunotoxicology, 31(3), 468–476.CrossRefPubMed
163.
go back to reference Das, S., & Batra, S. K. (2015). Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy. Cancer Research, 75(22), 4669–4674.CrossRefPubMedPubMedCentral Das, S., & Batra, S. K. (2015). Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy. Cancer Research, 75(22), 4669–4674.CrossRefPubMedPubMedCentral
164.
go back to reference O’Brien, T. J., Beard, J. B., Underwood, L. J., Dennis, R. A., Santin, A. D., & York, L. (2001). The CA 125 gene: an extracellular superstructure dominated by repeat sequences. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 22(6), 348–366.CrossRef O’Brien, T. J., Beard, J. B., Underwood, L. J., Dennis, R. A., Santin, A. D., & York, L. (2001). The CA 125 gene: an extracellular superstructure dominated by repeat sequences. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 22(6), 348–366.CrossRef
165.
go back to reference O’Brien, T. J., Beard, J. B., Underwood, L. J., & Shigemasa, K. (2002). The CA 125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 23(3), 154–169.CrossRef O’Brien, T. J., Beard, J. B., Underwood, L. J., & Shigemasa, K. (2002). The CA 125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 23(3), 154–169.CrossRef
166.
go back to reference Yin, B. W., Dnistrian, A., & Lloyd, K. O. (2002). Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. International Journal of Cancer, 98(5), 737–740.CrossRefPubMed Yin, B. W., Dnistrian, A., & Lloyd, K. O. (2002). Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. International Journal of Cancer, 98(5), 737–740.CrossRefPubMed
167.
go back to reference Haridas, D., Ponnusamy, M. P., Chugh, S., Lakshmanan, I., Seshacharyulu, P., & Batra, S. K. (2014). MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology, 28(10), 4183–4199.CrossRef Haridas, D., Ponnusamy, M. P., Chugh, S., Lakshmanan, I., Seshacharyulu, P., & Batra, S. K. (2014). MUC16: molecular analysis and its functional implications in benign and malignant conditions. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology, 28(10), 4183–4199.CrossRef
168.
go back to reference Streppel, M. M., Vincent, A., Mukherjee, R., Campbell, N. R., Chen, S. H., Konstantopoulos, K., et al. (2012). Mucin 16 (cancer antigen 125) expression in human tissues and cell lines and correlation with clinical outcome in adenocarcinomas of the pancreas, esophagus, stomach, and colon. Human Pathology, 43(10), 1755–1763.CrossRefPubMedPubMedCentral Streppel, M. M., Vincent, A., Mukherjee, R., Campbell, N. R., Chen, S. H., Konstantopoulos, K., et al. (2012). Mucin 16 (cancer antigen 125) expression in human tissues and cell lines and correlation with clinical outcome in adenocarcinomas of the pancreas, esophagus, stomach, and colon. Human Pathology, 43(10), 1755–1763.CrossRefPubMedPubMedCentral
169.
go back to reference Aithal, A., Rauth, S., Kshirsagar, P., Shah, A., Lakshmanan, I., Junker, W. M., et al. (2018). MUC16 as a novel target for cancer therapy. Expert Opinion on Therapeutic Targets, 22(8), 675–686.CrossRefPubMedPubMedCentral Aithal, A., Rauth, S., Kshirsagar, P., Shah, A., Lakshmanan, I., Junker, W. M., et al. (2018). MUC16 as a novel target for cancer therapy. Expert Opinion on Therapeutic Targets, 22(8), 675–686.CrossRefPubMedPubMedCentral
170.
go back to reference Haridas, D., Chakraborty, S., Ponnusamy, M. P., Lakshmanan, I., Rachagani, S., Cruz, E., et al. (2011). Pathobiological implications of MUC16 expression in pancreatic cancer. PLoS One, 6(10), e26839.CrossRefPubMedPubMedCentral Haridas, D., Chakraborty, S., Ponnusamy, M. P., Lakshmanan, I., Rachagani, S., Cruz, E., et al. (2011). Pathobiological implications of MUC16 expression in pancreatic cancer. PLoS One, 6(10), e26839.CrossRefPubMedPubMedCentral
171.
go back to reference Bafna, S., Kaur, S., & Batra, S. K. (2010). Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 29(20), 2893–2904.CrossRefPubMedPubMedCentral Bafna, S., Kaur, S., & Batra, S. K. (2010). Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene, 29(20), 2893–2904.CrossRefPubMedPubMedCentral
172.
go back to reference Matte, I., Lane, D., Boivin, M., Rancourt, C., & Piche, A. (2014). MUC16 mucin (CA125) attenuates TRAIL-induced apoptosis by decreasing TRAIL receptor R2 expression and increasing c-FLIP expression. BMC Cancer, 14, 234.CrossRefPubMedPubMedCentral Matte, I., Lane, D., Boivin, M., Rancourt, C., & Piche, A. (2014). MUC16 mucin (CA125) attenuates TRAIL-induced apoptosis by decreasing TRAIL receptor R2 expression and increasing c-FLIP expression. BMC Cancer, 14, 234.CrossRefPubMedPubMedCentral
173.
