Skip to main content
Top
Published in: Radiation Oncology 1/2022

Open Access 01-12-2022 | Magnetic Resonance Imaging | Research

Validation of an MRI-only planning workflow for definitive pelvic radiotherapy

Authors: Laura M. O’Connor, Jason A. Dowling, Jae Hyuk Choi, Jarad Martin, Helen Warren-Forward, Haylea Richardson, Leah Best, Kate Skehan, Mahesh Kumar, Geetha Govindarajulu, Swetha Sridharan, Peter B. Greer

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Abstract

Purpose

Previous work on Magnetic Resonance Imaging (MRI) only planning has been applied to limited treatment regions with a focus on male anatomy. This research aimed to validate the use of a hybrid multi-atlas synthetic computed tomography (sCT) generation technique from a MRI, using a female and male atlas, for MRI only radiation therapy treatment planning of rectum, anal canal, cervix and endometrial malignancies.

Patients and methods

Forty patients receiving radiation treatment for a range of pelvic malignancies, were separated into male (n = 20) and female (n = 20) cohorts for the creation of gender specific atlases. A multi-atlas local weighted voting method was used to generate a sCT from a T1-weighted VIBE DIXON MRI sequence. The original treatment plans were copied from the CT scan to the corresponding sCT for dosimetric validation.

Results

The median percentage dose difference between the treatment plan on the CT and sCT at the ICRU reference point for the male cohort was − 0.4% (IQR of 0 to − 0.6), and − 0.3% (IQR of 0 to − 0.6) for the female cohort. The mean gamma agreement for both cohorts was > 99% for criteria of 3%/2 mm and 2%/2 mm. With dose criteria of 1%/1 mm, the pass rate was higher for the male cohort at 96.3% than the female cohort at 93.4%. MRI to sCT anatomical agreement for bone and body delineated contours was assessed, with a resulting Dice score of 0.91 ± 0.2 (mean ± 1 SD) and 0.97 ± 0.0 for the male cohort respectively; and 0.96 ± 0.0 and 0.98 ± 0.0 for the female cohort respectively. The mean absolute error in Hounsfield units (HUs) within the entire body for the male and female cohorts was 59.1 HU ± 7.2 HU and 53.3 HU ± 8.9 HU respectively.

