Skip to main content
Top
Published in: Acta Neurochirurgica 2/2022

01-02-2022 | Magnetic Resonance Imaging | Original Article - CSF Circulation

Bumetanide lowers acute hydrocephalus in a rat model of subarachnoid hemorrhage

Authors: Thomas Metayer, Cyrille Orset, Carine Ali, Jonathane Furon, Nicolas Szabla, Evelyne Emery, Denis Vivien, Thomas Gaberel

Published in: Acta Neurochirurgica | Issue 2/2022

Login to get access

Abstract

Background

Subarachnoid hemorrhage (SAH) can lead to acute hydrocephalus (AH). AH pathophysiology is classically attributed to an obstruction of the arachnoid granulations by blood. Recent findings in rodents suggest that after intraventricular hemorrhage, AH is related to cerebrospinal fluid (CSF) hypersecretion by the choroid plexus (CP), as it can be reduced by intracerebroventricular (ICV) injection of bumetanide.

Objective

Here, we investigated if and how CSF hypersecretion and/or CSF outflow disorders contribute to post-SAH hydrocephalus.

Methods

Ninety-four Wistar rats were used. SAH was induced by the endovascular perforation technique. The presence of AH was confirmed by magnetic resonance imaging (MRI), and rats with AH were randomly assigned to 4 groups: control group, superior sagittal sinus (SSS) thrombosis to block CSF reabsorption, ICV injection of saline, and ICV injection of bumetanide to decrease CSF secretion. Clinical outcome was evaluated with a neuroscore. A second MRI was performed 24 h later to evaluate the ventricular volume.

Results

Fifty percent of rats that survived SAH induction had AH. Their ventricular volume correlated well to the functional outcome after 24 h (r = 0.803). In rats with AH, 24 h later, ventricular volume remained equally increased in the absence of any further procedure. Similarly, ICV injection of saline or SSS thrombosis had no impact on the ventricular volume. However, ICV injection of bumetanide reduced AH by 35.9% (p = 0.002).

