Skip to main content
Top
Published in: Pediatric Radiology 9/2021

01-08-2021 | Magnetic Resonance Imaging | Review

Pediatric skeletal diffusion-weighted magnetic resonance imaging: part 1 — technical considerations and optimization strategies

Author: Apeksha Chaturvedi

Published in: Pediatric Radiology | Issue 9/2021

Login to get access

Abstract

Diffusion-weighted MRI, or DWI, is a fast, quantitative technique that is easily integrated into a morphological MR acquisition. The ability of DWI to aid in detecting multifocal skeletal pathology and in characterizing tissue cellularity to a level beyond that possible with other techniques makes it a niche component of multiparametric MR imaging of the skeleton. Besides its role in disease detection and establishing cellularity and character of osseous lesions, DWI continues to be examined as a surrogate biomarker for therapeutic response of several childhood bone tumors. There is increasing interest in harnessing DWI as a potential substitute to alternative modes of imaging evaluation that involve radiation or administration of intravenous contrast agent or radiopharmaceuticals, for example in early detection and diagnosis of capital femoral epiphyseal ischemia in cases of Legg–Calvé–Perthes disease, or diagnosis and staging of lymphoma. The expected evolution of skeletal diffusivity characteristics with maturation and the unique disease processes that affect the pediatric skeleton necessitate a pediatric-specific discussion. In this article, the author examines the developmentally appropriate normal appearances, technique, artifacts and pitfalls of pediatric skeletal DWI.
Literature
1.
go back to reference MacKenzie JD, Gonzalez L, Hernandez A et al (2007) Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders. Pediatr Radiol 37:781–788PubMedCrossRef MacKenzie JD, Gonzalez L, Hernandez A et al (2007) Diffusion-weighted and diffusion tensor imaging for pediatric musculoskeletal disorders. Pediatr Radiol 37:781–788PubMedCrossRef
2.
go back to reference Dallaudiere B, Lecouvet F, Vande Berg B et al (2015) Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging 96:327–340PubMedCrossRef Dallaudiere B, Lecouvet F, Vande Berg B et al (2015) Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging 96:327–340PubMedCrossRef
3.
go back to reference Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedCrossRef Le Bihan D, Breton E, Lallemand D et al (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedCrossRef
4.
go back to reference Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skelet Radiol 40:665–681CrossRef Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skelet Radiol 40:665–681CrossRef
5.
go back to reference Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488PubMedCrossRef Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488PubMedCrossRef
7.
go back to reference Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 34:1163–1177PubMedCrossRef Subhawong TK, Jacobs MA, Fayad LM (2014) Diffusion-weighted MR imaging for characterizing musculoskeletal lesions. Radiographics 34:1163–1177PubMedCrossRef
8.
go back to reference Ahlawat S, Khandheria P, Subhawong TK, Fayad LM (2015) Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T. Eur J Radiol 84:1091–1097PubMedCrossRef Ahlawat S, Khandheria P, Subhawong TK, Fayad LM (2015) Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T. Eur J Radiol 84:1091–1097PubMedCrossRef
9.
go back to reference Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedCrossRef Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedCrossRef
10.
go back to reference Moore SG, Dawson KL (1990) Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 175:219–223PubMedCrossRef Moore SG, Dawson KL (1990) Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 175:219–223PubMedCrossRef
11.
go back to reference Sebag GH, Dubois J, Tabet M et al (1993) Pediatric spinal bone marrow: assessment of normal age-related changes in the MRI appearance. Pediatr Radiol 23:515–518PubMedCrossRef Sebag GH, Dubois J, Tabet M et al (1993) Pediatric spinal bone marrow: assessment of normal age-related changes in the MRI appearance. Pediatr Radiol 23:515–518PubMedCrossRef
12.
go back to reference Li Q, Pan SN, Yin YM et al (2011) Normal cranial bone marrow MR imaging pattern with age-related ADC value distribution. Eur J Radiol 80:471–477PubMedCrossRef Li Q, Pan SN, Yin YM et al (2011) Normal cranial bone marrow MR imaging pattern with age-related ADC value distribution. Eur J Radiol 80:471–477PubMedCrossRef
13.
go back to reference Chan BY, Gill KG, Rebsamen SL, Nguyen JC (2016) MR imaging of pediatric bone marrow. Radiographics 36:1911–1930PubMedCrossRef Chan BY, Gill KG, Rebsamen SL, Nguyen JC (2016) MR imaging of pediatric bone marrow. Radiographics 36:1911–1930PubMedCrossRef
14.
go back to reference Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88PubMedCrossRef Ricci C, Cova M, Kang YS et al (1990) Normal age-related patterns of cellular and fatty bone marrow distribution in the axial skeleton: MR imaging study. Radiology 177:83–88PubMedCrossRef
15.
go back to reference Jaramillo D, Laor T, Hoffer FA et al (1991) Epiphyseal marrow in infancy: MR imaging. Radiology 180:809–812PubMedCrossRef Jaramillo D, Laor T, Hoffer FA et al (1991) Epiphyseal marrow in infancy: MR imaging. Radiology 180:809–812PubMedCrossRef
16.
go back to reference Zawin JK, Jaramillo D (1993) Conversion of bone marrow in the humerus, sternum, and clavicle: changes with age on MR images. Radiology 188:159–164PubMedCrossRef Zawin JK, Jaramillo D (1993) Conversion of bone marrow in the humerus, sternum, and clavicle: changes with age on MR images. Radiology 188:159–164PubMedCrossRef
18.
go back to reference Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282PubMed Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282PubMed
19.
go back to reference Jaramillo D, Connolly SA, Vajapeyam S et al (2003) Normal and ischemic epiphysis of the femur: diffusion MR imaging study in piglets. Radiology 227:825–832PubMedCrossRef Jaramillo D, Connolly SA, Vajapeyam S et al (2003) Normal and ischemic epiphysis of the femur: diffusion MR imaging study in piglets. Radiology 227:825–832PubMedCrossRef
20.
go back to reference Ciray I, Lindman H, Astrom GK et al (2003) Effect of granulocyte colony-stimulating factor (G-CSF)-supported chemotherapy on MR imaging of normal red bone marrow in breast cancer patients with focal bone metastases. Acta Radiol 44:472–484PubMedCrossRef Ciray I, Lindman H, Astrom GK et al (2003) Effect of granulocyte colony-stimulating factor (G-CSF)-supported chemotherapy on MR imaging of normal red bone marrow in breast cancer patients with focal bone metastases. Acta Radiol 44:472–484PubMedCrossRef
21.
go back to reference Nonomura Y, Yasumoto M, Yoshimura R et al (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760PubMedCrossRef Nonomura Y, Yasumoto M, Yoshimura R et al (2001) Relationship between bone marrow cellularity and apparent diffusion coefficient. J Magn Reson Imaging 13:757–760PubMedCrossRef
22.
go back to reference Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38PubMedCrossRef Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38PubMedCrossRef
23.
go back to reference Leclair N, Thormer G, Sorge I et al (2016) Whole-body diffusion-weighted imaging in chronic recurrent multifocal osteomyelitis in children. PLoS One 11:e0147523PubMedPubMedCentralCrossRef Leclair N, Thormer G, Sorge I et al (2016) Whole-body diffusion-weighted imaging in chronic recurrent multifocal osteomyelitis in children. PLoS One 11:e0147523PubMedPubMedCentralCrossRef
24.
go back to reference Ahlawat S, Fayad LM, Khan MS et al (2016) Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology 87:S31–S39PubMedPubMedCentralCrossRef Ahlawat S, Fayad LM, Khan MS et al (2016) Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology 87:S31–S39PubMedPubMedCentralCrossRef
25.
go back to reference Grasparil AD 2nd, Gottumukkala RV, Greer MC, Gee MS (2020) Whole-body MRI surveillance of cancer predisposition syndromes: current best practice guidelines for use, performance, and interpretation. AJR Am J Roentgenol 215:1002–1011PubMedCrossRef Grasparil AD 2nd, Gottumukkala RV, Greer MC, Gee MS (2020) Whole-body MRI surveillance of cancer predisposition syndromes: current best practice guidelines for use, performance, and interpretation. AJR Am J Roentgenol 215:1002–1011PubMedCrossRef
26.
go back to reference Albano D, La Grutta L, Grassedonio E et al (2016) Pitfalls in whole body MRI with diffusion weighted imaging performed on patients with lymphoma: what radiologists should know. Magn Reson Imaging 34:922–931PubMedCrossRef Albano D, La Grutta L, Grassedonio E et al (2016) Pitfalls in whole body MRI with diffusion weighted imaging performed on patients with lymphoma: what radiologists should know. Magn Reson Imaging 34:922–931PubMedCrossRef
27.
go back to reference Subhawong TK, Jacobs MA, Fayad LM (2014) Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol 203:560–572PubMedCrossRef Subhawong TK, Jacobs MA, Fayad LM (2014) Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol 203:560–572PubMedCrossRef
28.
30.
go back to reference Del Grande F, Santini F, Herzka DA et al (2014) Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 34:217–233PubMedCrossRef Del Grande F, Santini F, Herzka DA et al (2014) Fat-suppression techniques for 3-T MR imaging of the musculoskeletal system. Radiographics 34:217–233PubMedCrossRef
31.
go back to reference Woodhams R, Ramadan S, Stanwell P et al (2011) Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics 31:1059–1084PubMedCrossRef Woodhams R, Ramadan S, Stanwell P et al (2011) Diffusion-weighted imaging of the breast: principles and clinical applications. Radiographics 31:1059–1084PubMedCrossRef
32.
go back to reference Bitar R, Leung G, Perng R et al (2006) MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 26:513–537PubMedCrossRef Bitar R, Leung G, Perng R et al (2006) MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics 26:513–537PubMedCrossRef
33.
go back to reference Brandao S, Nogueira L, Matos E et al (2015) Fat suppression techniques (STIR vs. SPAIR) on diffusion-weighted imaging of breast lesions at 3.0 T: preliminary experience. Radiol Med 120:705–713PubMedCrossRef Brandao S, Nogueira L, Matos E et al (2015) Fat suppression techniques (STIR vs. SPAIR) on diffusion-weighted imaging of breast lesions at 3.0 T: preliminary experience. Radiol Med 120:705–713PubMedCrossRef
34.
go back to reference Murtz P, Krautmacher C, Traber F et al (2007) Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 tesla. Eur Radiol 17:3031–3037PubMedCrossRef Murtz P, Krautmacher C, Traber F et al (2007) Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 tesla. Eur Radiol 17:3031–3037PubMedCrossRef
35.
go back to reference Hernando D, Karampinos DC, King KF et al (2011) Removal of olefinic fat chemical shift artifact in diffusion MRI. Magn Reson Med 65:692–701PubMedCrossRef Hernando D, Karampinos DC, King KF et al (2011) Removal of olefinic fat chemical shift artifact in diffusion MRI. Magn Reson Med 65:692–701PubMedCrossRef
36.
go back to reference Reeder SB, Pineda AR, Wen Z et al (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54:636–644PubMedCrossRef Reeder SB, Pineda AR, Wen Z et al (2005) Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med 54:636–644PubMedCrossRef
37.
go back to reference Reeder SB, Wen Z, Yu H et al (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51:35–45PubMedCrossRef Reeder SB, Wen Z, Yu H et al (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51:35–45PubMedCrossRef
38.
go back to reference Burakiewicz J, Charles-Edwards GD, Goh V, Schaeffter T (2015) Water-fat separation in diffusion-weighted EPI using an IDEAL approach with image navigator. Magn Reson Med 73:964–972PubMedCrossRef Burakiewicz J, Charles-Edwards GD, Goh V, Schaeffter T (2015) Water-fat separation in diffusion-weighted EPI using an IDEAL approach with image navigator. Magn Reson Med 73:964–972PubMedCrossRef
39.
go back to reference Greer MC (2018) Whole-body magnetic resonance imaging: techniques and non-oncologic indications. Pediatr Radiol 48:1348–1363PubMedCrossRef Greer MC (2018) Whole-body magnetic resonance imaging: techniques and non-oncologic indications. Pediatr Radiol 48:1348–1363PubMedCrossRef
40.
go back to reference Baranska D, Matera K, Podgorski M et al (2019) Feasibility of diffusion-weighted imaging with DWIBS in staging Hodgkin lymphoma in pediatric patients: comparison with PET/CT. MAGMA 32:381–390PubMedCrossRef Baranska D, Matera K, Podgorski M et al (2019) Feasibility of diffusion-weighted imaging with DWIBS in staging Hodgkin lymphoma in pediatric patients: comparison with PET/CT. MAGMA 32:381–390PubMedCrossRef
41.
go back to reference Kwee TC, Takahara T, Ochiai R et al (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 18:1937–1952PubMedPubMedCentralCrossRef Kwee TC, Takahara T, Ochiai R et al (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 18:1937–1952PubMedPubMedCentralCrossRef
42.
go back to reference Ahlawat S, Fayad LM (2015) De novo assessment of pediatric musculoskeletal soft tissue tumors: beyond anatomic imaging. Pediatrics 136:e194–e202PubMedCrossRef Ahlawat S, Fayad LM (2015) De novo assessment of pediatric musculoskeletal soft tissue tumors: beyond anatomic imaging. Pediatrics 136:e194–e202PubMedCrossRef
43.
go back to reference Drape JL (2013) Advances in magnetic resonance imaging of musculoskeletal tumours. Orthop Traumatol Surg Res 99:S115–S123PubMedCrossRef Drape JL (2013) Advances in magnetic resonance imaging of musculoskeletal tumours. Orthop Traumatol Surg Res 99:S115–S123PubMedCrossRef
44.
go back to reference Silvera S, Oppenheim C, Touze E et al (2005) Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2-shine-through and T2-blackout effects. AJNR Am J Neuroradiol 26:236–241PubMedPubMedCentral Silvera S, Oppenheim C, Touze E et al (2005) Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2-shine-through and T2-blackout effects. AJNR Am J Neuroradiol 26:236–241PubMedPubMedCentral
45.
go back to reference Maldjian JA, Listerud J, Moonis G, Siddiqi F (2001) Computing diffusion rates in T2-dark hematomas and areas of low T2 signal. AJNR Am J Neuroradiol 22:112–118PubMedPubMedCentral Maldjian JA, Listerud J, Moonis G, Siddiqi F (2001) Computing diffusion rates in T2-dark hematomas and areas of low T2 signal. AJNR Am J Neuroradiol 22:112–118PubMedPubMedCentral
46.
go back to reference Jones DK, Basser PJ (2004) "Squashing peanuts and smashing pumpkins": how noise distorts diffusion-weighted MR data. Magn Reson Med 52:979–993PubMedCrossRef Jones DK, Basser PJ (2004) "Squashing peanuts and smashing pumpkins": how noise distorts diffusion-weighted MR data. Magn Reson Med 52:979–993PubMedCrossRef
47.
go back to reference Ding Z, Gore JC, Anderson AW (2005) Reduction of noise in diffusion tensor images using anisotropic smoothing. Magn Reson Med 53:485–490PubMedCrossRef Ding Z, Gore JC, Anderson AW (2005) Reduction of noise in diffusion tensor images using anisotropic smoothing. Magn Reson Med 53:485–490PubMedCrossRef
48.
go back to reference Thomas CG, Harshman RA, Menon RS (2002) Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17:1521–1537PubMedCrossRef Thomas CG, Harshman RA, Menon RS (2002) Noise reduction in BOLD-based fMRI using component analysis. Neuroimage 17:1521–1537PubMedCrossRef
49.
go back to reference Wirestam R, Bibic A, Latt J et al (2006) Denoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging. Magn Reson Med 56:1114–1120PubMedCrossRef Wirestam R, Bibic A, Latt J et al (2006) Denoising of complex MRI data by wavelet-domain filtering: application to high-b-value diffusion-weighted imaging. Magn Reson Med 56:1114–1120PubMedCrossRef
50.
go back to reference Moschetta M, Telegrafo M, Rella L et al (2014) Effect of gadolinium injection on diffusion-weighted imaging with background body signal suppression (DWIBS) imaging of breast lesions. Magn Reson Imaging 32:1242–1246PubMedCrossRef Moschetta M, Telegrafo M, Rella L et al (2014) Effect of gadolinium injection on diffusion-weighted imaging with background body signal suppression (DWIBS) imaging of breast lesions. Magn Reson Imaging 32:1242–1246PubMedCrossRef
51.
go back to reference Muhi A, Ichikawa T, Motosugi U et al (2012) Diffusion- and T(2)-weighted MR imaging of the liver: effect of intravenous administration of gadoxetic acid disodium. Magn Reson Med Sci 11:185–191PubMedCrossRef Muhi A, Ichikawa T, Motosugi U et al (2012) Diffusion- and T(2)-weighted MR imaging of the liver: effect of intravenous administration of gadoxetic acid disodium. Magn Reson Med Sci 11:185–191PubMedCrossRef
52.
go back to reference Choi JS, Kim MJ, Choi JY et al (2010) Diffusion-weighted MR imaging of liver on 3.0-tesla system: effect of intravenous administration of gadoxetic acid disodium. Eur Radiol 20:1052–1060PubMedCrossRef Choi JS, Kim MJ, Choi JY et al (2010) Diffusion-weighted MR imaging of liver on 3.0-tesla system: effect of intravenous administration of gadoxetic acid disodium. Eur Radiol 20:1052–1060PubMedCrossRef
53.
go back to reference Colagrande S, Mazzoni LN, Mazzoni E, Pradella S (2013) Effects of gadoxetic acid on quantitative diffusion-weighted imaging of the liver. J Magn Reson Imaging 38:365–370PubMedCrossRef Colagrande S, Mazzoni LN, Mazzoni E, Pradella S (2013) Effects of gadoxetic acid on quantitative diffusion-weighted imaging of the liver. J Magn Reson Imaging 38:365–370PubMedCrossRef
54.
go back to reference Chiu FY, Jao JC, Chen CY et al (2005) Effect of intravenous gadolinium-DTPA on diffusion-weighted magnetic resonance images for evaluation of focal hepatic lesions. J Comput Assist Tomogr 29:176–180PubMedCrossRef Chiu FY, Jao JC, Chen CY et al (2005) Effect of intravenous gadolinium-DTPA on diffusion-weighted magnetic resonance images for evaluation of focal hepatic lesions. J Comput Assist Tomogr 29:176–180PubMedCrossRef
55.
go back to reference Mazaheri Y, Hotker AM, Shukla-Dave A et al (2018) Effect of intravascular contrast agent on diffusion and perfusion fraction coefficients in the peripheral zone and prostate cancer. Magn Reson Imaging 51:120–127PubMedPubMedCentralCrossRef Mazaheri Y, Hotker AM, Shukla-Dave A et al (2018) Effect of intravascular contrast agent on diffusion and perfusion fraction coefficients in the peripheral zone and prostate cancer. Magn Reson Imaging 51:120–127PubMedPubMedCentralCrossRef
56.
go back to reference Cipolla V, Guerrieri D, Bonito G et al (2018) Effects of contrast-enhancement on diffusion weighted imaging and apparent diffusion coefficient measurements in 3-T magnetic resonance imaging of breast lesions. Acta Radiol 59:902–908PubMedCrossRef Cipolla V, Guerrieri D, Bonito G et al (2018) Effects of contrast-enhancement on diffusion weighted imaging and apparent diffusion coefficient measurements in 3-T magnetic resonance imaging of breast lesions. Acta Radiol 59:902–908PubMedCrossRef
57.
go back to reference Zolal A, Sames M, Burian M et al (2012) The effect of a gadolinium-based contrast agent on diffusion tensor imaging. Eur J Radiol 81:1877–1882PubMedCrossRef Zolal A, Sames M, Burian M et al (2012) The effect of a gadolinium-based contrast agent on diffusion tensor imaging. Eur J Radiol 81:1877–1882PubMedCrossRef
58.
go back to reference Wang CL, Chea YW, Boll DT et al (2011) Effect of gadolinium chelate contrast agents on diffusion weighted MR imaging of the liver, spleen, pancreas and kidney at 3 T. Eur J Radiol 80:e1–e7PubMedCrossRef Wang CL, Chea YW, Boll DT et al (2011) Effect of gadolinium chelate contrast agents on diffusion weighted MR imaging of the liver, spleen, pancreas and kidney at 3 T. Eur J Radiol 80:e1–e7PubMedCrossRef
59.
go back to reference Firat AK, Sanli B, Karakas HM, Erdem G (2006) The effect of intravenous gadolinium-DTPA on diffusion-weighted imaging. Neuroradiology 48:465–470PubMedCrossRef Firat AK, Sanli B, Karakas HM, Erdem G (2006) The effect of intravenous gadolinium-DTPA on diffusion-weighted imaging. Neuroradiology 48:465–470PubMedCrossRef
60.
61.
go back to reference Gottumukkala RV, Gee MS, Hampilos PJ, Greer MC (2019) Current and emerging roles of whole-body MRI in evaluation of pediatric cancer patients. Radiographics 39:516–534PubMedCrossRef Gottumukkala RV, Gee MS, Hampilos PJ, Greer MC (2019) Current and emerging roles of whole-body MRI in evaluation of pediatric cancer patients. Radiographics 39:516–534PubMedCrossRef
63.
go back to reference Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228PubMedCrossRef Flood TF, Stence NV, Maloney JA, Mirsky DM (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228PubMedCrossRef
64.
go back to reference Elbeshlawi I, AbdelBaki MS (2018) Safety of gadolinium administration in children. Pediatr Neurol 86:27–32PubMedCrossRef Elbeshlawi I, AbdelBaki MS (2018) Safety of gadolinium administration in children. Pediatr Neurol 86:27–32PubMedCrossRef
66.
go back to reference Kenkel D, Wurnig MC, Filli L et al (2016) Whole-body diffusion imaging applying simultaneous multi-slice excitation. Rofo 188:381–388PubMedCrossRef Kenkel D, Wurnig MC, Filli L et al (2016) Whole-body diffusion imaging applying simultaneous multi-slice excitation. Rofo 188:381–388PubMedCrossRef
67.
go back to reference Guhaniyogi S, Chu ML, Chang HC et al (2016) Motion immune diffusion imaging using augmented MUSE for high-resolution multi-shot EPI. Magn Reson Med 75:639–652PubMedCrossRef Guhaniyogi S, Chu ML, Chang HC et al (2016) Motion immune diffusion imaging using augmented MUSE for high-resolution multi-shot EPI. Magn Reson Med 75:639–652PubMedCrossRef
68.
go back to reference Lim HK, Jee WH, Jung JY et al (2018) Intravoxel incoherent motion diffusion-weighted MR imaging for differentiation of benign and malignant musculoskeletal tumours at 3 T. Br J Radiol 91:20170636PubMedPubMedCentral Lim HK, Jee WH, Jung JY et al (2018) Intravoxel incoherent motion diffusion-weighted MR imaging for differentiation of benign and malignant musculoskeletal tumours at 3 T. Br J Radiol 91:20170636PubMedPubMedCentral
69.
go back to reference Park S, Kwack KS, Chung NS et al (2017) Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions. Skelet Radiol 46:675–683CrossRef Park S, Kwack KS, Chung NS et al (2017) Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging of focal vertebral bone marrow lesions: initial experience of the differentiation of nodular hyperplastic hematopoietic bone marrow from malignant lesions. Skelet Radiol 46:675–683CrossRef
70.
go back to reference Budzik JF, Balbi V, Verclytte S et al (2014) Diffusion tensor imaging in musculoskeletal disorders. Radiographics 34:E56–E72PubMedCrossRef Budzik JF, Balbi V, Verclytte S et al (2014) Diffusion tensor imaging in musculoskeletal disorders. Radiographics 34:E56–E72PubMedCrossRef
71.
go back to reference Jaimes C, Berman JI, Delgado J et al (2014) Diffusion-tensor imaging of the growing ends of long bones: pilot demonstration of columnar structure in the physes and metaphyses of the knee. Radiology 273:491–501PubMedCrossRef Jaimes C, Berman JI, Delgado J et al (2014) Diffusion-tensor imaging of the growing ends of long bones: pilot demonstration of columnar structure in the physes and metaphyses of the knee. Radiology 273:491–501PubMedCrossRef
72.
go back to reference Duong P, Mostoufi-Moab S, Raya JG et al (2020) Imaging biomarkers of the physis: cartilage volume on MRI vs. tract volume and length on diffusion tensor imaging. J Magn Reson Imaging 52:544–551PubMedPubMedCentralCrossRef Duong P, Mostoufi-Moab S, Raya JG et al (2020) Imaging biomarkers of the physis: cartilage volume on MRI vs. tract volume and length on diffusion tensor imaging. J Magn Reson Imaging 52:544–551PubMedPubMedCentralCrossRef
73.
go back to reference Filli L, Wurnig MC, Luechinger R et al (2015) Whole-body intravoxel incoherent motion imaging. Eur Radiol 25:2049–2058PubMedCrossRef Filli L, Wurnig MC, Luechinger R et al (2015) Whole-body intravoxel incoherent motion imaging. Eur Radiol 25:2049–2058PubMedCrossRef
74.
go back to reference Kenkel D, von Spiczak J, Wurnig MC et al (2016) Whole-body diffusion tensor imaging: a feasibility study. J Comput Assist Tomogr 40:183–188PubMedCrossRef Kenkel D, von Spiczak J, Wurnig MC et al (2016) Whole-body diffusion tensor imaging: a feasibility study. J Comput Assist Tomogr 40:183–188PubMedCrossRef
Metadata
Title
Pediatric skeletal diffusion-weighted magnetic resonance imaging: part 1 — technical considerations and optimization strategies
Author
Apeksha Chaturvedi
Publication date
01-08-2021
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 9/2021
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-04975-3

Other articles of this Issue 9/2021

Pediatric Radiology 9/2021 Go to the issue