go back to reference Boivin, M., Lane, D., Piche, A., & Rancourt, C. (2009). CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecologic Oncology, 115(3), 407–413.CrossRefPubMed Boivin, M., Lane, D., Piche, A., & Rancourt, C. (2009). CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecologic Oncology, 115(3), 407–413.CrossRefPubMed
174.
go back to reference Berek, J. S., Taylor, P. T., Gordon, A., Cunningham, M. J., Finkler, N., Orr, J., Jr., et al. (2004). Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer. Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology, 22(17), 3507–3516.CrossRef Berek, J. S., Taylor, P. T., Gordon, A., Cunningham, M. J., Finkler, N., Orr, J., Jr., et al. (2004). Randomized, placebo-controlled study of oregovomab for consolidation of clinical remission in patients with advanced ovarian cancer. Journal of Clinical Oncology: official journal of the American Society of Clinical Oncology, 22(17), 3507–3516.CrossRef
175.
go back to reference Sabbatini, P., Harter, P., Scambia, G., Sehouli, J., Meier, W., Wimberger, P., et al. (2013). Abagovomab as maintenance therapy in patients with epithelial ovarian cancer: a phase III trial of the AGO OVAR, COGI, GINECO, and GEICO—the MIMOSA study. Journal of Clinical Oncology : official journal of the American Society of Clinical Oncology, 31(12), 1554–1561.CrossRef Sabbatini, P., Harter, P., Scambia, G., Sehouli, J., Meier, W., Wimberger, P., et al. (2013). Abagovomab as maintenance therapy in patients with epithelial ovarian cancer: a phase III trial of the AGO OVAR, COGI, GINECO, and GEICO—the MIMOSA study. Journal of Clinical Oncology : official journal of the American Society of Clinical Oncology, 31(12), 1554–1561.CrossRef
176.
go back to reference Das, S., Majhi, P. D., Al-Mugotir, M. H., Rachagani, S., Sorgen, P., & Batra, S. K. (2015). Membrane proximal ectodomain cleavage of MUC16 occurs in the acidifying Golgi/post-Golgi compartments. Scientific Reports, 5, 9759.CrossRefPubMedPubMedCentral Das, S., Majhi, P. D., Al-Mugotir, M. H., Rachagani, S., Sorgen, P., & Batra, S. K. (2015). Membrane proximal ectodomain cleavage of MUC16 occurs in the acidifying Golgi/post-Golgi compartments. Scientific Reports, 5, 9759.CrossRefPubMedPubMedCentral
177.
go back to reference Garg, G., Gibbs, J., Belt, B., Powell, M. A., Mutch, D. G., Goedegebuure, P., et al. (2014). Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3. BMC Cancer, 14, 35.CrossRefPubMedPubMedCentral Garg, G., Gibbs, J., Belt, B., Powell, M. A., Mutch, D. G., Goedegebuure, P., et al. (2014). Novel treatment option for MUC16-positive malignancies with the targeted TRAIL-based fusion protein Meso-TR3. BMC Cancer, 14, 35.CrossRefPubMedPubMedCentral
178.
go back to reference Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews. Molecular Cell Biology, 7(2), 131–142.CrossRefPubMed Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews. Molecular Cell Biology, 7(2), 131–142.CrossRefPubMed
179.
go back to reference Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.CrossRefPubMed Thiery, J. P., Acloque, H., Huang, R. Y., & Nieto, M. A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell, 139(5), 871–890.CrossRefPubMed
180.
go back to reference Ahmed, N., Abubaker, K., Findlay, J., & Quinn, M. (2010). Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Current Cancer Drug Targets, 10(3), 268–278.CrossRefPubMed Ahmed, N., Abubaker, K., Findlay, J., & Quinn, M. (2010). Epithelial mesenchymal transition and cancer stem cell-like phenotypes facilitate chemoresistance in recurrent ovarian cancer. Current Cancer Drug Targets, 10(3), 268–278.CrossRefPubMed
181.
go back to reference Lim, S., Becker, A., Zimmer, A., Lu, J., Buettner, R., & Kirfel, J. (2013). SNAI1-mediated epithelial-mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLoS One, 8(6), e66558.CrossRefPubMedPubMedCentral Lim, S., Becker, A., Zimmer, A., Lu, J., Buettner, R., & Kirfel, J. (2013). SNAI1-mediated epithelial-mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLoS One, 8(6), e66558.CrossRefPubMedPubMedCentral
182.
go back to reference Voulgari, A., & Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta, 1796(2), 75–90.PubMed Voulgari, A., & Pintzas, A. (2009). Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochimica et Biophysica Acta, 1796(2), 75–90.PubMed
183.