Conclusions

A multi-atlas based method for sCT generation can be applied to a standard T1-weighted MRI sequence for male and female pelvic patients. The implications of this study support MRI only planning being applied more broadly for both male and female pelvic sites.
Trial registration This trial was registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) (www.​anzctr.​org.​au) on 04/10/2017. Trial identifier ACTRN12617001406392.
Appendix
Available only for authorised users
Literature
1.
go back to reference Khan FM. The physics of radiation therapy. 4th ed. Baltimore: Lippincott Williams & Wilkins; 2009. Khan FM. The physics of radiation therapy. 4th ed. Baltimore: Lippincott Williams & Wilkins; 2009.
2.
go back to reference Kessler ML, Pitluck S, Petti P, Castro JR. Integration of multimodality imaging data for radiotherapy treatment planning. Int J Radiat Oncol Biol Phys. 1991;21(6):1653–67.CrossRef Kessler ML, Pitluck S, Petti P, Castro JR. Integration of multimodality imaging data for radiotherapy treatment planning. Int J Radiat Oncol Biol Phys. 1991;21(6):1653–67.CrossRef
3.
go back to reference Metcalfe P, Liney GP, Holloway L, Walker A, Barton M, Delaney GP, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12(5):429–46.CrossRef Metcalfe P, Liney GP, Holloway L, Walker A, Barton M, Delaney GP, et al. The potential for an enhanced role for MRI in radiation-therapy treatment planning. Technol Cancer Res Treat. 2013;12(5):429–46.CrossRef
4.
go back to reference Dirix P, Haustermans K, Vandecaveye V. The value of magnetic resonance imaging for radiotherapy planning. Semin Radiat Oncol. 2014;24(3):151–9.CrossRef Dirix P, Haustermans K, Vandecaveye V. The value of magnetic resonance imaging for radiotherapy planning. Semin Radiat Oncol. 2014;24(3):151–9.CrossRef
5.
go back to reference Greer PB, Dowling JA, Lambert JA, Fripp J, Parker J, Denham JW, et al. A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer. Med J Aust. 2011;194(4):S24–7.PubMed Greer PB, Dowling JA, Lambert JA, Fripp J, Parker J, Denham JW, et al. A magnetic resonance imaging-based workflow for planning radiation therapy for prostate cancer. Med J Aust. 2011;194(4):S24–7.PubMed
6.
go back to reference Dean CJ, Sykes JR, Cooper RA, Hatfield P, Carey B, Swift S, et al. An evaluation of four CT-MRI co-registration techniques for radiotherapy treatment planning of prone rectal cancer patients. Br J Radiol. 2012;85(1009):61–8.CrossRef Dean CJ, Sykes JR, Cooper RA, Hatfield P, Carey B, Swift S, et al. An evaluation of four CT-MRI co-registration techniques for radiotherapy treatment planning of prone rectal cancer patients. Br J Radiol. 2012;85(1009):61–8.CrossRef
7.
go back to reference Krempien RC, Daeuber S, Hensley FW, Wannenmacher M, Harms W. Image fusion of CT and MRI data enables improved target volume definition in 3D-brachytherapy treatment planning. Brachytherapy. 2003;2(3):164–71.CrossRef Krempien RC, Daeuber S, Hensley FW, Wannenmacher M, Harms W. Image fusion of CT and MRI data enables improved target volume definition in 3D-brachytherapy treatment planning. Brachytherapy. 2003;2(3):164–71.CrossRef
8.
go back to reference Maspero M, Savenije MHF, Dinkla AM, Seevinck PR, Intven MPW, Jurgenliemk-Schulz IM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol. 2018;63(18):185001.CrossRef Maspero M, Savenije MHF, Dinkla AM, Seevinck PR, Intven MPW, Jurgenliemk-Schulz IM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy. Phys Med Biol. 2018;63(18):185001.CrossRef
9.
go back to reference Liu L, Jolly S, Cao Y, Vineberg K, Fessler JA, Balter JM. Female pelvic synthetic CT generation based on joint intensity and shape analysis. Phys Med Biol. 2017;62(8):2935–49.CrossRef Liu L, Jolly S, Cao Y, Vineberg K, Fessler JA, Balter JM. Female pelvic synthetic CT generation based on joint intensity and shape analysis. Phys Med Biol. 2017;62(8):2935–49.CrossRef
10.
go back to reference Dowling JA, Sun J, Pichler P, Rivest-Henault D, Ghose S, Richardson H, et al. Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard MRI sequences. Int J Radiat Oncol Biol Phys. 2015;93(5):1144–53.CrossRef Dowling JA, Sun J, Pichler P, Rivest-Henault D, Ghose S, Richardson H, et al. Automatic substitute computed tomography generation and contouring for magnetic resonance imaging (MRI)-alone external beam radiation therapy from standard MRI sequences. Int J Radiat Oncol Biol Phys. 2015;93(5):1144–53.CrossRef
11.
go back to reference MR-only RT planning for brain and pelvis with Synthetic CT · White paper: Siemens Healthcare GmbH; 2019. MR-only RT planning for brain and pelvis with Synthetic CT · White paper: Siemens Healthcare GmbH; 2019.
12.
go back to reference Köhler M, Vaara T, Grootel MV, Hoogeveen R, Kemppainen R, Renisch S. MR-only simulation for radiotherapy planning. White paper: Philips MRCAT for prostate dose calculations using only MRI data: Koninklijke Philips N.V.; 2015. Köhler M, Vaara T, Grootel MV, Hoogeveen R, Kemppainen R, Renisch S. MR-only simulation for radiotherapy planning. White paper: Philips MRCAT for prostate dose calculations using only MRI data: Koninklijke Philips N.V.; 2015.
13.
go back to reference Dowling JA, Lambert J, Parker J, Salvado O, Fripp J, Capp A, et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys. 2012;83(1):e5-11.CrossRef Dowling JA, Lambert J, Parker J, Salvado O, Fripp J, Capp A, et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int J Radiat Oncol Biol Phys. 2012;83(1):e5-11.CrossRef
14.
go back to reference Arabi H, Koutsouvelis N, Rouzaud M, Miralbell R, Zaidi H. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning. Phys Med Biol. 2016;61(17):6531–52.CrossRef Arabi H, Koutsouvelis N, Rouzaud M, Miralbell R, Zaidi H. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning. Phys Med Biol. 2016;61(17):6531–52.CrossRef
15.
go back to reference Johnstone E, Wyatt JJ, Henry AM, Short SC, Sebag-Montefiore D, Murray L, et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys. 2018;100(1):199–217.CrossRef Johnstone E, Wyatt JJ, Henry AM, Short SC, Sebag-Montefiore D, Murray L, et al. Systematic review of synthetic computed tomography generation methodologies for use in magnetic resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys. 2018;100(1):199–217.CrossRef
20.
go back to reference Kemppainen R, Suilamo S, Tuokkola T, Lindholm P, Deppe MH, Keyrilainen J. Magnetic resonance-only simulation and dose calculation in external beam radiation therapy: a feasibility study for pelvic cancers. Acta Oncol. 2017;56(6):792–8.CrossRef Kemppainen R, Suilamo S, Tuokkola T, Lindholm P, Deppe MH, Keyrilainen J. Magnetic resonance-only simulation and dose calculation in external beam radiation therapy: a feasibility study for pelvic cancers. Acta Oncol. 2017;56(6):792–8.CrossRef
21.
go back to reference Maspero M, Tyyger MD, Tijssen RHN, Seevinck PR, Intven MPW, van den Berg CAT. Feasibility of magentic resonance imaging-only rectum radiotherapy with a commerical synthetic computed tomography generation solution. Phys Imaging Radiat Oncol. 2018;7:58–64.CrossRef Maspero M, Tyyger MD, Tijssen RHN, Seevinck PR, Intven MPW, van den Berg CAT. Feasibility of magentic resonance imaging-only rectum radiotherapy with a commerical synthetic computed tomography generation solution. Phys Imaging Radiat Oncol. 2018;7:58–64.CrossRef
22.
go back to reference Wang H, Du K, Qu J, Chandarana H, Das IJ. Dosimetric evaluation of magnetic resonance-generated synthetic CT for radiation treatment of rectal cancer. PLoS ONE. 2018;13(1):e0190883.CrossRef Wang H, Du K, Qu J, Chandarana H, Das IJ. Dosimetric evaluation of magnetic resonance-generated synthetic CT for radiation treatment of rectal cancer. PLoS ONE. 2018;13(1):e0190883.CrossRef
23.
go back to reference Aulesjord A, et al. syngo MR E11 Operator Manual - Scanning and postprocessing. Erlangen: Siemens Healthcare; 2014. Aulesjord A, et al. syngo MR E11 Operator Manual - Scanning and postprocessing. Erlangen: Siemens Healthcare; 2014.
24.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20.CrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20.CrossRef
25.
go back to reference Lowekamp BC, Chen DT, Ibanez L, Blezek D. The design of SimpleITK. Front Neuroinform. 2013;7:45.CrossRef Lowekamp BC, Chen DT, Ibanez L, Blezek D. The design of SimpleITK. Front Neuroinform. 2013;7:45.CrossRef
26.
go back to reference ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). ICRU report 83. J ICRU. 2010;10:1–106. ICRU International Commission on Radiation Units and Measurements. Prescribing, recording, and reporting photon-beam intensity-modulated radiation therapy (IMRT). ICRU report 83. J ICRU. 2010;10:1–106.
27.
go back to reference Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53–83.CrossRef Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Med Phys. 2018;45(4):e53–83.CrossRef
Metadata
Title
Validation of an MRI-only planning workflow for definitive pelvic radiotherapy
Authors
Laura M. O’Connor
Jason A. Dowling
Jae Hyuk Choi
Jarad Martin
Helen Warren-Forward
Haylea Richardson
Leah Best
Kate Skehan
Mahesh Kumar
Geetha Govindarajulu
Swetha Sridharan
Peter B. Greer
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-022-02023-4

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue