Skip to main content
Top
Published in: Radiation Oncology 1/2022

01-12-2022 | Pneumonia | Research

Estimating cancer risks due to whole lungs low dose radiotherapy with different techniques for treating COVID-19 pneumonia

Authors: Amin Banaei, Bijan Hashemi, Mohsen Bakhshandeh

Published in: Radiation Oncology | Issue 1/2022

Login to get access

Abstract

Background

Low dose radiotherapy (LDRT) of whole lungs with photon beams is a novel method for treating COVID-19 pneumonia. This study aimed to estimate cancer risks induced by lung LDRT for different radiotherapy delivery techniques.

Method

Four different radiotherapy techniques, including 3D-conformal with anterior and posterior fields (3D-CRT AP–PA), 3D-conformal with 8 coplanar fields (3D-CRT 8 fields), eight fields intensity-modulated radiotherapy (IMRT), and volumetric modulated arc therapy using 2 full arcs (VMAT) were planned on the CT images of 32 COVID-19 patients with the prescribed dose of 1 Gy to the lungs. Organ average and maximum doses, and PTV dose distribution indexes were compared between different techniques. The radiation-induced cancer incidence and cancer-specific mortality, and cardiac heart disease risks were estimated for the assessed techniques.

Results

In IMRT and VMAT techniques, heart (mean and max), breast (mean, and max), and stomach (mean) doses and also maximum dose in the body were significantly lower than the 3D-CRT techniques. The calculated conformity indexes were similar in all the techniques. However, the homogeneity indexes were lower (i.e., better) in intensity-modulated techniques (P < 0.03) with no significant differences between IMRT and VMAT plans. Lung cancer incident risks for all the delivery techniques were similar (P > 0.4). Cancer incidence and mortality risks for organs located closer to lungs like breast and stomach were higher in 3D-CRT techniques than IMRT or VMAT techniques (excess solid tumor cancer incidence risks for a 30 years man: 1.94 ± 0.22% Vs. 1.68 ± 0.17%; and women: 6.66 ± 0.81% Vs. 4.60 ± 0.43%: cancer mortality risks for 30 years men: 1.63 ± 0.19% Vs. 1.45 ± 0.15%; and women: 3.63 ± 0.44% Vs. 2.94 ± 0.23%).

Conclusion

All the radiotherapy techniques had low cancer risks. However, the overall estimated risks induced by IMRT and VMAT radiotherapy techniques were lower than the 3D-CRT techniques and can be used clinically in younger patients or patients having greater concerns about radiation induced cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hess CB, Buchwald ZS, Stokes W, Nasti TH, Switchenko JM, Weinberg BD, et al. Low-dose whole-lung radiation for COVID-19 pneumonia: planned day 7 interim analysis of a registered clinical trial. Cancer. 2020;126(23):5109–13.CrossRefPubMed Hess CB, Buchwald ZS, Stokes W, Nasti TH, Switchenko JM, Weinberg BD, et al. Low-dose whole-lung radiation for COVID-19 pneumonia: planned day 7 interim analysis of a registered clinical trial. Cancer. 2020;126(23):5109–13.CrossRefPubMed
2.
go back to reference Rousseau JP, Johnson WM, Harrell GT. The value of roentgen therapy in pneumonia which fails to respond to the sulfonamides. Radiology. 1942;38(3):281–9.CrossRef Rousseau JP, Johnson WM, Harrell GT. The value of roentgen therapy in pneumonia which fails to respond to the sulfonamides. Radiology. 1942;38(3):281–9.CrossRef
3.
go back to reference Scott WR. X-ray therapy in the treatment of acute pneumonia: report covering the use of X-ray therapy in the treatment of pneumonia at the Niagara Falls Memorial Hospital, from Oct. 1, 1937, to Sept.. 30, 1938. Radiology. 1939;33(3):331–49.CrossRef Scott WR. X-ray therapy in the treatment of acute pneumonia: report covering the use of X-ray therapy in the treatment of pneumonia at the Niagara Falls Memorial Hospital, from Oct. 1, 1937, to Sept.. 30, 1938. Radiology. 1939;33(3):331–49.CrossRef
4.
go back to reference Venkatraman P, Sahay JJ, Maidili T, Rajan R, Pooja S. Breakthrough of COVID-19 using radiotherapy treatment modalities. Radiother Oncol. 2020;148:225–6.CrossRefPubMedPubMedCentral Venkatraman P, Sahay JJ, Maidili T, Rajan R, Pooja S. Breakthrough of COVID-19 using radiotherapy treatment modalities. Radiother Oncol. 2020;148:225–6.CrossRefPubMedPubMedCentral
5.
go back to reference Lara PC, Burgos J, Macias D. Low dose lung radiotherapy for COVID-19 pneumonia. The rationale for a cost-effective anti-inflammatory treatment. Clin Transl Radiat Oncol. 2020;23:27–9.CrossRefPubMedPubMedCentral Lara PC, Burgos J, Macias D. Low dose lung radiotherapy for COVID-19 pneumonia. The rationale for a cost-effective anti-inflammatory treatment. Clin Transl Radiat Oncol. 2020;23:27–9.CrossRefPubMedPubMedCentral
18.
go back to reference Ameri A, Ameri P, Rahnama N, Mokhtari M, Sedaghat M, Hadavand F, et al. Low-dose whole-lung irradiation for COVID-19 pneumonia: final results of a pilot study. Int J Radiat Oncol Biol Phys. 2021;109(4):859–66.CrossRefPubMed Ameri A, Ameri P, Rahnama N, Mokhtari M, Sedaghat M, Hadavand F, et al. Low-dose whole-lung irradiation for COVID-19 pneumonia: final results of a pilot study. Int J Radiat Oncol Biol Phys. 2021;109(4):859–66.CrossRefPubMed
19.
go back to reference Papachristofilou A, Finazzi T, Blum A, Zehnder T, Zellweger N, Lustenberger J et al. Low dose radiation therapy for severe COVID-19 pneumonia: a randomized double-blind study. Int J Radiat Oncol Biol Phys. 2021; 110:1274–82. Papachristofilou A, Finazzi T, Blum A, Zehnder T, Zellweger N, Lustenberger J et al. Low dose radiation therapy for severe COVID-19 pneumonia: a randomized double-blind study. Int J Radiat Oncol Biol Phys. 2021; 110:1274–82.
20.
go back to reference Dhawan G, Kapoor R, Dhawan R, Singh R, Monga B, Giordano J, et al. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother Oncol. 2020;147:212–6.CrossRefPubMedPubMedCentral Dhawan G, Kapoor R, Dhawan R, Singh R, Monga B, Giordano J, et al. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother Oncol. 2020;147:212–6.CrossRefPubMedPubMedCentral
21.
go back to reference Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.CrossRefPubMedPubMedCentral Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4.CrossRefPubMedPubMedCentral
22.
go back to reference Council NR. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. 2006. Council NR. Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. 2006.
23.
go back to reference Schneider U, Sumila M, Robotka J. Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Model. 2011;8(1):1–21.CrossRef Schneider U, Sumila M, Robotka J. Site-specific dose-response relationships for cancer induction from the combined Japanese A-bomb and Hodgkin cohorts for doses relevant to radiotherapy. Theor Biol Med Model. 2011;8(1):1–21.CrossRef
24.
go back to reference Schneider U, Zwahlen D, Ross D, Kaser-Hotz B. Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Oncol Biol Phys. 2005;61(5):1510–5.CrossRefPubMed Schneider U, Zwahlen D, Ross D, Kaser-Hotz B. Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Oncol Biol Phys. 2005;61(5):1510–5.CrossRefPubMed
25.
go back to reference Valentin J. International Commission on Radiological Protection. The 2007 recommendations of the international commission on radiological protection. Ann ICRP ICRP Publ. 2007;2007(103):2–4. Valentin J. International Commission on Radiological Protection. The 2007 recommendations of the international commission on radiological protection. Ann ICRP ICRP Publ. 2007;2007(103):2–4.
26.
go back to reference van Nimwegen FA, Schaapveld M, Cutter DJ, Janus CP, Krol AD, Hauptmann M, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. 2016. van Nimwegen FA, Schaapveld M, Cutter DJ, Janus CP, Krol AD, Hauptmann M, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of Hodgkin lymphoma. 2016.
27.
go back to reference Boldea V, Sarrut D, Clippe S. Lung deformation estimation with non-rigid registration for radiotherapy treatment. In: International conference on medical image computing and computer-assisted intervention. Springer; 2003. p. 770–7. Boldea V, Sarrut D, Clippe S. Lung deformation estimation with non-rigid registration for radiotherapy treatment. In: International conference on medical image computing and computer-assisted intervention. Springer; 2003. p. 770–7.
28.
go back to reference Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76 a. Med Phys. 2006;33(10):3874–900.CrossRefPubMed Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76 a. Med Phys. 2006;33(10):3874–900.CrossRefPubMed
29.
go back to reference Shimizu S, Shirato H, Kagei K, Nishioka T, Bo X, Dosaka-Akita H, et al. Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys. 2000;46(5):1127–33.CrossRefPubMed Shimizu S, Shirato H, Kagei K, Nishioka T, Bo X, Dosaka-Akita H, et al. Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. Int J Radiat Oncol Biol Phys. 2000;46(5):1127–33.CrossRefPubMed
30.
go back to reference Weiss E, Robertson SP, Mukhopadhyay N, Hugo GD. Tumor, lymph node, and lymph node-to-tumor displacements over a radiotherapy series: analysis of interfraction and intrafraction variations using active breathing control (ABC) in lung cancer. Int J Radiat Oncol Biol Phys. 2012;82(4):e639–45.CrossRefPubMed Weiss E, Robertson SP, Mukhopadhyay N, Hugo GD. Tumor, lymph node, and lymph node-to-tumor displacements over a radiotherapy series: analysis of interfraction and intrafraction variations using active breathing control (ABC) in lung cancer. Int J Radiat Oncol Biol Phys. 2012;82(4):e639–45.CrossRefPubMed
31.
go back to reference Unscear. UNSCEAR 2006 Report Vol. I: Effects of Ionizing Radiation. United Nations New York; 2006. Unscear. UNSCEAR 2006 Report Vol. I: Effects of Ionizing Radiation. United Nations New York; 2006.
32.
go back to reference Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.CrossRefPubMed Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.CrossRefPubMed
33.
go back to reference Wambersie A. ICRU report 62, prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). ICRU News. 1999. Wambersie A. ICRU report 62, prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). ICRU News. 1999.
34.
go back to reference García-Hernández T, Romero-Expósito M, Sánchez-Nieto B. Low dose radiation therapy for COVID-19: effective dose and estimation of cancer risk. Radiother Oncol. 2020;153:289–95.CrossRefPubMedPubMedCentral García-Hernández T, Romero-Expósito M, Sánchez-Nieto B. Low dose radiation therapy for COVID-19: effective dose and estimation of cancer risk. Radiother Oncol. 2020;153:289–95.CrossRefPubMedPubMedCentral
35.
go back to reference Calabrese EJ, Dhawan G. How radiotherapy was historically used to treat pneumonia: could it be useful today? Yale J Biol Med. 2013;86(4):555.PubMedPubMedCentral Calabrese EJ, Dhawan G. How radiotherapy was historically used to treat pneumonia: could it be useful today? Yale J Biol Med. 2013;86(4):555.PubMedPubMedCentral
36.
go back to reference Sánchez-Nieto B, Romero-Expósito M, Terrón JA, Sánchez-Doblado F. Uncomplicated and cancer-free control probability (UCFCP): a new integral approach to treatment plan optimization in photon radiation therapy. Phys Med. 2017;1(42):277–84.CrossRef Sánchez-Nieto B, Romero-Expósito M, Terrón JA, Sánchez-Doblado F. Uncomplicated and cancer-free control probability (UCFCP): a new integral approach to treatment plan optimization in photon radiation therapy. Phys Med. 2017;1(42):277–84.CrossRef
37.
go back to reference Schneider U. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys. 2009;36(4):1138–43.CrossRefPubMed Schneider U. Mechanistic model of radiation-induced cancer after fractionated radiotherapy using the linear-quadratic formula. Med Phys. 2009;36(4):1138–43.CrossRefPubMed
38.
go back to reference Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ. A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation. Radiat Environ Biophys. 2009;48(3):275–86.CrossRefPubMedPubMedCentral Shuryak I, Hahnfeldt P, Hlatky L, Sachs RK, Brenner DJ. A new view of radiation-induced cancer: integrating short- and long-term processes. Part II: second cancer risk estimation. Radiat Environ Biophys. 2009;48(3):275–86.CrossRefPubMedPubMedCentral
39.
go back to reference Daşu A, Toma-Daşu I, Olofsson J, Karlsson M. The use of risk estimation models for the induction of secondary cancers following radiotherapy. Acta Oncol Stockh Swed. 2005;44(4):339–47.CrossRef Daşu A, Toma-Daşu I, Olofsson J, Karlsson M. The use of risk estimation models for the induction of secondary cancers following radiotherapy. Acta Oncol Stockh Swed. 2005;44(4):339–47.CrossRef
41.
go back to reference O’Connor MK, Li H, Rhodes DJ, Hruska CB, Clancy CB, Vetter RJ. Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast a. Med Phys. 2010;37(12):6187–98.CrossRefPubMedPubMedCentral O’Connor MK, Li H, Rhodes DJ, Hruska CB, Clancy CB, Vetter RJ. Comparison of radiation exposure and associated radiation-induced cancer risks from mammography and molecular imaging of the breast a. Med Phys. 2010;37(12):6187–98.CrossRefPubMedPubMedCentral
42.
go back to reference Harrison RM. Doses to organs and tissues from concomitant imaging in radiotherapy: a suggested framework for clinical justification. Br J Radiol. 2008;81(972):970–4.CrossRefPubMed Harrison RM. Doses to organs and tissues from concomitant imaging in radiotherapy: a suggested framework for clinical justification. Br J Radiol. 2008;81(972):970–4.CrossRefPubMed
43.
go back to reference Charles MW. ICRP publication 103: recommendations of the ICRP. Oxford University Press; 2008. Charles MW. ICRP publication 103: recommendations of the ICRP. Oxford University Press; 2008.
44.
go back to reference Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, et al. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010;76(3):656–65.CrossRefPubMedPubMedCentral Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, et al. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010;76(3):656–65.CrossRefPubMedPubMedCentral
45.
go back to reference Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.CrossRefPubMedPubMedCentral Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.CrossRefPubMedPubMedCentral
46.
go back to reference Shrestha S, Bates JE, Liu Q, Smith SA, Oeffinger KC, Chow EJ, et al. Radiation therapy related cardiac disease risk in childhood cancer survivors: Updated dosimetry analysis from the Childhood Cancer Survivor Study. Radiother Oncol. 2021;163:199–208. Shrestha S, Bates JE, Liu Q, Smith SA, Oeffinger KC, Chow EJ, et al. Radiation therapy related cardiac disease risk in childhood cancer survivors: Updated dosimetry analysis from the Childhood Cancer Survivor Study. Radiother Oncol. 2021;163:199–208.
47.
go back to reference Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: a review. Phys Medica Eur J Med Phys. 2017;1(36):126–39. Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: a review. Phys Medica Eur J Med Phys. 2017;1(36):126–39.
48.
go back to reference Zhen H, Hrycushko B, Lee H, Timmerman R, Pompoš A, Stojadinovic S, et al. Dosimetric comparison of Acuros XB with collapsed cone convolution/superposition and anisotropic analytic algorithm for stereotactic ablative radiotherapy of thoracic spinal metastases. J Appl Clin Med Phys. 2015;16(4):181–92.CrossRefPubMedPubMedCentral Zhen H, Hrycushko B, Lee H, Timmerman R, Pompoš A, Stojadinovic S, et al. Dosimetric comparison of Acuros XB with collapsed cone convolution/superposition and anisotropic analytic algorithm for stereotactic ablative radiotherapy of thoracic spinal metastases. J Appl Clin Med Phys. 2015;16(4):181–92.CrossRefPubMedPubMedCentral
Metadata
Title
Estimating cancer risks due to whole lungs low dose radiotherapy with different techniques for treating COVID-19 pneumonia
Authors
Amin Banaei
Bijan Hashemi
Mohsen Bakhshandeh
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2022
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-021-01971-7

Other articles of this Issue 1/2022

Radiation Oncology 1/2022 Go to the issue