Skip to main content
Top
Published in: Breast Cancer Research and Treatment 1/2008

01-05-2008 | Epidemiology

Measures of energy balance and mammographic density in the Nurses’ Health Study

Authors: Goli Samimi, Graham A. Colditz, Heather J. Baer, Rulla M. Tamimi

Published in: Breast Cancer Research and Treatment | Issue 1/2008

Login to get access

Abstract

Mammographic density is a strong risk factor for breast cancer; however the mechanism that underlies this association is unclear. We hypothesized that measures of energy balance early in life and in adulthood may be associated with mammographic density. We conducted a cross-sectional analysis of 1,398 women in the Nurses’ Health Study to examine associations between physical activity, childhood and current body fatness, weight gain from age 18 years to present and mammographic density. Percent mammographic density was measured from digitized mammograms by a computer-assisted method. Demographic and lifestyle data were obtained from prospectively collected questionnaires. For all analyses, subjects were stratified into three groups: premenopausal women, postmenopausal women not currently taking hormones, and postmenopausal women currently taking hormones. Childhood body fatness was inversely associated with mammographic density. The correlations ranged from −0.15 to −0.19 in the three strata of women (P ≤ 0.001). The difference in mean percent mammographic density between the leanest and heaviest body types ranged from 6.2 to 9.9%. Similarly, adult body fatness was inversely associated with percent mammographic density. The correlations ranged from −0.41 to −0.48 in the three strata of women (P < 0.0001). The difference in mean percent mammographic density between the leanest and heaviest body types ranged from 22.3 to 35.1%. Weight gain from age 18 was also inversely associated with mammographic density. There was no association between recent physical activity and mammographic density. These findings indicate that childhood and adult body fatness and weight change from age 18 are inversely associated with mammographic density.
Literature
1.
go back to reference Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87:1622–1629PubMedCrossRef Byrne C, Schairer C, Wolfe J, Parekh N, Salane M, Brinton LA, Hoover R, Haile R (1995) Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87:1622–1629PubMedCrossRef
2.
go back to reference Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, Paterson AD (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6:798–808PubMedCrossRef Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, Paterson AD (2005) Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 6:798–808PubMedCrossRef
3.
go back to reference Boyd NF, Lockwood GA, Martin LJ, Byng JW, Yaffe MJ, Tritchler DL (2001) Mammographic density as a marker of susceptibility to breast cancer: a hypothesis. IARC Sci Publ 154:163–169PubMed Boyd NF, Lockwood GA, Martin LJ, Byng JW, Yaffe MJ, Tritchler DL (2001) Mammographic density as a marker of susceptibility to breast cancer: a hypothesis. IARC Sci Publ 154:163–169PubMed
4.
go back to reference Warner E, Lockwood G, Tritchler D, Boyd NF (1992) The risk of breast cancer associated with mammographic parenchymal patterns: a meta-analysis of the published literature to examine the effect of method of classification. Cancer Detect Prev 16:67–72PubMed Warner E, Lockwood G, Tritchler D, Boyd NF (1992) The risk of breast cancer associated with mammographic parenchymal patterns: a meta-analysis of the published literature to examine the effect of method of classification. Cancer Detect Prev 16:67–72PubMed
5.
go back to reference Colditz GA, Feskanich D, Chen WY, Hunter DJ, Willett WC (2003) Physical activity and risk of breast cancer in premenopausal women. Br J Cancer 89:847–851PubMedCrossRef Colditz GA, Feskanich D, Chen WY, Hunter DJ, Willett WC (2003) Physical activity and risk of breast cancer in premenopausal women. Br J Cancer 89:847–851PubMedCrossRef
6.
go back to reference McTiernan A, Kooperberg C, White E, Wilcox S, Coates R, Adams-Campbell LL, Woods N, Ockene J (2003) Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women’s Health Initiative Cohort Study. JAMA 290:1331–1336PubMedCrossRef McTiernan A, Kooperberg C, White E, Wilcox S, Coates R, Adams-Campbell LL, Woods N, Ockene J (2003) Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women’s Health Initiative Cohort Study. JAMA 290:1331–1336PubMedCrossRef
7.
go back to reference Patel AV, Callel EE, Bernstein L, Wu AH, Thun MJ (2003) Recreational physical activity and risk of postmenopausal breast cancer in a large cohort of US women. Cancer Causes Control 14:519–529PubMedCrossRef Patel AV, Callel EE, Bernstein L, Wu AH, Thun MJ (2003) Recreational physical activity and risk of postmenopausal breast cancer in a large cohort of US women. Cancer Causes Control 14:519–529PubMedCrossRef
8.
go back to reference Rockhill B, Willett WC, Hunter DJ, Manson JE, Hankinson SE, Colditz GA (1999) A prospective study of recreational physical activity and breast cancer risk. Arch Intern Med 159:2290–2296PubMedCrossRef Rockhill B, Willett WC, Hunter DJ, Manson JE, Hankinson SE, Colditz GA (1999) A prospective study of recreational physical activity and breast cancer risk. Arch Intern Med 159:2290–2296PubMedCrossRef
9.
go back to reference Dumitrescu RG, Cotarla I (2005) Understanding breast cancer risk—where do we stand in 2005? J Cell Mol Med 9:208–221PubMedCrossRef Dumitrescu RG, Cotarla I (2005) Understanding breast cancer risk—where do we stand in 2005? J Cell Mol Med 9:208–221PubMedCrossRef
10.
go back to reference van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR, Fraser G, Goldbohm RA, Graham S, Kushi L, Marshall JR, Miller AB, Rohan T, Smith-Warner SA, Speizer FE, Willett WC, Wolk A, Hunter DJ (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152:514–527PubMedCrossRef van den Brandt PA, Spiegelman D, Yaun SS, Adami HO, Beeson L, Folsom AR, Fraser G, Goldbohm RA, Graham S, Kushi L, Marshall JR, Miller AB, Rohan T, Smith-Warner SA, Speizer FE, Willett WC, Wolk A, Hunter DJ (2000) Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol 152:514–527PubMedCrossRef
11.
go back to reference Cleary MP, Maihle NJ (1997) The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proc Soc Exp Biol Med 216:28–43PubMed Cleary MP, Maihle NJ (1997) The role of body mass index in the relative risk of developing premenopausal versus postmenopausal breast cancer. Proc Soc Exp Biol Med 216:28–43PubMed
12.
go back to reference Baer HJ, Colditz GA, Rosner B, Michels KB, Rich-Edwards JW, Hunter DJ, Willett WC (2005) Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study. Breast Cancer Res 7:R314–R325PubMedCrossRef Baer HJ, Colditz GA, Rosner B, Michels KB, Rich-Edwards JW, Hunter DJ, Willett WC (2005) Body fatness during childhood and adolescence and incidence of breast cancer in premenopausal women: a prospective cohort study. Breast Cancer Res 7:R314–R325PubMedCrossRef
13.
go back to reference Berkey CS, Frazier AL, Gardner JD, Colditz GA (1999) Adolescence and breast carcinoma risk. Cancer 85:2400–2409PubMedCrossRef Berkey CS, Frazier AL, Gardner JD, Colditz GA (1999) Adolescence and breast carcinoma risk. Cancer 85:2400–2409PubMedCrossRef
14.
go back to reference Weiderpass E, Braaten T, Magnusson C, Kumle M, Vainio H, Lund E, Adami HO (2004) A prospective study of body size in different periods of life and risk of premenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 13:1121–1127PubMed Weiderpass E, Braaten T, Magnusson C, Kumle M, Vainio H, Lund E, Adami HO (2004) A prospective study of body size in different periods of life and risk of premenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 13:1121–1127PubMed
15.
go back to reference Barnes-Josiah D, Potter JD, Sellers TA, Himes JH (1995) Early body size and subsequent weight gain as predictors of breast cancer incidence (Iowa, United States). Cancer Causes Control 6:112–118PubMedCrossRef Barnes-Josiah D, Potter JD, Sellers TA, Himes JH (1995) Early body size and subsequent weight gain as predictors of breast cancer incidence (Iowa, United States). Cancer Causes Control 6:112–118PubMedCrossRef
16.
go back to reference van den Brandt PA, Dirx MJ, Ronckers CM, van den Hoogen P, Goldbohm RA (1997) Height, weight, weight change, and postmenopausal breast cancer risk: The Netherlands Cohort Study. Cancer Causes Control 8:39–47PubMedCrossRef van den Brandt PA, Dirx MJ, Ronckers CM, van den Hoogen P, Goldbohm RA (1997) Height, weight, weight change, and postmenopausal breast cancer risk: The Netherlands Cohort Study. Cancer Causes Control 8:39–47PubMedCrossRef
17.
go back to reference Huang Z, Hankinson SE, Colditz GA, Stampfer MJ, Hunter DJ, Manson JE, Hennekens CH, Rosner B, Speizer FE, Willett WC (1997) Dual effects of weight and weight gain on breast cancer risk. JAMA 278:1407–1411PubMedCrossRef Huang Z, Hankinson SE, Colditz GA, Stampfer MJ, Hunter DJ, Manson JE, Hennekens CH, Rosner B, Speizer FE, Willett WC (1997) Dual effects of weight and weight gain on breast cancer risk. JAMA 278:1407–1411PubMedCrossRef
18.
go back to reference Morimoto LM, White E, Chen Z, Chlebowski RT, Hays J, Kuller L, Lopez AM, Manson J, Margolis KL, Muti PC, Stefanick ML, McTiernan A (2002) Obesity, body size, and risk of postmenopausal breast cancer: the Women’s Health Initiative (United States). Cancer Causes Control 13:741–751PubMedCrossRef Morimoto LM, White E, Chen Z, Chlebowski RT, Hays J, Kuller L, Lopez AM, Manson J, Margolis KL, Muti PC, Stefanick ML, McTiernan A (2002) Obesity, body size, and risk of postmenopausal breast cancer: the Women’s Health Initiative (United States). Cancer Causes Control 13:741–751PubMedCrossRef
19.
go back to reference Lahmann PH, Lissner L, Gullberg B, Olsson H, Berglund G (2003) A prospective study of adiposity and postmenopausal breast cancer risk: the Malmo Diet and Cancer Study. Int J Cancer 103:246–252PubMedCrossRef Lahmann PH, Lissner L, Gullberg B, Olsson H, Berglund G (2003) A prospective study of adiposity and postmenopausal breast cancer risk: the Malmo Diet and Cancer Study. Int J Cancer 103:246–252PubMedCrossRef
20.
go back to reference Feigelson HS, Jonas CR, Teras LR, Thun MJ, Calle EE (2004) Weight gain, body mass index, hormone replacement therapy, and postmenopausal breast cancer in a large prospective study. Cancer Epidemiol Biomarkers Prev 13:220–224PubMedCrossRef Feigelson HS, Jonas CR, Teras LR, Thun MJ, Calle EE (2004) Weight gain, body mass index, hormone replacement therapy, and postmenopausal breast cancer in a large prospective study. Cancer Epidemiol Biomarkers Prev 13:220–224PubMedCrossRef
21.
go back to reference Lahmann PH, Schulz M, Hoffmann K, Boeing H, Tjonneland A, Olsen A, Overvad K, Key TJ, Allen NE, Khaw KT, Bingham S, Berglund G, Wirfalt E, Berrino F, Krogh V, Trichopoulou A, Lagiou P, Trichopoulos D, Kaaks R, Riboli E (2005) Long-term weight change and breast cancer risk: the European prospective investigation into cancer and nutrition (EPIC). Br J Cancer 93:582–589PubMedCrossRef Lahmann PH, Schulz M, Hoffmann K, Boeing H, Tjonneland A, Olsen A, Overvad K, Key TJ, Allen NE, Khaw KT, Bingham S, Berglund G, Wirfalt E, Berrino F, Krogh V, Trichopoulou A, Lagiou P, Trichopoulos D, Kaaks R, Riboli E (2005) Long-term weight change and breast cancer risk: the European prospective investigation into cancer and nutrition (EPIC). Br J Cancer 93:582–589PubMedCrossRef
22.
go back to reference Parker ED, Folsom AR (2003) Intentional weight loss and incidence of obesity-related cancers: the Iowa Women’s Health Study. Int J Obes Relat Metab Disord 27:1447–1452PubMedCrossRef Parker ED, Folsom AR (2003) Intentional weight loss and incidence of obesity-related cancers: the Iowa Women’s Health Study. Int J Obes Relat Metab Disord 27:1447–1452PubMedCrossRef
23.
go back to reference Colditz GA, Hankinson SE (2005) The Nurses’ Health Study: lifestyle and health among women. Nat Rev Cancer 5:388–396PubMedCrossRef Colditz GA, Hankinson SE (2005) The Nurses’ Health Study: lifestyle and health among women. Nat Rev Cancer 5:388–396PubMedCrossRef
24.
go back to reference Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96:1856–1865PubMedCrossRef Missmer SA, Eliassen AH, Barbieri RL, Hankinson SE (2004) Endogenous estrogen, androgen, and progesterone concentrations and breast cancer risk among postmenopausal women. J Natl Cancer Inst 96:1856–1865PubMedCrossRef
25.
go back to reference Tamimi RM, Hankinson SE, Colditz GA, Byrne C (2005) Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomarkers Prev 14:2641–2647PubMedCrossRef Tamimi RM, Hankinson SE, Colditz GA, Byrne C (2005) Endogenous sex hormone levels and mammographic density among postmenopausal women. Cancer Epidemiol Biomarkers Prev 14:2641–2647PubMedCrossRef
26.
go back to reference Byng JW, Boyd NF, Little L, Lockwood G, Fishell E, Jong RA, Yaffe MJ (1996) Symmetry of projection in the quantitative analysis of mammographic images. Eur J Cancer Prev 5:319–327PubMedCrossRef Byng JW, Boyd NF, Little L, Lockwood G, Fishell E, Jong RA, Yaffe MJ (1996) Symmetry of projection in the quantitative analysis of mammographic images. Eur J Cancer Prev 5:319–327PubMedCrossRef
27.
go back to reference Byrne C (1999) Mammographic density and breast cancer risk: the evolution of assessment techniques and implications for understanding breast cancer. Semin Breast Dis 2:301–314 Byrne C (1999) Mammographic density and breast cancer risk: the evolution of assessment techniques and implications for understanding breast cancer. Semin Breast Dis 2:301–314
28.
go back to reference Byrne C, Colditz GA, Willett WC, Speizer FE, Pollak M, Hankinson SE (2000) Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res 60:3744–3748PubMed Byrne C, Colditz GA, Willett WC, Speizer FE, Pollak M, Hankinson SE (2000) Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density. Cancer Res 60:3744–3748PubMed
29.
go back to reference Stunkard A, Sorensen T, Schulsinger F (1983) Use of the Danish Adoption Register for the study of obesity and thinness. In: Kety S, Rowland L, Sidman S, Mathysee S (eds) The genetics of neurological and psychiatric disorders. Raven Press, New York, pp 115–120 Stunkard A, Sorensen T, Schulsinger F (1983) Use of the Danish Adoption Register for the study of obesity and thinness. In: Kety S, Rowland L, Sidman S, Mathysee S (eds) The genetics of neurological and psychiatric disorders. Raven Press, New York, pp 115–120
30.
go back to reference Must A, Willett WC, Dietz WH (1993) Remote recall of childhood height, weight, and body build by elderly subjects. Am J Epidemiol 138:56–64PubMed Must A, Willett WC, Dietz WH (1993) Remote recall of childhood height, weight, and body build by elderly subjects. Am J Epidemiol 138:56–64PubMed
31.
go back to reference Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC (1994) Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 23:991–999PubMedCrossRef Wolf AM, Hunter DJ, Colditz GA, Manson JE, Stampfer MJ, Corsano KA, Rosner B, Kriska A, Willett WC (1994) Reproducibility and validity of a self-administered physical activity questionnaire. Int J Epidemiol 23:991–999PubMedCrossRef
32.
go back to reference Magnusson C, Baron J, Persson I, Wolk A, Bergstrom R, Trichopoulos D, Adami HO (1998) Body size in different periods of life and breast cancer risk in post-menopausal women. Int J Cancer 76:29–34PubMedCrossRef Magnusson C, Baron J, Persson I, Wolk A, Bergstrom R, Trichopoulos D, Adami HO (1998) Body size in different periods of life and breast cancer risk in post-menopausal women. Int J Cancer 76:29–34PubMedCrossRef
33.
go back to reference Lam PB, Vacek PM, Geller BM, Muss HB (2000) The association of increased weight, body mass index, and tissue density with the risk of breast carcinoma in Vermont. Cancer 89:369–375PubMedCrossRef Lam PB, Vacek PM, Geller BM, Muss HB (2000) The association of increased weight, body mass index, and tissue density with the risk of breast carcinoma in Vermont. Cancer 89:369–375PubMedCrossRef
34.
go back to reference Brisson J, Morrison AS, Kopans DB, Sadowsky NL, Kalisher L, Twaddle JA, Meyer JE, Henschke CI, Cole P (1984) Height and weight, mammographic features of breast tissue, and breast cancer risk. Am J Epidemiol 119:371–381PubMed Brisson J, Morrison AS, Kopans DB, Sadowsky NL, Kalisher L, Twaddle JA, Meyer JE, Henschke CI, Cole P (1984) Height and weight, mammographic features of breast tissue, and breast cancer risk. Am J Epidemiol 119:371–381PubMed
35.
go back to reference Boyd NF, Martin LJ, Sun L, Guo H, Chiarelli A, Hislop G, Yaffe M, Minkin S (2006) Body size, mammographic density, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15:2086–2092PubMedCrossRef Boyd NF, Martin LJ, Sun L, Guo H, Chiarelli A, Hislop G, Yaffe M, Minkin S (2006) Body size, mammographic density, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 15:2086–2092PubMedCrossRef
36.
go back to reference Russo J, Russo I (1997) Role of differentiation in the pathogenesis and prevention of breast cancer. Endocr Relat Cancer 4:7–21CrossRef Russo J, Russo I (1997) Role of differentiation in the pathogenesis and prevention of breast cancer. Endocr Relat Cancer 4:7–21CrossRef
37.
go back to reference Russo J, Russo IH (1987) Biological and molecular bases of mammary carcinogenesis. Lab Invest 57:112–137PubMed Russo J, Russo IH (1987) Biological and molecular bases of mammary carcinogenesis. Lab Invest 57:112–137PubMed
38.
go back to reference Simpson ER, Zhao Y, Agarwal VR, Michael MD, Bulun SE, Hinshelwood MM, Graham-Lorence S, Sun T, Fisher CR, Qin K, Mendelson CR (1997) Aromatase expression in health and disease. Recent Prog Horm Res 52:185–213; discussion 213–184PubMed Simpson ER, Zhao Y, Agarwal VR, Michael MD, Bulun SE, Hinshelwood MM, Graham-Lorence S, Sun T, Fisher CR, Qin K, Mendelson CR (1997) Aromatase expression in health and disease. Recent Prog Horm Res 52:185–213; discussion 213–184PubMed
39.
go back to reference Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, Martin L, Boyd N (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14:343–349PubMedCrossRef Li T, Sun L, Miller N, Nicklee T, Woo J, Hulse-Smith L, Tsao MS, Khokha R, Martin L, Boyd N (2005) The association of measured breast tissue characteristics with mammographic density and other risk factors for breast cancer. Cancer Epidemiol Biomarkers Prev 14:343–349PubMedCrossRef
40.
go back to reference Boyd NF, Greenberg C, Lockwood G, Little L, Martin L, Byng J, Yaffe M, Tritchler D (1997) Effects at two years of a low-fat, high-carbohydrate diet on radiologic features of the breast: results from a randomized trial. Canadian Diet and Breast Cancer Prevention Study Group. J Natl Cancer Inst 89:488–496PubMedCrossRef Boyd NF, Greenberg C, Lockwood G, Little L, Martin L, Byng J, Yaffe M, Tritchler D (1997) Effects at two years of a low-fat, high-carbohydrate diet on radiologic features of the breast: results from a randomized trial. Canadian Diet and Breast Cancer Prevention Study Group. J Natl Cancer Inst 89:488–496PubMedCrossRef
41.
go back to reference Siozon CC, Ma H, Hilsen M, Bernstein L, Ursin G (2006) The association between recreational physical activity and mammographic density. Int J Cancer 119(7):1695–1701PubMedCrossRef Siozon CC, Ma H, Hilsen M, Bernstein L, Ursin G (2006) The association between recreational physical activity and mammographic density. Int J Cancer 119(7):1695–1701PubMedCrossRef
42.
go back to reference Suijkerbuijk KP, Van Duijnhoven FJ, Van Gils CH, Van Noord PA, Peeters PH, Friedenreich CM, Monninkhof EM (2006) Physical activity in relation to mammographic density in the dutch prospect-European prospective investigation into cancer and nutrition cohort. Cancer Epidemiol Biomarkers Prev 15:456–460PubMedCrossRef Suijkerbuijk KP, Van Duijnhoven FJ, Van Gils CH, Van Noord PA, Peeters PH, Friedenreich CM, Monninkhof EM (2006) Physical activity in relation to mammographic density in the dutch prospect-European prospective investigation into cancer and nutrition cohort. Cancer Epidemiol Biomarkers Prev 15:456–460PubMedCrossRef
43.
go back to reference Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11:653–662PubMedCrossRef Vachon CM, Kuni CC, Anderson K, Anderson VE, Sellers TA (2000) Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States). Cancer Causes Control 11:653–662PubMedCrossRef
44.
go back to reference Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson-Hughes B, Rand WM (2002) Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol 155:672–679PubMedCrossRef Must A, Phillips SM, Naumova EN, Blum M, Harris S, Dawson-Hughes B, Rand WM (2002) Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol 155:672–679PubMedCrossRef
45.
go back to reference Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87:670–675PubMedCrossRef Boyd NF, Byng JW, Jong RA, Fishell EK, Little LE, Miller AB, Lockwood GA, Tritchler DL, Yaffe MJ (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87:670–675PubMedCrossRef
46.
go back to reference Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ (1994) The quantitative analysis of mammographic densities. Phys Med Biol 39:1629–1638PubMedCrossRef Byng JW, Boyd NF, Fishell E, Jong RA, Yaffe MJ (1994) The quantitative analysis of mammographic densities. Phys Med Biol 39:1629–1638PubMedCrossRef
47.
go back to reference Brisson J, Merletti F, Sadowsky NL, Twaddle JA, Morrison AS, Cole P (1982) Mammographic features of the breast and breast cancer risk. Am J Epidemiol 115:428–437PubMed Brisson J, Merletti F, Sadowsky NL, Twaddle JA, Morrison AS, Cole P (1982) Mammographic features of the breast and breast cancer risk. Am J Epidemiol 115:428–437PubMed
48.
go back to reference Thomas DB, Carter RA, Bush WH Jr, Ray RM, Stanford JL, Lehman CD, Daling JR, Malone K, Davis S (2002) Risk of subsequent breast cancer in relation to characteristics of screening mammograms from women less than 50 years of age. Cancer Epidemiol Biomarkers Prev 11:565–571PubMed Thomas DB, Carter RA, Bush WH Jr, Ray RM, Stanford JL, Lehman CD, Daling JR, Malone K, Davis S (2002) Risk of subsequent breast cancer in relation to characteristics of screening mammograms from women less than 50 years of age. Cancer Epidemiol Biomarkers Prev 11:565–571PubMed
49.
go back to reference Kato I, Beinart C, Bleich A, Su S, Kim M, Toniolo PG (1995) A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States). Cancer Causes Control 6:431–438PubMedCrossRef Kato I, Beinart C, Bleich A, Su S, Kim M, Toniolo PG (1995) A nested case-control study of mammographic patterns, breast volume, and breast cancer (New York City, NY, United States). Cancer Causes Control 6:431–438PubMedCrossRef
50.
go back to reference Saftlas AF, Wolfe JN, Hoover RN, Brinton LA, Schairer C, Salane M, Szklo M (1989) Mammographic parenchymal patterns as indicators of breast cancer risk. Am J Epidemiol 129:518–526PubMed Saftlas AF, Wolfe JN, Hoover RN, Brinton LA, Schairer C, Salane M, Szklo M (1989) Mammographic parenchymal patterns as indicators of breast cancer risk. Am J Epidemiol 129:518–526PubMed
51.
go back to reference Ciatto S, Houssami N, Apruzzese A, Bassetti E, Brancato B, Carozzi F, Catarzi S, Lamberini MP, Marcelli G, Pellizzoni R, Pesce B, Risso G, Russo F, Scorsolini A (2005) Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast 14:269–275PubMedCrossRef Ciatto S, Houssami N, Apruzzese A, Bassetti E, Brancato B, Carozzi F, Catarzi S, Lamberini MP, Marcelli G, Pellizzoni R, Pesce B, Risso G, Russo F, Scorsolini A (2005) Categorizing breast mammographic density: intra- and interobserver reproducibility of BI-RADS density categories. Breast 14:269–275PubMedCrossRef
53.
go back to reference Kerlikowske K, Grady D, Barclay J, Frankel SD, Ominsky SH, Sickles EA, Ernster V (1998) Variability and accuracy in mammographic interpretation using the American College of Radiology Breast Imaging Reporting and Data System. J Natl Cancer Inst 90:1801–1809PubMedCrossRef Kerlikowske K, Grady D, Barclay J, Frankel SD, Ominsky SH, Sickles EA, Ernster V (1998) Variability and accuracy in mammographic interpretation using the American College of Radiology Breast Imaging Reporting and Data System. J Natl Cancer Inst 90:1801–1809PubMedCrossRef
54.
go back to reference Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236PubMedCrossRef Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, Jong RA, Hislop G, Chiarelli A, Minkin S, Yaffe MJ (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236PubMedCrossRef
55.
go back to reference Ursin G, Ma H, Wu AH, Bernstein L, Salane M, Parisky YR, Astrahan M, Siozon CC, Pike MC (2003) Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomarkers Prev 12:332–338PubMed Ursin G, Ma H, Wu AH, Bernstein L, Salane M, Parisky YR, Astrahan M, Siozon CC, Pike MC (2003) Mammographic density and breast cancer in three ethnic groups. Cancer Epidemiol Biomarkers Prev 12:332–338PubMed
56.
go back to reference Vachon CM, Kushi LH, Cerhan JR, Kuni CC, Sellers TA (2000) Association of diet and mammographic breast density in the Minnesota breast cancer family cohort. Cancer Epidemiol Biomarkers Prev 9:151–160PubMed Vachon CM, Kushi LH, Cerhan JR, Kuni CC, Sellers TA (2000) Association of diet and mammographic breast density in the Minnesota breast cancer family cohort. Cancer Epidemiol Biomarkers Prev 9:151–160PubMed
Metadata
Title
Measures of energy balance and mammographic density in the Nurses’ Health Study
Authors
Goli Samimi
Graham A. Colditz
Heather J. Baer
Rulla M. Tamimi
Publication date
01-05-2008
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 1/2008
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-007-9631-7

Other articles of this Issue 1/2008

Breast Cancer Research and Treatment 1/2008 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine