Skip to main content
Top
Published in: Molecular Imaging and Biology 6/2019

01-12-2019 | Magnetic Resonance Imaging | Research Article

Impact of Tissue Classification in MRI-Guided Attenuation Correction on Whole-Body Patlak PET/MRI

Authors: Mingzan Zhuang, Nicolas A. Karakatsanis, Rudi A. J. O. Dierckx, Habib Zaidi

Published in: Molecular Imaging and Biology | Issue 6/2019

Login to get access

Abstract

Purpose

The aim of this work is to investigate the impact of tissue classification in magnetic resonance imaging (MRI)-guided positron emission tomography (PET) attenuation correction (AC) for whole-body (WB) Patlak net uptake rate constant (Ki) imaging in PET/MRI studies.

Procedures

WB dynamic PET/CT data were acquired for 14 patients. The CT images were utilized to generate attenuation maps (μ-mapCTAC) of continuous attenuation coefficient values (Acoeff). The μ-mapCTAC were then segmented into four tissue classes (μ-map4-classes), namely background (air), lung, fat, and soft tissue, where a predefined Acoeff was assigned to each class. To assess the impact of bone for AC, the bones in the μ-mapCTAC were then assigned a predefined soft tissue Acoeff (0.1 cm−1) to produce an AC μ-map without bones (μ-mapno-bones). Thereafter, both WB static SUV and dynamic PET images were reconstructed using μ-mapCTAC, μ-map4-classes, and μ-mapno-bones (PETCTAC, PET4-classes, and PETno-bones), respectively. WB indirect and direct parametric Ki images were generated using Patlak graphical analysis. Malignant lesions were delineated on PET images with an automatic segmentation method that uses an active contour model (MASAC). Then, the quantitative metrics of the metabolically active tumor volume (MATV), target-to-background (TBR), contrast-to-noise ratio (CNR), peak region-of-interest (ROIpeak), maximum region-of-interest (ROImax), mean region-of-interest (ROImean), and metabolic volume product (MVP) were analyzed. The Wilcoxon test was conducted to assess the difference between PET4-classes and PETno-bones against PETCTAC for all images. The same test was also adopted to compare the differences between SUV, indirect Ki, and direct Ki images for each evaluated AC method.

Results

No significant differences in MATV, TBR, and CNR were observed between PET4-classes and PETCTAC for either SUV or Ki images. PET4-classes significantly overestimated ROIpeak, ROImax, ROImean, as well as MVP scores compared with PETCTAC in both SUV and Ki images. SUV images exhibited the highest median relative errors for PET4-classes with respect to PETCTAC (RE4-classes): 6.91 %, 6.55 %, 5.90 %, and 6.56 % for ROIpeak, ROImax, ROImean, and MVP, respectively. On the contrary, Ki images showed slightly reduced RE4-classes (indirect 5.52 %, 5.95 %, 4.43 %, and 5.70 %, direct 6.61 %, 6.33 %, 5.53 %, and 4.96 %) for ROIpeak, ROImax, ROImean, and MVP, respectively. A higher TBR was observed on indirect and direct Ki images relative to SUV, while direct Ki images demonstrated the highest CNR.

Conclusions

Four-tissue class AC may impact SUV and Ki parameter estimation but only to a limited extent, thereby suggesting that WB Patlak Ki imaging for dynamic WB PET/MRI studies is feasible. Patlak Ki imaging can enhance TBR, thereby facilitating lesion segmentation and quantification. However, patient-specific Acoeff for each tissue class should be used when possible to address the high inter-patient variability of Acoeff distributions.
Appendix
Available only for authorised users
Literature
1.
go back to reference Zaidi H, Becker M (2016) The promise of hybrid PET/MRI: technical advances and clinical applications. IEEE Sign Proc Mag 33:67–85CrossRef Zaidi H, Becker M (2016) The promise of hybrid PET/MRI: technical advances and clinical applications. IEEE Sign Proc Mag 33:67–85CrossRef
2.
go back to reference Cho N, Im SA, Cheon GJ, Park IA, Lee KH, Kim TY, Kim YS, Kwon BR, Lee JM, Suh HY, Suh KJ (2018) Integrated 18F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 45:328–339CrossRef Cho N, Im SA, Cheon GJ, Park IA, Lee KH, Kim TY, Kim YS, Kwon BR, Lee JM, Suh HY, Suh KJ (2018) Integrated 18F-FDG PET/MRI in breast cancer: early prediction of response to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging 45:328–339CrossRef
3.
go back to reference Plecha DM, Faulhaber P (2017) PET/MRI of the breast. Eur J Radiol 94:A26–A34CrossRef Plecha DM, Faulhaber P (2017) PET/MRI of the breast. Eur J Radiol 94:A26–A34CrossRef
4.
go back to reference Xin J, Ma Q, Guo Q, Sun H, Zhang S, Liu C, Zhai W (2016) PET/MRI with diagnostic MR sequences vs PET/CT in the detection of abdominal and pelvic cancer. Eur J Radiol 85:751–759CrossRef Xin J, Ma Q, Guo Q, Sun H, Zhang S, Liu C, Zhai W (2016) PET/MRI with diagnostic MR sequences vs PET/CT in the detection of abdominal and pelvic cancer. Eur J Radiol 85:751–759CrossRef
5.
go back to reference Lee DH, Lee JM, Hur BY, Joo I, Yi NJ, Suh KS, Kang KW, Han JK (2016) Colorectal cancer liver metastases: diagnostic performance and prognostic value of PET/MR imaging. Radiology 280:782–792CrossRef Lee DH, Lee JM, Hur BY, Joo I, Yi NJ, Suh KS, Kang KW, Han JK (2016) Colorectal cancer liver metastases: diagnostic performance and prognostic value of PET/MR imaging. Radiology 280:782–792CrossRef
6.
go back to reference Becker M, Varoquaux AD, Combescure C, Rager O, Pusztaszeri M, Burkhardt K, Delattre BMA, Dulguerov P, Dulguerov N, Katirtzidou E, Caparrotti F, Ratib O, Zaidi H, Becker CD (2018) Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: diagnostic performance of FDG-PET/MRI with diffusion-weighted sequences. Eur Radiol 28:651–663CrossRef Becker M, Varoquaux AD, Combescure C, Rager O, Pusztaszeri M, Burkhardt K, Delattre BMA, Dulguerov P, Dulguerov N, Katirtzidou E, Caparrotti F, Ratib O, Zaidi H, Becker CD (2018) Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: diagnostic performance of FDG-PET/MRI with diffusion-weighted sequences. Eur Radiol 28:651–663CrossRef
7.
go back to reference Mehranian A, Arabi H, Zaidi H (2016) Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys 43:1130–1155CrossRef Mehranian A, Arabi H, Zaidi H (2016) Vision 20/20: magnetic resonance imaging-guided attenuation correction in PET/MRI: challenges, solutions, and opportunities. Med Phys 43:1130–1155CrossRef
8.
go back to reference Martinez-Möller A, Souvatzoglou M, Delso G et al (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526CrossRef Martinez-Möller A, Souvatzoglou M, Delso G et al (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50:520–526CrossRef
9.
go back to reference Kim JH, Lee JS, Song IC, Lee DS (2012) Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med 53:1878–1882CrossRef Kim JH, Lee JS, Song IC, Lee DS (2012) Comparison of segmentation-based attenuation correction methods for PET/MRI: evaluation of bone and liver standardized uptake value with oncologic PET/CT data. J Nucl Med 53:1878–1882CrossRef
10.
go back to reference Arabi H, Zaidi H (2016) Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal 31:1–15CrossRef Arabi H, Zaidi H (2016) Magnetic resonance imaging-guided attenuation correction in whole-body PET/MRI using a sorted atlas approach. Med Image Anal 31:1–15CrossRef
11.
go back to reference Burgos N, Cardoso MJ, Thielemans K, Modat M, Dickson J, Schott JM, Atkinson D, Arridge SR, Hutton BF, Ourselin S (2015) Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers. Eur J Nucl Med Mol Imaging 42:1447–1458CrossRef Burgos N, Cardoso MJ, Thielemans K, Modat M, Dickson J, Schott JM, Atkinson D, Arridge SR, Hutton BF, Ourselin S (2015) Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers. Eur J Nucl Med Mol Imaging 42:1447–1458CrossRef
12.
go back to reference Mehranian A, Zaidi H (2015) Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian mixture models. IEEE Trans Med Imaging 34:1808–1821CrossRef Mehranian A, Zaidi H (2015) Joint estimation of activity and attenuation in whole-body TOF PET/MRI using constrained Gaussian mixture models. IEEE Trans Med Imaging 34:1808–1821CrossRef
13.
go back to reference Rezaei A, Deroose CM, Vahle T, Boada F, Nuyts J (2018) Joint reconstruction of activity and attenuation in time-of-flight PET: a quantitative analysis. J Nucl Med 59:1624–1629CrossRef Rezaei A, Deroose CM, Vahle T, Boada F, Nuyts J (2018) Joint reconstruction of activity and attenuation in time-of-flight PET: a quantitative analysis. J Nucl Med 59:1624–1629CrossRef
14.
go back to reference Keereman V, Van Holen R, Mollet P, Vandenberghe S (2011) The effect of errors in segmented attenuation maps on PET quantification. Med Phys 38:6010–6019CrossRef Keereman V, Van Holen R, Mollet P, Vandenberghe S (2011) The effect of errors in segmented attenuation maps on PET quantification. Med Phys 38:6010–6019CrossRef
15.
go back to reference Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27:152–162CrossRef Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27:152–162CrossRef
16.
go back to reference Arabi H, Rager O, Alem A, Varoquaux A, Becker M, Zaidi H (2015) Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol Imaging Biol 17:1–13CrossRef Arabi H, Rager O, Alem A, Varoquaux A, Becker M, Zaidi H (2015) Clinical assessment of MR-guided 3-class and 4-class attenuation correction in PET/MR. Mol Imaging Biol 17:1–13CrossRef
17.
go back to reference Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol 58:7391–7418CrossRef Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol 58:7391–7418CrossRef
18.
go back to reference Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys Med Biol 58:7419–7445CrossRef Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys Med Biol 58:7419–7445CrossRef
19.
go back to reference Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H (2016) Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol 61:5456–5485CrossRef Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H (2016) Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol 61:5456–5485CrossRef
20.
go back to reference Zaidi H, Karakatsanis N (2018) Towards enhanced PET quantification in clinical oncology. Br J Radiol 91:20170508CrossRef Zaidi H, Karakatsanis N (2018) Towards enhanced PET quantification in clinical oncology. Br J Radiol 91:20170508CrossRef
21.
24.
go back to reference Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, Rahmim A (2015) Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol 60:8643–8673CrossRef Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, Rahmim A (2015) Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol 60:8643–8673CrossRef
25.
go back to reference Carney JP, Townsend DW, Rappoport V, Bendriem B (2006) Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys 33:976–983CrossRef Carney JP, Townsend DW, Rappoport V, Bendriem B (2006) Method for transforming CT images for attenuation correction in PET/CT imaging. Med Phys 33:976–983CrossRef
26.
go back to reference Tsoumpas C, Thielemans K (2009) Direct parametric reconstruction from dynamic projection data in emission tomography including prior estimation of the blood volume component. Nucl Med Commun 30:490–493CrossRef Tsoumpas C, Thielemans K (2009) Direct parametric reconstruction from dynamic projection data in emission tomography including prior estimation of the blood volume component. Nucl Med Commun 30:490–493CrossRef
27.
go back to reference Karakatsanis NA, Mehranian A, Casey ME, Zaidi H (2016) Direct 4D slice-wise whole-body parametric PET image reconstruction for continuous bed motion acquisitions. IEEE Nuclear Science Symposium & Medical Imaging Conference, Strasbourg, France, 29 October – 6 November 2016, pp 1–6 Karakatsanis NA, Mehranian A, Casey ME, Zaidi H (2016) Direct 4D slice-wise whole-body parametric PET image reconstruction for continuous bed motion acquisitions. IEEE Nuclear Science Symposium & Medical Imaging Conference, Strasbourg, France, 29 October – 6 November 2016, pp 1–6
28.
go back to reference Zhuang M, Dierckx RA, Zaidi H (2016) Generic and robust method for automatic segmentation of PET images using an active contour model. Med Phys 43:4483–4494CrossRef Zhuang M, Dierckx RA, Zaidi H (2016) Generic and robust method for automatic segmentation of PET images using an active contour model. Med Phys 43:4483–4494CrossRef
29.
go back to reference Tixier F, Vriens D, Cheze-Le Rest C et al (2016) Comparison of tumor uptake heterogeneity characterization between static and parametric 18F-FDG PET images in non-small cell lung cancer. J Nucl Med 57:1033–1039CrossRef Tixier F, Vriens D, Cheze-Le Rest C et al (2016) Comparison of tumor uptake heterogeneity characterization between static and parametric 18F-FDG PET images in non-small cell lung cancer. J Nucl Med 57:1033–1039CrossRef
30.
go back to reference Karakatsanis N, Lodge M, Fahrni G et al (2016) Simultaneous SUV/Patlak-4D whole-body PET: a multi-parametric 4D imaging framework for routine clinical application [abstract]. J Nucl Med 57:367CrossRef Karakatsanis N, Lodge M, Fahrni G et al (2016) Simultaneous SUV/Patlak-4D whole-body PET: a multi-parametric 4D imaging framework for routine clinical application [abstract]. J Nucl Med 57:367CrossRef
31.
go back to reference Ouyang J, Chun SY, Petibon Y, Bonab AA, Alpert N, El Fakhri G (2013) Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR. IEEE Trans Nucl Sci 60:3373–3382CrossRef Ouyang J, Chun SY, Petibon Y, Bonab AA, Alpert N, El Fakhri G (2013) Bias atlases for segmentation-based PET attenuation correction using PET-CT and MR. IEEE Trans Nucl Sci 60:3373–3382CrossRef
32.
go back to reference Karakatsanis N, Tsoumpas C, Zaidi H (2015) The impact of MR-guided PET attenuation correction on whole-body dynamic and parametric PET imaging [abstract]. J Nucl Med 56:1796 Karakatsanis N, Tsoumpas C, Zaidi H (2015) The impact of MR-guided PET attenuation correction on whole-body dynamic and parametric PET imaging [abstract]. J Nucl Med 56:1796
33.
go back to reference Robinson PJ, Kreel L (1979) Pulmonary tissue attenuation with computed tomography: comparison of inspiration and expiration scans. J Comput Assist Tomogr 3:740–748CrossRef Robinson PJ, Kreel L (1979) Pulmonary tissue attenuation with computed tomography: comparison of inspiration and expiration scans. J Comput Assist Tomogr 3:740–748CrossRef
34.
go back to reference Owrangi AM, Greer PB, Glide-Hurst CK (2018) MRI-only treatment planning: benefits and challenges. Phys Med Biol 63:05TR01CrossRef Owrangi AM, Greer PB, Glide-Hurst CK (2018) MRI-only treatment planning: benefits and challenges. Phys Med Biol 63:05TR01CrossRef
35.
go back to reference Arabi H, Dowling JA, Burgos N, Han X, Greer PB, Koutsouvelis N, Zaidi H (2018) Comparative study of algorithms for synthetic CT generation from MRI: consequences for MRI-guided radiation planning in the pelvic region. Med Phys 45:5218–5233CrossRef Arabi H, Dowling JA, Burgos N, Han X, Greer PB, Koutsouvelis N, Zaidi H (2018) Comparative study of algorithms for synthetic CT generation from MRI: consequences for MRI-guided radiation planning in the pelvic region. Med Phys 45:5218–5233CrossRef
36.
go back to reference Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, Perkuhn M, Niendorf T, Schäfer WM, Brockmann H, Krohn T, Buhl A, Günther RW, Mottaghy FM, Krombach GA (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38:138–152CrossRef Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, Perkuhn M, Niendorf T, Schäfer WM, Brockmann H, Krohn T, Buhl A, Günther RW, Mottaghy FM, Krombach GA (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38:138–152CrossRef
37.
go back to reference Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53:796–804CrossRef Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53:796–804CrossRef
38.
go back to reference Sekine T, Ter Voert EE, Warnock G et al (2016) Clinical evaluation of ZTE attenuation correction for brain FDG-PET/MR imaging-comparison with atlas attenuation correction. J Nucl Med 57:1927–1932CrossRef Sekine T, Ter Voert EE, Warnock G et al (2016) Clinical evaluation of ZTE attenuation correction for brain FDG-PET/MR imaging-comparison with atlas attenuation correction. J Nucl Med 57:1927–1932CrossRef
39.
go back to reference Avigaëlle S, Franck L, Pacôme F et al (2016) For avid glucose tumors, the SUV peak is the most reliable parameter for [18F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res 6:1–6CrossRef Avigaëlle S, Franck L, Pacôme F et al (2016) For avid glucose tumors, the SUV peak is the most reliable parameter for [18F]FDG-PET/CT quantification, regardless of acquisition time. EJNMMI Res 6:1–6CrossRef
Metadata
Title
Impact of Tissue Classification in MRI-Guided Attenuation Correction on Whole-Body Patlak PET/MRI
Authors
Mingzan Zhuang
Nicolas A. Karakatsanis
Rudi A. J. O. Dierckx
Habib Zaidi
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 6/2019
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-019-01338-1

Other articles of this Issue 6/2019

Molecular Imaging and Biology 6/2019 Go to the issue