Conclusion

In rodents, post-SAH hydrocephalus is may be due to hypersecretion of CSF by the CP, as it is limited by ICV injection of bumetanide. However, we cannot exclude other mechanisms involved in post-SAH acute hydrocephalus.
Literature
2.
go back to reference Black PM (1986) Hydrocephalus and vasospasm after subarachnoid hemorrhage from ruptured intracranial aneurysms. Neurosurgery 18(1):12–16CrossRef Black PM (1986) Hydrocephalus and vasospasm after subarachnoid hemorrhage from ruptured intracranial aneurysms. Neurosurgery 18(1):12–16CrossRef
3.
go back to reference Chen S, Luo J, Reis C, Manaenko A, Zhang J (2017) Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. Biomed Res Int 2017:8584753PubMedPubMedCentral Chen S, Luo J, Reis C, Manaenko A, Zhang J (2017) Hydrocephalus after subarachnoid hemorrhage: pathophysiology, diagnosis, and treatment. Biomed Res Int 2017:8584753PubMedPubMedCentral
4.
go back to reference Connolly ES, Rabinstein AA, Carhuapoma JR et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43(6):1711–1737CrossRef Connolly ES, Rabinstein AA, Carhuapoma JR et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43(6):1711–1737CrossRef
5.
go back to reference Delpire E, Gagnon KB (2019) Elusive role of the Na-K-2Cl cotransporter in the choroid plexus. Am J Physiol Cell Physiol 316(4):C522–C524CrossRef Delpire E, Gagnon KB (2019) Elusive role of the Na-K-2Cl cotransporter in the choroid plexus. Am J Physiol Cell Physiol 316(4):C522–C524CrossRef
6.
go back to reference Foerch C, Arai K, Jin G, Park K-P, Pallast S, van Leyen K, Lo EH (2008) Experimental model of warfarin-associated intracerebral hemorrhage. Stroke 39(12):3397–3404CrossRef Foerch C, Arai K, Jin G, Park K-P, Pallast S, van Leyen K, Lo EH (2008) Experimental model of warfarin-associated intracerebral hemorrhage. Stroke 39(12):3397–3404CrossRef
7.
go back to reference Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz J-L, Emery E, Touze E, Vivien D, Gauberti M (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45(10):3092–3096CrossRef Gaberel T, Gakuba C, Goulay R, Martinez De Lizarrondo S, Hanouz J-L, Emery E, Touze E, Vivien D, Gauberti M (2014) Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke 45(10):3092–3096CrossRef
8.
go back to reference Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634 discussion 635CrossRef Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634 discussion 635CrossRef
9.
go back to reference Goulay R, Flament J, Gauberti M et al (2017) Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke 48(8):2301–2305CrossRef Goulay R, Flament J, Gauberti M et al (2017) Subarachnoid hemorrhage severely impairs brain parenchymal cerebrospinal fluid circulation in nonhuman primate. Stroke 48(8):2301–2305CrossRef
10.
go back to reference Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ (2019) Genetic and pharmacological inactivation of apical Na+-K+-2Cl- cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 316(4):C525–C544CrossRef Gregoriades JMC, Madaris A, Alvarez FJ, Alvarez-Leefmans FJ (2019) Genetic and pharmacological inactivation of apical Na+-K+-2Cl- cotransporter 1 in choroid plexus epithelial cells reveals the physiological function of the cotransporter. Am J Physiol Cell Physiol 316(4):C525–C544CrossRef
11.
go back to reference Guo D, Wilkinson DA, Thompson BG, Pandey AS, Keep RF, Xi G, Hua Y (2017) MRI characterization in the acute phase of experimental subarachnoid hemorrhage. Transl Stroke Res 8(3):234–243CrossRef Guo D, Wilkinson DA, Thompson BG, Pandey AS, Keep RF, Xi G, Hua Y (2017) MRI characterization in the acute phase of experimental subarachnoid hemorrhage. Transl Stroke Res 8(3):234–243CrossRef
12.
go back to reference Hasan D, Vermeulen M, Wijdicks EF, Hijdra A, van Gijn J (1989) Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke 20(6):747–753CrossRef Hasan D, Vermeulen M, Wijdicks EF, Hijdra A, van Gijn J (1989) Management problems in acute hydrocephalus after subarachnoid hemorrhage. Stroke 20(6):747–753CrossRef
13.
go back to reference Karimy JK, Zhang J, Kurland DB et al (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23(8):997–1003CrossRef Karimy JK, Zhang J, Kurland DB et al (2017) Inflammation-dependent cerebrospinal fluid hypersecretion by the choroid plexus epithelium in posthemorrhagic hydrocephalus. Nat Med 23(8):997–1003CrossRef
15.
go back to reference Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES (2002) Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 51(1):170–181 discussion 181-182CrossRef Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES (2002) Ventriculostomy-related infections: a critical review of the literature. Neurosurgery 51(1):170–181 discussion 181-182CrossRef
16.
go back to reference Okubo S, Strahle J, Keep RF, Hua Y, Xi G (2013) Subarachnoid hemorrhage-induced hydrocephalus in rats. Stroke 44(2):547–550CrossRef Okubo S, Strahle J, Keep RF, Hua Y, Xi G (2013) Subarachnoid hemorrhage-induced hydrocephalus in rats. Stroke 44(2):547–550CrossRef
17.
go back to reference Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394CrossRef Plog BA, Nedergaard M (2018) The glymphatic system in central nervous system health and disease: past, present, and future. Annu Rev Pathol 13:379–394CrossRef
18.
go back to reference Röttger C, Bachmann G, Gerriets T, Kaps M, Kuchelmeister K, Schachenmayr W, Walberer M, Wessels T, Stolz E (2005) A new model of reversible sinus sagittalis superior thrombosis in the rat: magnetic resonance imaging changes. Neurosurgery 57(3):573–580 discussion 573–580CrossRef Röttger C, Bachmann G, Gerriets T, Kaps M, Kuchelmeister K, Schachenmayr W, Walberer M, Wessels T, Stolz E (2005) A new model of reversible sinus sagittalis superior thrombosis in the rat: magnetic resonance imaging changes. Neurosurgery 57(3):573–580 discussion 573–580CrossRef
19.
go back to reference Shishido H, Zhang H, Okubo S, Hua Y, Keep RF, Xi G (2016) The effect of gender on acute hydrocephalus after experimental subarachnoid hemorrhage. Acta Neurochir Suppl 121:335–339CrossRef Shishido H, Zhang H, Okubo S, Hua Y, Keep RF, Xi G (2016) The effect of gender on acute hydrocephalus after experimental subarachnoid hemorrhage. Acta Neurochir Suppl 121:335–339CrossRef
20.
go back to reference Sokołowski W, Barszcz K, Kupczyńska M, Czubaj N, Skibniewski M, Purzyc H (2018) Lymphatic drainage of cerebrospinal fluid in mammals - are arachnoid granulations the main route of cerebrospinal fluid outflow? Biologia (Bratisl) 73(6):563–568CrossRef Sokołowski W, Barszcz K, Kupczyńska M, Czubaj N, Skibniewski M, Purzyc H (2018) Lymphatic drainage of cerebrospinal fluid in mammals - are arachnoid granulations the main route of cerebrospinal fluid outflow? Biologia (Bratisl) 73(6):563–568CrossRef
21.
go back to reference Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, Rose CR, MacAulay N (2018) Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 9(1):2167CrossRef Steffensen AB, Oernbo EK, Stoica A, Gerkau NJ, Barbuskaite D, Tritsaris K, Rose CR, MacAulay N (2018) Cotransporter-mediated water transport underlying cerebrospinal fluid formation. Nat Commun 9(1):2167CrossRef
22.
go back to reference van Asch CJJ, van der Schaaf IC, Rinkel GJE (2010) Acute hydrocephalus and cerebral perfusion after aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol 31(1):67–70CrossRef van Asch CJJ, van der Schaaf IC, Rinkel GJE (2010) Acute hydrocephalus and cerebral perfusion after aneurysmal subarachnoid hemorrhage. AJNR Am J Neuroradiol 31(1):67–70CrossRef
23.
go back to reference Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G (2019) Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci Ther 25(10):1134–1141CrossRef Wan Y, Hua Y, Garton HJL, Novakovic N, Keep RF, Xi G (2019) Activation of epiplexus macrophages in hydrocephalus caused by subarachnoid hemorrhage and thrombin. CNS Neurosci Ther 25(10):1134–1141CrossRef
25.
go back to reference Zuurbier SM, van den Berg R, Troost D, Majoie CB, Stam J, Coutinho JM (2015) Hydrocephalus in cerebral venous thrombosis. J Neurol 262(4):931–937CrossRef Zuurbier SM, van den Berg R, Troost D, Majoie CB, Stam J, Coutinho JM (2015) Hydrocephalus in cerebral venous thrombosis. J Neurol 262(4):931–937CrossRef
Metadata
Title
Bumetanide lowers acute hydrocephalus in a rat model of subarachnoid hemorrhage
Authors
Thomas Metayer
Cyrille Orset
Carine Ali
Jonathane Furon
Nicolas Szabla
Evelyne Emery
Denis Vivien
Thomas Gaberel
Publication date
01-02-2022
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 2/2022
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-021-05088-4

Other articles of this Issue 2/2022

Acta Neurochirurgica 2/2022 Go to the issue

Original Article - Functional Neurosurgery - Movement disorders

The risk factors of intracerebral hemorrhage in deep brain stimulation: does target matter?