go back to reference Yamada, S., Fuchs, B. C., Fujii, T., Shimoyama, Y., Sugimoto, H., Nomoto, S., et al. (2013). Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer. Surgery, 154(5), 946–954.CrossRefPubMed Yamada, S., Fuchs, B. C., Fujii, T., Shimoyama, Y., Sugimoto, H., Nomoto, S., et al. (2013). Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer. Surgery, 154(5), 946–954.CrossRefPubMed
184.
go back to reference Ponnusamy, M. P., Seshacharyulu, P., Lakshmanan, I., Vaz, A. P., Chugh, S., & Batra, S. K. (2013). Emerging role of mucins in epithelial to mesenchymal transition. Current Cancer Drug Targets, 13(9), 945–956.CrossRefPubMedPubMedCentral Ponnusamy, M. P., Seshacharyulu, P., Lakshmanan, I., Vaz, A. P., Chugh, S., & Batra, S. K. (2013). Emerging role of mucins in epithelial to mesenchymal transition. Current Cancer Drug Targets, 13(9), 945–956.CrossRefPubMedPubMedCentral
185.
go back to reference Rajabi, H., Alam, M., Takahashi, H., Kharbanda, A., Guha, M., Ahmad, R., et al. (2014). MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene, 33(13), 1680–1689.CrossRefPubMed Rajabi, H., Alam, M., Takahashi, H., Kharbanda, A., Guha, M., Ahmad, R., et al. (2014). MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene, 33(13), 1680–1689.CrossRefPubMed
186.
go back to reference Gnemmi, V., Bouillez, A., Gaudelot, K., Hemon, B., Ringot, B., Pottier, N., et al. (2014). MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/beta-catenin pathway and interaction with SNAIL promoter. Cancer Letters, 346(2), 225–236.CrossRefPubMed Gnemmi, V., Bouillez, A., Gaudelot, K., Hemon, B., Ringot, B., Pottier, N., et al. (2014). MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/beta-catenin pathway and interaction with SNAIL promoter. Cancer Letters, 346(2), 225–236.CrossRefPubMed
187.
go back to reference Gao, L., Liu, J., Zhang, B., Zhang, H., Wang, D., Zhang, T., et al. (2014). Functional MUC4 suppress epithelial-mesenchymal transition in lung adenocarcinoma metastasis. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 35(2), 1335–1341.CrossRef Gao, L., Liu, J., Zhang, B., Zhang, H., Wang, D., Zhang, T., et al. (2014). Functional MUC4 suppress epithelial-mesenchymal transition in lung adenocarcinoma metastasis. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 35(2), 1335–1341.CrossRef
188.
go back to reference Jonckheere, N., & Van Seuningen, I. (2014). Comment on: Functional MUC4 suppress epithelial-mesenchymal transition in lung adenocarcinoma metastasis. Gao L, Liu J, Zhang B, Zhang H, Wang D, Zhang T, Liu Y, Wang C. Tumour Biol. 2013, in press. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 35(4), 3941–3942.CrossRef Jonckheere, N., & Van Seuningen, I. (2014). Comment on: Functional MUC4 suppress epithelial-mesenchymal transition in lung adenocarcinoma metastasis. Gao L, Liu J, Zhang B, Zhang H, Wang D, Zhang T, Liu Y, Wang C. Tumour Biol. 2013, in press. Tumour Biology: the journal of the International Society for Oncodevelopmental Biology and Medicine, 35(4), 3941–3942.CrossRef
189.
go back to reference Comamala, M., Pinard, M., Theriault, C., Matte, I., Albert, A., Boivin, M., et al. (2011). Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. British Journal of Cancer, 104(6), 989–999.CrossRefPubMedPubMedCentral Comamala, M., Pinard, M., Theriault, C., Matte, I., Albert, A., Boivin, M., et al. (2011). Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. British Journal of Cancer, 104(6), 989–999.CrossRefPubMedPubMedCentral
190.
go back to reference Theriault, C., Pinard, M., Comamala, M., Migneault, M., Beaudin, J., Matte, I., et al. (2011). MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecologic Oncology, 121(3), 434–443.CrossRefPubMed Theriault, C., Pinard, M., Comamala, M., Migneault, M., Beaudin, J., Matte, I., et al. (2011). MUC16 (CA125) regulates epithelial ovarian cancer cell growth, tumorigenesis and metastasis. Gynecologic Oncology, 121(3), 434–443.CrossRefPubMed
Metadata
Title
Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers
Authors
Ian S. Reynolds
Michael Fichtner
Deborah A. McNamara
Elaine W. Kay
Jochen H.M. Prehn
John P. Burke
Publication date
01-06-2019
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2019
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09781-w

Other articles of this Issue 1-2/2019

Cancer and Metastasis Reviews 1-2/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine