Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2019

01-02-2019 | Review Article

Dynamic whole-body PET imaging: principles, potentials and applications

Authors: Arman Rahmim, Martin A. Lodge, Nicolas A. Karakatsanis, Vladimir Y. Panin, Yun Zhou, Alan McMillan, Steve Cho, Habib Zaidi, Michael E. Casey, Richard L. Wahl

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 2/2019

Login to get access

Abstract

Purpose

In this article, we discuss dynamic whole-body (DWB) positron emission tomography (PET) as an imaging tool with significant clinical potential, in relation to conventional standard uptake value (SUV) imaging.

Background

DWB PET involves dynamic data acquisition over an extended axial range, capturing tracer kinetic information that is not available with conventional static acquisition protocols. The method can be performed within reasonable clinical imaging times, and enables generation of multiple types of PET images with complementary information in a single imaging session. Importantly, DWB PET can be used to produce multi-parametric images of (i) Patlak slope (influx rate) and (ii) intercept (referred to sometimes as “distribution volume”), while also providing (iii) a conventional ‘SUV-equivalent’ image for certain protocols.

Results

We provide an overview of ongoing efforts (primarily focused on FDG PET) and discuss potential clinically relevant applications.

Conclusion

Overall, the framework of DWB imaging [applicable to both PET/CT(computed tomography) and PET/MRI (magnetic resonance imaging)] generates quantitative measures that may add significant value to conventional SUV image-derived measures, with limited pitfalls as we also discuss in this work.
Literature
1.
go back to reference Wahl RL, Buchanan JW. Principles and practice of positron emission tomography. Philadelphia, PA: Lippincott Williams & Wilkins; 2002. Wahl RL, Buchanan JW. Principles and practice of positron emission tomography. Philadelphia, PA: Lippincott Williams & Wilkins; 2002.
2.
go back to reference Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19:61–77.PubMed Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19:61–77.PubMed
3.
go back to reference Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50. Zasadny KR, Wahl RL. Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variations with body weight and a method for correction. Radiology. 1993;189:847–50.
4.
go back to reference Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. Anatometabolic tumor imaging — fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med. 1993;34:1190–7.PubMed Wahl RL, Quint LE, Cieslak RD, Aisen AM, Koeppe RA, Meyer CR. Anatometabolic tumor imaging — fusion of FDG PET with CT or MRI to localize foci of increased activity. J Nucl Med. 1993;34:1190–7.PubMed
5.
go back to reference Wahl RL, Quint LE, Orringer M, Meyer CH. Staging non-small-cell lung cancer in the mediastinum — comparison of FDG-PET, CT and hybrid anatometabolic fusion images with pathology. Radiology. 1992;185:324. Wahl RL, Quint LE, Orringer M, Meyer CH. Staging non-small-cell lung cancer in the mediastinum — comparison of FDG-PET, CT and hybrid anatometabolic fusion images with pathology. Radiology. 1992;185:324.
8.
go back to reference Wehrl HF, Sauter AW, Judenhofer MS, Pichler BJ. Combined PET/MR imaging — technology and applications. Technol Cancer Res Treat. 2010;9:5–20.PubMed Wehrl HF, Sauter AW, Judenhofer MS, Pichler BJ. Combined PET/MR imaging — technology and applications. Technol Cancer Res Treat. 2010;9:5–20.PubMed
9.
go back to reference Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.PubMed Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med. 1994;35:1308–12.PubMed
10.
go back to reference Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed Keyes JW Jr. SUV: standard uptake or silly useless value? J Nucl Med. 1995;36:1836–9.PubMed
11.
12.
go back to reference Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010;195:310–20.PubMed Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. AJR Am J Roentgenol. 2010;195:310–20.PubMed
13.
go back to reference Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med Mol Imaging. 1996;23:1409–15. Strauss LG. Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med Mol Imaging. 1996;23:1409–15.
14.
go back to reference Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med Mol Imaging. 1999;26:22–30. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA. A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med Mol Imaging. 1999;26:22–30.
15.
go back to reference Freedman TNM, Sundaram KS, Kurdziel K, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging. 2003;30:8. Freedman TNM, Sundaram KS, Kurdziel K, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging. 2003;30:8.
16.
17.
go back to reference Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL. Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology. 1999;211:249–56.PubMed Sugawara Y, Zasadny KR, Grossman HB, Francis IR, Clarke MF, Wahl RL. Germ cell tumor: differentiation of viable tumor, mature teratoma, and necrotic tissue with FDG PET and kinetic modeling. Radiology. 1999;211:249–56.PubMed
18.
go back to reference Zasadny KR, Wahl RL. Enhanced FDG-PET tumor imaging with correlation-coefficient filtered influx-constant images. J Nucl Med. 1996;37:371–4.PubMed Zasadny KR, Wahl RL. Enhanced FDG-PET tumor imaging with correlation-coefficient filtered influx-constant images. J Nucl Med. 1996;37:371–4.PubMed
20.
go back to reference Freeman LM, Johnson PM. Clinical radionuclide imaging. 3rd Ed. Orlando FL, Grune & Stratton Inc.; 1984. Freeman LM, Johnson PM. Clinical radionuclide imaging. 3rd Ed. Orlando FL, Grune & Stratton Inc.; 1984.
21.
go back to reference Weissman BN. Imaging of arthritis and metabolic bone disease. Philadelphia PA: Elsevier Health Sciences; 2009. Weissman BN. Imaging of arthritis and metabolic bone disease. Philadelphia PA: Elsevier Health Sciences; 2009.
22.
go back to reference Gullberg GT, Reutter BW, Sitek A, Maltz JS, Budinger TF. Dynamic single photon emission computed tomography—basic principles and cardiac applications. Phys Med Biol. 2010;55:R111.PubMedPubMedCentral Gullberg GT, Reutter BW, Sitek A, Maltz JS, Budinger TF. Dynamic single photon emission computed tomography—basic principles and cardiac applications. Phys Med Biol. 2010;55:R111.PubMedPubMedCentral
23.
go back to reference Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53:1897.PubMed Imbert L, Poussier S, Franken PR, Songy B, Verger A, Morel O, et al. Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med. 2012;53:1897.PubMed
24.
go back to reference Nesterov SV, Deshayes E, Sciagrà R, Settimo L, Declerck JM, Pan X-B, et al. Quantification of myocardial blood flow in absolute terms using (82)rb PET imaging: the Ruby-10 Study. JACC Cardiovasc Imaging. 2014;7:1119–27.PubMedPubMedCentral Nesterov SV, Deshayes E, Sciagrà R, Settimo L, Declerck JM, Pan X-B, et al. Quantification of myocardial blood flow in absolute terms using (82)rb PET imaging: the Ruby-10 Study. JACC Cardiovasc Imaging. 2014;7:1119–27.PubMedPubMedCentral
26.
go back to reference Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for the analysis of pet data in oncology: review of current methods and trends for the future. Mol Imaging Biol 2012;14(2):131–46.PubMed Tomasi G, Turkheimer F, Aboagye E. Importance of quantification for the analysis of pet data in oncology: review of current methods and trends for the future. Mol Imaging Biol 2012;14(2):131–46.PubMed
27.
go back to reference Lodge MA, Badawi RD, Gilbert R, Dibos PE, Line BR. Comparison of 2-dimensional and 3-dimensional acquisition for (18)F-FDG PET oncology studies performed on an LSO-based scanner. J Nucl Med. 2006;47:23–31.PubMed Lodge MA, Badawi RD, Gilbert R, Dibos PE, Line BR. Comparison of 2-dimensional and 3-dimensional acquisition for (18)F-FDG PET oncology studies performed on an LSO-based scanner. J Nucl Med. 2006;47:23–31.PubMed
29.
go back to reference Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M, Joensuu H. Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med. 1992;33:691–5.PubMed Leskinen-Kallio S, Nagren K, Lehikoinen P, Ruotsalainen U, Teras M, Joensuu H. Carbon-11-methionine and PET is an effective method to image head and neck cancer. J Nucl Med. 1992;33:691–5.PubMed
30.
go back to reference Liu P, Huang G, Dong S, Wan L. Kinetic analysis of experimental rabbit tumour and inflammation model with 18f-FDG PET/CT. Nuklearmedizin. 2009;48:153–8.PubMed Liu P, Huang G, Dong S, Wan L. Kinetic analysis of experimental rabbit tumour and inflammation model with 18f-FDG PET/CT. Nuklearmedizin. 2009;48:153–8.PubMed
31.
go back to reference Sundaram SK, Freedman NM, Carrasquillo JA, Carson JM, Whatley M, Libutti SK, et al. Simplified kinetic analysis of tumor 18f-FDG uptake: a dynamic approach. J Nucl Med. 2004;45:1328–33.PubMed Sundaram SK, Freedman NM, Carrasquillo JA, Carson JM, Whatley M, Libutti SK, et al. Simplified kinetic analysis of tumor 18f-FDG uptake: a dynamic approach. J Nucl Med. 2004;45:1328–33.PubMed
32.
go back to reference Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A. Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Euro J Nucl Med Mol Imaging. 2007;34:868–77. Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A. Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Euro J Nucl Med Mol Imaging. 2007;34:868–77.
33.
go back to reference Song SL, Deng C, Wen LF, Liu JJ, Wang H, Feng D, et al. 18f-FDG PET/CT-related metabolic parameters and their value in early prediction of chemotherapy response in a VX2 tumor model. Nucl Med Biol. 2010;37:327–33.PubMed Song SL, Deng C, Wen LF, Liu JJ, Wang H, Feng D, et al. 18f-FDG PET/CT-related metabolic parameters and their value in early prediction of chemotherapy response in a VX2 tumor model. Nucl Med Biol. 2010;37:327–33.PubMed
34.
go back to reference Okazumi S, Dimitrakopoulou-Strauss A, Schwarzbach MH, Strauss LG. Quantitative, dynamic 18f-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis. Hellj Nucl Med. 2009;12:223–8. Okazumi S, Dimitrakopoulou-Strauss A, Schwarzbach MH, Strauss LG. Quantitative, dynamic 18f-FDG-PET for the evaluation of soft tissue sarcomas: relation to differential diagnosis, tumor grading and prediction of prognosis. Hellj Nucl Med. 2009;12:223–8.
35.
go back to reference Krak NC, Van Der Hoeven JJ, Hoekstra OS, Twisk JW, Van Der Wall E, Lammertsma AA. Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Euro J Nucl Med Mol Imaging. 2003;30:674–81. Krak NC, Van Der Hoeven JJ, Hoekstra OS, Twisk JW, Van Der Wall E, Lammertsma AA. Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Euro J Nucl Med Mol Imaging. 2003;30:674–81.
36.
go back to reference Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–55.PubMed Graham MM, Peterson LM, Hayward RM. Comparison of simplified quantitative analyses of FDG uptake. Nucl Med Biol. 2000;27:647–55.PubMed
37.
go back to reference Freedman NM, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Euro J Nucl Med Mol Imaging. 2003;30:46–53. Freedman NM, Sundaram SK, Kurdziel K, Carrasquillo JA, Whatley M, Carson JM, et al. Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Euro J Nucl Med Mol Imaging. 2003;30:46–53.
38.
go back to reference Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med. 2002;43:510–8.PubMed Dimitrakopoulou-Strauss A, Strauss LG, Heichel T, Wu H, Burger C, Bernd L, et al. The role of quantitative (18)F-FDG PET studies for the differentiation of malignant and benign bone lesions. J Nucl Med. 2002;43:510–8.PubMed
39.
go back to reference Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [F-18]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer. 1999;35:1773–82.PubMed Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [F-18]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer. 1999;35:1773–82.PubMed
40.
go back to reference Weber WA, Ziegler SI, Thodtmann R, Hanauske A-R, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med. 1999;40:1771–7.PubMed Weber WA, Ziegler SI, Thodtmann R, Hanauske A-R, Schwaiger M. Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med. 1999;40:1771–7.PubMed
41.
go back to reference Dahlbom M, Hoffman EJ, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, et al. Whole-body positron emission tomography: part I. Methods and performance characteristics. J Nucl Med. 1992;33:1191–1199. Dahlbom M, Hoffman EJ, Hoh CK, Schiepers C, Rosenqvist G, Hawkins RA, et al. Whole-body positron emission tomography: part I. Methods and performance characteristics. J Nucl Med. 1992;33:1191–1199.
42.
go back to reference Hustinx R, Bènard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Sem Nucl Med. 2002;32:35–46. Hustinx R, Bènard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Sem Nucl Med. 2002;32:35–46.
43.
go back to reference Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med Mol Imaging. 2001;28:696–703. Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med Mol Imaging. 2001;28:696–703.
44.
go back to reference Townsend DW. Positron emission tomography/computed tomography. Sem Nucl Med. 2008;38:152–66. Townsend DW. Positron emission tomography/computed tomography. Sem Nucl Med. 2008;38:152–66.
49.
go back to reference Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia, PA: Elsevier Saunders; 2012. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 4th ed. Philadelphia, PA: Elsevier Saunders; 2012.
50.
go back to reference Chandra R, Rahmim A. Nuclear medicine physics: the basics. 8th ed. Philadelphia, PA: Wolters Kluwer; 2017. Chandra R, Rahmim A. Nuclear medicine physics: the basics. 8th ed. Philadelphia, PA: Wolters Kluwer; 2017.
51.
go back to reference Armstrong IS, James JM, Williams HA, Kelly MD, Matthews JC. The assessment of time-of-flight on image quality and quantification with reduced administered activity and scan times in 18f-FDG PET. Nucl Med Commun. 2015;36:728–37.PubMed Armstrong IS, James JM, Williams HA, Kelly MD, Matthews JC. The assessment of time-of-flight on image quality and quantification with reduced administered activity and scan times in 18f-FDG PET. Nucl Med Commun. 2015;36:728–37.PubMed
52.
go back to reference Kadrmas DJ, Oktay MB, Casey ME, Hamill JJ. Effect of scan time on oncologic lesion detection in whole-body PET. IEEE Trans Nucl Sci. 2012;59:1940–7.PubMedPubMedCentral Kadrmas DJ, Oktay MB, Casey ME, Hamill JJ. Effect of scan time on oncologic lesion detection in whole-body PET. IEEE Trans Nucl Sci. 2012;59:1940–7.PubMedPubMedCentral
54.
go back to reference Yang DC, Ratani RS, Mittal PK, Chua RS, Patel SM. Radionuclide three-phase whole-body bone imaging. Clin Nucl Med. 2002;27:419–26.PubMed Yang DC, Ratani RS, Mittal PK, Chua RS, Patel SM. Radionuclide three-phase whole-body bone imaging. Clin Nucl Med. 2002;27:419–26.PubMed
55.
go back to reference Ho-Shon K, Feng D, Hawkins R, Meikle S, Fulham M, Li X. Optimized sampling and parameter estimation for quantification in whole body PET. IEEE Trans Biomed Eng. 1996;43:1021–8.PubMed Ho-Shon K, Feng D, Hawkins R, Meikle S, Fulham M, Li X. Optimized sampling and parameter estimation for quantification in whole body PET. IEEE Trans Biomed Eng. 1996;43:1021–8.PubMed
56.
go back to reference Hoh CK, Levin CS, Vera DR. Whole body Patlak imaging. J Nucl Med. 2003;44:61. Hoh CK, Levin CS, Vera DR. Whole body Patlak imaging. J Nucl Med. 2003;44:61.
57.
go back to reference Ng JM, Azuma K, Kelley C, Pencek R, Radikova Z, Laymon C, et al. Pet imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am J Physiol-Endocrinol Metab. 2012;303:E1134–E41.PubMedPubMedCentral Ng JM, Azuma K, Kelley C, Pencek R, Radikova Z, Laymon C, et al. Pet imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. Am J Physiol-Endocrinol Metab. 2012;303:E1134–E41.PubMedPubMedCentral
58.
go back to reference Karakatsanis N, Lodge MA, Zhou Y, Mhlange J, Chaudhry MA, Tahari AK, et al. Dynamic multi-bed FDG PET imaging: feasibility and optimization. IEEE Nucl Sci Symp Conf Theatr Rec. 2011:3863–70. Karakatsanis N, Lodge MA, Zhou Y, Mhlange J, Chaudhry MA, Tahari AK, et al. Dynamic multi-bed FDG PET imaging: feasibility and optimization. IEEE Nucl Sci Symp Conf Theatr Rec. 2011:3863–70.
59.
go back to reference Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole body PET parametric imaging: I. concept, acquisition protocol optimization and clinical application. Phys Med Bio. 2013;58:7391–418. Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole body PET parametric imaging: I. concept, acquisition protocol optimization and clinical application. Phys Med Bio. 2013;58:7391–418.
60.
go back to reference Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A. Dynamic whole body PETparametric imaging: II. task-oriented statistical estimation. Phys Med Bio. 2013;58:7419–45. Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A. Dynamic whole body PETparametric imaging: II. task-oriented statistical estimation. Phys Med Bio. 2013;58:7419–45.
61.
go back to reference Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.PubMed Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.PubMed
62.
go back to reference Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Gener J Cereb Blood Flow Metab. 1985;5:584–90. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Gener J Cereb Blood Flow Metab. 1985;5:584–90.
63.
go back to reference Gjedde A. High- and low-affinity transport of D-glucose from blood to brain. J Neurochem. 1981;36:1463–71.PubMed Gjedde A. High- and low-affinity transport of D-glucose from blood to brain. J Neurochem. 1981;36:1463–71.PubMed
64.
go back to reference Gjedde A. Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res Rev. 1982;4:237–74. Gjedde A. Calculation of cerebral glucose phosphorylation from brain uptake of glucose analogs in vivo: a re-examination. Brain Res Rev. 1982;4:237–74.
65.
go back to reference Rutland M. A single injection technique for subtraction of blood background in 131i-hippuran renograms. Br J Radiol. 1979;52:134–7.PubMed Rutland M. A single injection technique for subtraction of blood background in 131i-hippuran renograms. Br J Radiol. 1979;52:134–7.PubMed
67.
go back to reference Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, et al. In vivo validation Of 3 ' Deoxy-3 '-[F-18]fluorothymidine ([F-18]FLT) as a proliferation imaging tracer in humans: correlation of [F-18]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res. 2002;8:3315–23.PubMed Vesselle H, Grierson J, Muzi M, Pugsley JM, Schmidt RA, Rabinowitz P, et al. In vivo validation Of 3 ' Deoxy-3 '-[F-18]fluorothymidine ([F-18]FLT) as a proliferation imaging tracer in humans: correlation of [F-18]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res. 2002;8:3315–23.PubMed
69.
71.
go back to reference Brenner W, Vernon C, Muzi M, Mankoff DA, Link JM, Conrad EU, et al. Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med. 2004;45:1493–500.PubMed Brenner W, Vernon C, Muzi M, Mankoff DA, Link JM, Conrad EU, et al. Comparison of different quantitative approaches to 18F-fluoride PET scans. J Nucl Med. 2004;45:1493–500.PubMed
72.
go back to reference Siddique M, Frost ML, Blake GM, Moore AE, Al-Beyatti Y, Marsden PK, et al. The precision and sensitivity of 18F-fluoride PET for measuring regional bone metabolism: a comparison of quantification methods. J Nucl Med. 2011;52:1748–55.PubMed Siddique M, Frost ML, Blake GM, Moore AE, Al-Beyatti Y, Marsden PK, et al. The precision and sensitivity of 18F-fluoride PET for measuring regional bone metabolism: a comparison of quantification methods. J Nucl Med. 2011;52:1748–55.PubMed
73.
go back to reference Lubberink M, Sandstrom M, Sörensen J, Granberg D, Garske-Román U, Lundqvist H, et al. Tracer kinetic analysis of 68ga-DOTATATE and 68ga-DOTATOC in neuroendocrine tumours. J Nucl Med. 2013;54:200. Lubberink M, Sandstrom M, Sörensen J, Granberg D, Garske-Román U, Lundqvist H, et al. Tracer kinetic analysis of 68ga-DOTATATE and 68ga-DOTATOC in neuroendocrine tumours. J Nucl Med. 2013;54:200.
74.
go back to reference Velikyan I, Sundin A, Sörensen J, Lubberink M, Sandström M, Garske-Román U, et al. Quantitative and qualitative intrapatient comparison of 68ga-DOTATOC and 68ga-68ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med. 2014;55:204–10.PubMed Velikyan I, Sundin A, Sörensen J, Lubberink M, Sandström M, Garske-Román U, et al. Quantitative and qualitative intrapatient comparison of 68ga-DOTATOC and 68ga-68ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med. 2014;55:204–10.PubMed
75.
go back to reference Menda Y, Ponto LLB, Schultz MK, Zamba GK, Watkins GL, Bushnell DL, et al. Repeatability of 68ga-DOTATOC PET imaging in neuroendocrine tumors. Pancreas. 2013;42:937.PubMedPubMedCentral Menda Y, Ponto LLB, Schultz MK, Zamba GK, Watkins GL, Bushnell DL, et al. Repeatability of 68ga-DOTATOC PET imaging in neuroendocrine tumors. Pancreas. 2013;42:937.PubMedPubMedCentral
76.
go back to reference Bentourkia M, Zaidi H. Tracer kinetic modeling in PET. Pet Clinics. 2007;2:267–77.PubMed Bentourkia M, Zaidi H. Tracer kinetic modeling in PET. Pet Clinics. 2007;2:267–77.PubMed
77.
go back to reference Carson RE. Tracer kinetic modeling in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice. London: Springer; 2005. pp 127–59. Carson RE. Tracer kinetic modeling in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice. London: Springer; 2005. pp 127–59.
78.
go back to reference Zhu W, Li Q, Bai B, Conti PS, Leahy RM. Patlak image estimation from dual time-point list-mode pet data. IEEE T Med Imaging. 2014;33:913–24. Zhu W, Li Q, Bai B, Conti PS, Leahy RM. Patlak image estimation from dual time-point list-mode pet data. IEEE T Med Imaging. 2014;33:913–24.
79.
go back to reference Gjedde A. Positron emission tomography of brain glucose metabolism with [18F] fluorodeoxyglucose in humans. In: Hirrlinger J, Waagepetersen HS (eds) Brain energy metabolism. London: Springer; 2014. pp 341–64. Gjedde A. Positron emission tomography of brain glucose metabolism with [18F] fluorodeoxyglucose in humans. In: Hirrlinger J, Waagepetersen HS (eds) Brain energy metabolism. London: Springer; 2014. pp 341–64.
80.
go back to reference Karakatsanis N, Lodge M, Zhou Y, Casey M, Wahl R, Subramaniam R, et al. Novel multi-parametric SUV/Patlak FDG-PET whole-body imaging framework for routine application to clinical oncology. J Nucl Med. 2015;56:625. Karakatsanis N, Lodge M, Zhou Y, Casey M, Wahl R, Subramaniam R, et al. Novel multi-parametric SUV/Patlak FDG-PET whole-body imaging framework for routine application to clinical oncology. J Nucl Med. 2015;56:625.
81.
go back to reference Zhou Y, Lodge M, Crandall J, Karakatsanis N, Casey M, Ashrafinia S, et al. Evaluation of whole-body parametric PET/CT image generation from high resolution high sensitivity mCT scanner. J Nucl Med. 2015;56:372. Zhou Y, Lodge M, Crandall J, Karakatsanis N, Casey M, Ashrafinia S, et al. Evaluation of whole-body parametric PET/CT image generation from high resolution high sensitivity mCT scanner. J Nucl Med. 2015;56:372.
82.
go back to reference Karakatsanis NA, Casey ME, Knesaurek K, Fayad ZA, Kostakoglu L. SUV/Patlak-4D whole-body PET/CT dynamic and parametric imaging: clinical demonstration and validation of SUV synthesis from dynamic passes. IEEE NSS/MIC. Atlanta, Ga: IEEE; 2017. Karakatsanis NA, Casey ME, Knesaurek K, Fayad ZA, Kostakoglu L. SUV/Patlak-4D whole-body PET/CT dynamic and parametric imaging: clinical demonstration and validation of SUV synthesis from dynamic passes. IEEE NSS/MIC. Atlanta, Ga: IEEE; 2017.
83.
84.
go back to reference Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. 2018;11:94–107.PubMed Dweck MR, Abgral R, Trivieri MG, Robson PM, Karakatsanis N, Mani V, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. 2018;11:94–107.PubMed
86.
go back to reference Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med Mol Imaging. 1999;26:1345–8. Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med Mol Imaging. 1999;26:1345–8.
87.
go back to reference Sanz-Viedma S, Torigian DA, Parsons M, Basu S, Alavi A. Potential clinical utility of dual time point FDG-PET for distinguishing benign from malignant lesions: implications for oncological imaging. Rev Esp Med Nucl Imagen Mol. 2009;28:159–66. Sanz-Viedma S, Torigian DA, Parsons M, Basu S, Alavi A. Potential clinical utility of dual time point FDG-PET for distinguishing benign from malignant lesions: implications for oncological imaging. Rev Esp Med Nucl Imagen Mol. 2009;28:159–66.
88.
go back to reference Gambhir SS, Schwaiger M, Huang S-C, Krivokapich J, Schelbert HR, Nienaber CA, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med. 1989;30:359–66.PubMed Gambhir SS, Schwaiger M, Huang S-C, Krivokapich J, Schelbert HR, Nienaber CA, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med. 1989;30:359–66.PubMed
89.
go back to reference Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab. 1998;18:716–23.PubMed Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab. 1998;18:716–23.PubMed
90.
go back to reference Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, et al. Factor analysis for extraction of blood time–activity curves in dynamic FDG-PET studies. J Nucl Med. 1995;36:1714–22.PubMed Wu HM, Hoh CK, Choi Y, Schelbert HR, Hawkins RA, Phelps ME, et al. Factor analysis for extraction of blood time–activity curves in dynamic FDG-PET studies. J Nucl Med. 1995;36:1714–22.PubMed
91.
go back to reference Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.PubMed Bengel FM, Higuchi T, Javadi MS, Lautamaki R. Cardiac positron emission tomography. J Am Coll Cardiol. 2009;54:1–15.PubMed
92.
go back to reference Lodge M, Bengel F. Methodology for quantifying absolute myocardial perfusion with PET and SPECT. Curr Cardiol Rep. 2007;9:121–8.PubMed Lodge M, Bengel F. Methodology for quantifying absolute myocardial perfusion with PET and SPECT. Curr Cardiol Rep. 2007;9:121–8.PubMed
93.
go back to reference Hove JD, Iida H, Kofoed KF, Freiberg J, Holm S, Kelbaek H. Left atrial versus left ventricular input function for quantification of the myocardial blood flow with nitrogen-13 ammonia and positron emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:71–6.PubMed Hove JD, Iida H, Kofoed KF, Freiberg J, Holm S, Kelbaek H. Left atrial versus left ventricular input function for quantification of the myocardial blood flow with nitrogen-13 ammonia and positron emission tomography. Eur J Nucl Med Mol Imaging. 2004;31:71–6.PubMed
94.
go back to reference Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A, Jan S, et al. Comparison of eight methods for the estimation of the image-derived input function in dynamic [18F]-FDG PET human brain studies. J Cereb Blood Flow Metab. 2009;29:1825–35.PubMed Zanotti-Fregonara P, Fadaili EM, Maroy R, Comtat C, Souloumiac A, Jan S, et al. Comparison of eight methods for the estimation of the image-derived input function in dynamic [18F]-FDG PET human brain studies. J Cereb Blood Flow Metab. 2009;29:1825–35.PubMed
95.
go back to reference De Geus-Oei L-F, Visser EP, Krabbe PF, Van Hoorn BA, Koenders EB, Willemsen AT, et al. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring [18F]-FDG PET studies. J Nucl Med. 2006;47:945–9.PubMed De Geus-Oei L-F, Visser EP, Krabbe PF, Van Hoorn BA, Koenders EB, Willemsen AT, et al. Comparison of image-derived and arterial input functions for estimating the rate of glucose metabolism in therapy-monitoring [18F]-FDG PET studies. J Nucl Med. 2006;47:945–9.PubMed
96.
go back to reference Feng D, Huang S-C, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput. 1993;32:95–110.PubMed Feng D, Huang S-C, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput. 1993;32:95–110.PubMed
97.
go back to reference Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology. 1993;188:131–6.PubMed Takikawa S, Dhawan V, Spetsieris P, Robeson W, Chaly T, Dahl R, et al. Noninvasive quantitative fluorodeoxyglucose PET studies with an estimated input function derived from a population-based arterial blood curve. Radiology. 1993;188:131–6.PubMed
98.
go back to reference Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ. Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med. 1997;24:299–304.PubMed Eberl S, Anayat AR, Fulton RR, Hooper PK, Fulham MJ. Evaluation of two population-based input functions for quantitative neurological FDG PET studies. Eur J Nucl Med. 1997;24:299–304.PubMed
99.
go back to reference Vriens D, De Geus-Oei L-F, Oyen WJ, Visser EP. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment. J Nucl Med. 2009;50:1933–9.PubMed Vriens D, De Geus-Oei L-F, Oyen WJ, Visser EP. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment. J Nucl Med. 2009;50:1933–9.PubMed
100.
go back to reference Karakatsanis N, Zhou Y, Lodge M, Casey M, Wahl R, Subramaniam R, et al. Clinical whole-body PET Patlak imaging 60–90min post-injection employing a population-based input function. J Nucl Med. 2015;56:1786. Karakatsanis N, Zhou Y, Lodge M, Casey M, Wahl R, Subramaniam R, et al. Clinical whole-body PET Patlak imaging 60–90min post-injection employing a population-based input function. J Nucl Med. 2015;56:1786.
102.
go back to reference Karakatsanis NA, Lodge MA, Casey ME, Zaidi H, Rahmim A. Impact of acquisition time-window on clinical whole-body PET parametric imaging. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014 IEEE: IEEE; 2014. pp 1–8. Karakatsanis NA, Lodge MA, Casey ME, Zaidi H, Rahmim A. Impact of acquisition time-window on clinical whole-body PET parametric imaging. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2014 IEEE: IEEE; 2014. pp 1–8.
103.
go back to reference Kaneta T, Takai Y, Iwata R, Hakamatsuka T, Yasuda H, Nakayama K, et al. Initial evaluation of dynamic human imaging using 18 F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med. 2007;21:101–7.PubMed Kaneta T, Takai Y, Iwata R, Hakamatsuka T, Yasuda H, Nakayama K, et al. Initial evaluation of dynamic human imaging using 18 F-FRP170 as a new PET tracer for imaging hypoxia. Ann Nucl Med. 2007;21:101–7.PubMed
104.
go back to reference Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation–maximization reconstruction. Phys Med Biol. 2016;61:5456.PubMedPubMedCentral Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation–maximization reconstruction. Phys Med Biol. 2016;61:5456.PubMedPubMedCentral
105.
go back to reference Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, et al. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol. 2015;60:8643.PubMedPubMedCentral Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, et al. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol. 2015;60:8643.PubMedPubMedCentral
106.
go back to reference Wang Q, Wang R-F, Zhang J, Zhou Y. Differential diagnosis of pulmonary lesions by parametric imaging in 18F-FDG PET/CT dynamic multi-bed scanning. J Buon. 2013;18:928–34.PubMed Wang Q, Wang R-F, Zhang J, Zhou Y. Differential diagnosis of pulmonary lesions by parametric imaging in 18F-FDG PET/CT dynamic multi-bed scanning. J Buon. 2013;18:928–34.PubMed
107.
go back to reference Panin V, Bal H, Defrise M, Casey M, Karakatsanis N, Rahmim A. Whole body parametric imaging on clinical scanner: direct 4D reconstruction with simultaneous attenuation estimation and time-dependent normalization. Nuclear Science Symposium And Medical Imaging Conference (NSS/MIC), 2015 IEEE: IEEE; 2015. 7pp. Panin V, Bal H, Defrise M, Casey M, Karakatsanis N, Rahmim A. Whole body parametric imaging on clinical scanner: direct 4D reconstruction with simultaneous attenuation estimation and time-dependent normalization. Nuclear Science Symposium And Medical Imaging Conference (NSS/MIC), 2015 IEEE: IEEE; 2015. 7pp.
108.
go back to reference Karakatsanis NA, Garibotto V, Rager O, Zaidi H. Continuous bed motion vs. step-and-shoot acquisition on clinical whole-body dynamic and parametric PET imaging. Nuclear Science Symposium And Medical Imaging Conference (NSS/MIC), 2015 IEEE: IEEE. 6pp. Karakatsanis NA, Garibotto V, Rager O, Zaidi H. Continuous bed motion vs. step-and-shoot acquisition on clinical whole-body dynamic and parametric PET imaging. Nuclear Science Symposium And Medical Imaging Conference (NSS/MIC), 2015 IEEE: IEEE. 6pp.
109.
go back to reference Kotasidis FA, Garibotto V, Zaidi H. Hybrid whole-body dynamic TOF PET imaging for simultaneous estimation of compartmental and Patlak parametric maps from continuous bed motion data. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD): IEEE; 2016. 2pp. Kotasidis FA, Garibotto V, Zaidi H. Hybrid whole-body dynamic TOF PET imaging for simultaneous estimation of compartmental and Patlak parametric maps from continuous bed motion data. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD): IEEE; 2016. 2pp.
110.
go back to reference Kotasidis FA, Manari M, Garibotto V, Zaidi H. Joint optimization of kinetic modelling and CBM acquisition parameters in hybrid whole-body dynamic PET imaging. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD): IEEE; 2017. 2pp Kotasidis FA, Manari M, Garibotto V, Zaidi H. Joint optimization of kinetic modelling and CBM acquisition parameters in hybrid whole-body dynamic PET imaging. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD): IEEE; 2017. 2pp
111.
go back to reference Jang H, Im HJ, Rahmim A, Cho S, Mcmillan A. On the feasibility of quantitative dynamic whole body PET/MR imaging. Proc Intl Soc Mag Reson Med. 2016;24:3715. Jang H, Im HJ, Rahmim A, Cho S, Mcmillan A. On the feasibility of quantitative dynamic whole body PET/MR imaging. Proc Intl Soc Mag Reson Med. 2016;24:3715.
112.
go back to reference Lodge M, Rahmim A, Antoniou A, Solnes L, Wahl R. Dynamic whole-body 68ga-DOTATOC PET/CT. J Nucl Med. 2015;56(Suppl. 3):648. Lodge M, Rahmim A, Antoniou A, Solnes L, Wahl R. Dynamic whole-body 68ga-DOTATOC PET/CT. J Nucl Med. 2015;56(Suppl. 3):648.
113.
go back to reference Johansson E, Lubberink M, Heurling K, Eriksson JW, Skrtic S, Ahlström H, et al. Whole-body imaging of tissue-specific insulin sensitivity and body composition by using an integrated PET/MR system: a feasibility study. Radiology. 2017;286:271–8. Johansson E, Lubberink M, Heurling K, Eriksson JW, Skrtic S, Ahlström H, et al. Whole-body imaging of tissue-specific insulin sensitivity and body composition by using an integrated PET/MR system: a feasibility study. Radiology. 2017;286:271–8.
114.
go back to reference Naganawa M, Gallezot JD, Shah V, Smith AM, Carson RE. The influence of sampling schedule for image-derived input function and Patlak plot estimation in whole body PET studies. IEEE Nucl Sci Symp Conf Theatr Rec 2017. Naganawa M, Gallezot JD, Shah V, Smith AM, Carson RE. The influence of sampling schedule for image-derived input function and Patlak plot estimation in whole body PET studies. IEEE Nucl Sci Symp Conf Theatr Rec 2017.
117.
go back to reference Huang X, Zhou Y, Bao S, Huang SC. Clustering-based linear least square fitting method for generation of parametric images in dynamic FDG PET studies. Int J Biomed Imaging. 2007;2007:65641.PubMedPubMedCentral Huang X, Zhou Y, Bao S, Huang SC. Clustering-based linear least square fitting method for generation of parametric images in dynamic FDG PET studies. Int J Biomed Imaging. 2007;2007:65641.PubMedPubMedCentral
118.
go back to reference Mohy-Ud-Din H, Lodge MA, Rahmim A. Quantitative myocardial perfusion PET parametric imaging at the voxel-level. Phys Med Biol. 2015;60:6013.PubMed Mohy-Ud-Din H, Lodge MA, Rahmim A. Quantitative myocardial perfusion PET parametric imaging at the voxel-level. Phys Med Biol. 2015;60:6013.PubMed
119.
go back to reference Bal H, Panin V, Karakatsanis N, Lodge M, Rahmim A, Casey M. Novel quantitative whole-body parametric pet imaging utilizing multiple clustering realizations. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), 2016: IEEE; 2016. 5pp. Bal H, Panin V, Karakatsanis N, Lodge M, Rahmim A, Casey M. Novel quantitative whole-body parametric pet imaging utilizing multiple clustering realizations. Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD), 2016: IEEE; 2016. 5pp.
120.
go back to reference Van Slambrouck K, Stute S, Comtat C, Sibomana M, Van Velden F, Boellaard R. Et Al. Bias reduction for low-statistics PET: maximum likelihood reconstruction with a modified Poisson distribution. IEEE T Med Imaging. 2015;34:126–36. Van Slambrouck K, Stute S, Comtat C, Sibomana M, Van Velden F, Boellaard R. Et Al. Bias reduction for low-statistics PET: maximum likelihood reconstruction with a modified Poisson distribution. IEEE T Med Imaging. 2015;34:126–36.
121.
go back to reference Barrett HH, Wilson DW, Tsui BMW. Noise properties of the EM algorithm. I Theory Phys Med Biol. 1994;39:833–46.PubMed Barrett HH, Wilson DW, Tsui BMW. Noise properties of the EM algorithm. I Theory Phys Med Biol. 1994;39:833–46.PubMed
122.
go back to reference Qi J. A unified noise analysis for iterative image estimation. Phys Med Biol. 2003;48:3505–19.PubMed Qi J. A unified noise analysis for iterative image estimation. Phys Med Biol. 2003;48:3505–19.PubMed
123.
go back to reference Tsoumpas C, Turkheimer FE, Thielemans K. A survey of approaches for direct parametric image reconstruction in emission tomography. Med Phys. 2008;35:3963–71.PubMed Tsoumpas C, Turkheimer FE, Thielemans K. A survey of approaches for direct parametric image reconstruction in emission tomography. Med Phys. 2008;35:3963–71.PubMed
124.
go back to reference Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys. 2009;36:3654–70.PubMed Rahmim A, Tang J, Zaidi H. Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med Phys. 2009;36:3654–70.PubMed
125.
126.
go back to reference Huang SC, Carson RE, Phelps ME. Measurement of local blood flow and distribution volume with short-lived isotopes: a general input technique. J Cereb Blood Flow Metab. 1982;2:99–108.PubMed Huang SC, Carson RE, Phelps ME. Measurement of local blood flow and distribution volume with short-lived isotopes: a general input technique. J Cereb Blood Flow Metab. 1982;2:99–108.PubMed
127.
go back to reference Alpert NM, Eriksson L, Chang JY, Bergstrom M, Litton JE, Correia JA, et al. Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab. 1984;4:28–34.PubMed Alpert NM, Eriksson L, Chang JY, Bergstrom M, Litton JE, Correia JA, et al. Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab. 1984;4:28–34.PubMed
128.
go back to reference Maguire RP, Calonder C, Leenders KL. An investigation of multiple time/graphical analysis applied to projection data: theory and validation. J Comput Assist Tomogr. 1997;21:327–31.PubMed Maguire RP, Calonder C, Leenders KL. An investigation of multiple time/graphical analysis applied to projection data: theory and validation. J Comput Assist Tomogr. 1997;21:327–31.PubMed
129.
go back to reference Carson RE, Lange K. The EM parametric image reconstruction algorithm. J Am Statist Assoc. 1985;80:20–2. Carson RE, Lange K. The EM parametric image reconstruction algorithm. J Am Statist Assoc. 1985;80:20–2.
130.
go back to reference Matthews J, Bailey D, Price P, Cunningham V. The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction. Phys Med Biol. 1997;42:1155.PubMed Matthews J, Bailey D, Price P, Cunningham V. The direct calculation of parametric images from dynamic PET data using maximum-likelihood iterative reconstruction. Phys Med Biol. 1997;42:1155.PubMed
131.
go back to reference Kamasak ME, Bouman CA, Morris ED, Sauer K. Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans Med Imaging. 2005;24:636–50.PubMed Kamasak ME, Bouman CA, Morris ED, Sauer K. Direct reconstruction of kinetic parameter images from dynamic PET data. IEEE Trans Med Imaging. 2005;24:636–50.PubMed
132.
go back to reference Wang G, Fu L, Qi J. Maximum a posteriori reconstruction of the Patlak parametric image from sinograms in dynamic PET. Phys Med Biol. 2008;53:593–604. Wang G, Fu L, Qi J. Maximum a posteriori reconstruction of the Patlak parametric image from sinograms in dynamic PET. Phys Med Biol. 2008;53:593–604.
133.
go back to reference Tsoumpas C, Turkheimer FE, Thielemans K. Study of direct and indirect parametric estimation methods of linear models in dynamic positron emission tomography. Med Phys. 2008;35:1299–309.PubMed Tsoumpas C, Turkheimer FE, Thielemans K. Study of direct and indirect parametric estimation methods of linear models in dynamic positron emission tomography. Med Phys. 2008;35:1299–309.PubMed
134.
go back to reference Tang J, Kuwabara H, Wong DF, Rahmim A. Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy. Phys Med Bio. 2010;55:1–12. Tang J, Kuwabara H, Wong DF, Rahmim A. Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy. Phys Med Bio. 2010;55:1–12.
135.
go back to reference Wang G, Qi J. Acceleration of the direct reconstruction of linear parametric images using nested algorithms. Phys Med Biol. 2010;55:1505–17.PubMedPubMedCentral Wang G, Qi J. Acceleration of the direct reconstruction of linear parametric images using nested algorithms. Phys Med Biol. 2010;55:1505–17.PubMedPubMedCentral
136.
go back to reference Barrett HH, Myers KJ. Foundations of image science. Hoboken, New Jersey: Wiley & Sons, Inc.; 2004. Barrett HH, Myers KJ. Foundations of image science. Hoboken, New Jersey: Wiley & Sons, Inc.; 2004.
137.
go back to reference Anzai Y, Minoshima S, Wolf GT, Wahl RL. Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET. Radiology. 1999;212:285–90.PubMed Anzai Y, Minoshima S, Wolf GT, Wahl RL. Head and neck cancer: detection of recurrence with three-dimensional principal components analysis at dynamic FDG PET. Radiology. 1999;212:285–90.PubMed
138.
go back to reference Pedersen F, Bergströme M, Bengtsson E, Långström B. Principal component analysis of dynamic positron emission tomography images. Eur J Nucl Med. 1994;21:1285–92.PubMed Pedersen F, Bergströme M, Bengtsson E, Långström B. Principal component analysis of dynamic positron emission tomography images. Eur J Nucl Med. 1994;21:1285–92.PubMed
139.
go back to reference Thireou T, Strauss LG, Dimitrakopoulou-Strauss A, Kontaxakis G, Pavlopoulos S, Santos A. Performance evaluation of principal component analysis in dynamic FDG-PET studies of recurrent colorectal cancer. Comput Med Imaging Graph. 2003;27:43–51.PubMed Thireou T, Strauss LG, Dimitrakopoulou-Strauss A, Kontaxakis G, Pavlopoulos S, Santos A. Performance evaluation of principal component analysis in dynamic FDG-PET studies of recurrent colorectal cancer. Comput Med Imaging Graph. 2003;27:43–51.PubMed
140.
go back to reference Razifar P, Axelsson J, Schneider H, Långström B, Bengtsson E, Bergström MA. New application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies—clinical brain studies using [11c]-Gr205171,[11c]-L-deuterium-deprenyl,[11c]-5-hydroxy-L-tryptophan,[11c]-L-dopa and Pittsburgh compound-B. NeuroImage. 2006;33:588–98.PubMed Razifar P, Axelsson J, Schneider H, Långström B, Bengtsson E, Bergström MA. New application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies—clinical brain studies using [11c]-Gr205171,[11c]-L-deuterium-deprenyl,[11c]-5-hydroxy-L-tryptophan,[11c]-L-dopa and Pittsburgh compound-B. NeuroImage. 2006;33:588–98.PubMed
141.
go back to reference Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim S-K, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from H215O dynamic myocardial PET using independent component analysis. J Nucl Med. 2001;42:938–43.PubMed Lee JS, Lee DS, Ahn JY, Cheon GJ, Kim S-K, Yeo JS, et al. Blind separation of cardiac components and extraction of input function from H215O dynamic myocardial PET using independent component analysis. J Nucl Med. 2001;42:938–43.PubMed
142.
go back to reference Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time–activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng. 2005;52:201–10.PubMed Naganawa M, Kimura Y, Ishii K, Oda K, Ishiwata K, Matani A. Extraction of a plasma time–activity curve from dynamic brain PET images based on independent component analysis. IEEE Trans Biomed Eng. 2005;52:201–10.PubMed
143.
go back to reference Ahn JY, Lee DS, Lee JS, Kim S-K, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic H215O PET and factor analysis. J Nucl Med. 2001;42:782–7.PubMed Ahn JY, Lee DS, Lee JS, Kim S-K, Cheon GJ, Yeo JS, et al. Quantification of regional myocardial blood flow using dynamic H215O PET and factor analysis. J Nucl Med. 2001;42:782–7.PubMed
144.
go back to reference El Fakhri G, Sitek A, Guérin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med. 2005;46:1264–71.PubMed El Fakhri G, Sitek A, Guérin B, Kijewski MF, Di Carli MF, Moore SC. Quantitative dynamic cardiac 82Rb PET using generalized factor and compartment analyses. J Nucl Med. 2005;46:1264–71.PubMed
145.
go back to reference Su Y, Welch MJ, Shoghi KI. The application of maximum likelihood factor analysis (MLFA) with uniqueness constraints on dynamic cardiac microPET data. Phys Med Biol. 2007;52:2313.PubMed Su Y, Welch MJ, Shoghi KI. The application of maximum likelihood factor analysis (MLFA) with uniqueness constraints on dynamic cardiac microPET data. Phys Med Biol. 2007;52:2313.PubMed
146.
go back to reference El Fakhri G, Trott CM, Sitek A, Bonab A, Alpert NM. Dual-tracer PET using generalized factor analysis of dynamic sequences. Mol Imaging Biol. 2013;15:666–74.PubMed El Fakhri G, Trott CM, Sitek A, Bonab A, Alpert NM. Dual-tracer PET using generalized factor analysis of dynamic sequences. Mol Imaging Biol. 2013;15:666–74.PubMed
147.
go back to reference Veronese M, Rizzo G, Bertoldo A, Turkheimer FE. Spectral analysis of dynamic PET studies: a review of 20 years of method developments and applications. Comput Math Methods Med. 2016;2016:7187541 Veronese M, Rizzo G, Bertoldo A, Turkheimer FE. Spectral analysis of dynamic PET studies: a review of 20 years of method developments and applications. Comput Math Methods Med. 2016;2016:7187541
148.
go back to reference Cunningham VJ, Ashburner J, Byrne H, Jones T (1993) Use of spectral analysis to obtain parametric images from dynamic PET studies. In: Uemura K, Lassen NA, Jones T, Kanno I (eds) Quantification of brain function. Tracer kinetics and image analysis in brain PET. Amsterdam, Elsevier Science, pp 101–108 Cunningham VJ, Ashburner J, Byrne H, Jones T (1993) Use of spectral analysis to obtain parametric images from dynamic PET studies. In: Uemura K, Lassen NA, Jones T, Kanno I (eds) Quantification of brain function. Tracer kinetics and image analysis in brain PET. Amsterdam, Elsevier Science, pp 101–108
149.
go back to reference Wong K-P, Feng D, Meikle SR, Fulham MJ. Segmentation of dynamic PET images using cluster analysis. IEEE Trans Nucl Sci. 2002;49:200–7. Wong K-P, Feng D, Meikle SR, Fulham MJ. Segmentation of dynamic PET images using cluster analysis. IEEE Trans Nucl Sci. 2002;49:200–7.
150.
go back to reference Dimitrakopoulou-Strauss A, Pan L, Strauss LG. Parametric imaging: a promising approach for the evaluation of dynamic PET-18F-FDG studies — the DKFZ experience. Hellj Nucl Med. 2010;13:18–22. Dimitrakopoulou-Strauss A, Pan L, Strauss LG. Parametric imaging: a promising approach for the evaluation of dynamic PET-18F-FDG studies — the DKFZ experience. Hellj Nucl Med. 2010;13:18–22.
151.
go back to reference Slobbe P, Poot AJ, Windhorst AD, Van Dongen GA. PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov Today. 2012;17:1175–87.PubMed Slobbe P, Poot AJ, Windhorst AD, Van Dongen GA. PET imaging with small-molecule tyrosine kinase inhibitors: TKI-PET. Drug Discov Today. 2012;17:1175–87.PubMed
152.
go back to reference Foster JA, Neufeld KAM. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013;36:305–312.PubMed Foster JA, Neufeld KAM. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013;36:305–312.PubMed
153.
go back to reference Chandra R, Hiniker A, Kuo Y-M, Nussbaum Rl, Liddle RA. Α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2017;2(12):pii: 92295. Chandra R, Hiniker A, Kuo Y-M, Nussbaum Rl, Liddle RA. Α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2017;2(12):pii: 92295.
154.
155.
go back to reference Tahsili-Fahadan P, Geocadin RG. Heart–brain axis: effects of neurologic injury on cardiovascular function. Circ Res. 2017;120:559–72.PubMed Tahsili-Fahadan P, Geocadin RG. Heart–brain axis: effects of neurologic injury on cardiovascular function. Circ Res. 2017;120:559–72.PubMed
156.
go back to reference Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71:263–75.PubMed Thackeray JT, Hupe HC, Wang Y, Bankstahl JP, Berding G, Ross TL, et al. Myocardial inflammation predicts remodeling and neuroinflammation after myocardial infarction. J Am Coll Cardiol. 2018;71:263–75.PubMed
157.
go back to reference Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017;389:834–845. Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, et al. Relation between resting amygdalar activity and cardiovascular events: a longitudinal and cohort study. Lancet. 2017;389:834–845.
158.
go back to reference Seemann MD. Whole-body PET/MRI: the future in oncological imaging. Technol Cancer Res Treat. 2005;4:577–82.PubMed Seemann MD. Whole-body PET/MRI: the future in oncological imaging. Technol Cancer Res Treat. 2005;4:577–82.PubMed
159.
go back to reference Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51:333–6.PubMed Pichler BJ, Kolb A, Nägele T, Schlemmer H-P. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med. 2010;51:333–6.PubMed
160.
go back to reference Yankeelov TE, Peterson TE, Abramson RG, Garcia-Izquierdo D, Arlinghaus LR, Li X, et al. Simultaneous PET-MRI in oncology: a solution looking for a problem? Magn Reson Imaging. 2012;30:1342–56.PubMedPubMedCentral Yankeelov TE, Peterson TE, Abramson RG, Garcia-Izquierdo D, Arlinghaus LR, Li X, et al. Simultaneous PET-MRI in oncology: a solution looking for a problem? Magn Reson Imaging. 2012;30:1342–56.PubMedPubMedCentral
161.
go back to reference Zaidi H, Becker M. The promise of hybrid PET/MRI: technical advances and clinical applications. IEEE Signal Process Mag. 2016;33:67–85. Zaidi H, Becker M. The promise of hybrid PET/MRI: technical advances and clinical applications. IEEE Signal Process Mag. 2016;33:67–85.
163.
go back to reference Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med. 2004;45:797–801.PubMed Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med. 2004;45:797–801.PubMed
164.
go back to reference Kotasidis FA, Tsoumpas C, Rahmim A. Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Trans Imag. 2014;2:219–37. Kotasidis FA, Tsoumpas C, Rahmim A. Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Trans Imag. 2014;2:219–37.
166.
go back to reference Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J Nucl Med. 2010;51:51s–65s.PubMed Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL. Imaging atherosclerosis and vulnerable plaque. J Nucl Med. 2010;51:51s–65s.PubMed
167.
go back to reference Rudd JH, Narula J, Strauss HW, Virmani R, Machac J, Klimas M, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol. 2010;55:2527–2535.PubMed Rudd JH, Narula J, Strauss HW, Virmani R, Machac J, Klimas M, et al. Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography: ready for prime time? J Am Coll Cardiol. 2010;55:2527–2535.PubMed
168.
go back to reference Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.PubMed Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation. 2000;102:506–10.PubMed
169.
go back to reference Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953–7.PubMed Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953–7.PubMed
170.
go back to reference Oo J, Karakatsanis N, Rahmim A, Lodge M, Wahl R. A novel imaging method for assessing vessel wall inflammation: dynamic multi-bed PET parametric imaging. J Nucl Med. 2013;54:1670. Oo J, Karakatsanis N, Rahmim A, Lodge M, Wahl R. A novel imaging method for assessing vessel wall inflammation: dynamic multi-bed PET parametric imaging. J Nucl Med. 2013;54:1670.
172.
go back to reference Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.PubMedPubMedCentral Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J Nucl Med. 2018;59:3–12.PubMedPubMedCentral
174.
go back to reference Nakamoto Y, Sakamoto S, Okada T, Matsumoto K, Minota E, Kawashima H, et al. Accuracy of image fusion using a fixation device for whole-body cancer imaging. AJR Am J Roentgenol. 2005;184:1960–6.PubMed Nakamoto Y, Sakamoto S, Okada T, Matsumoto K, Minota E, Kawashima H, et al. Accuracy of image fusion using a fixation device for whole-body cancer imaging. AJR Am J Roentgenol. 2005;184:1960–6.PubMed
175.
go back to reference Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. J Nucl Med. 2001;42:795–801.PubMed Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S. Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. J Nucl Med. 2001;42:795–801.PubMed
176.
go back to reference Scussolini M, Garbarino S, Sambuceti G, Caviglia G, Piana M. A Physiology-based parametric imaging method for FDG-PET data. Inverse Problems. 2017;33:125010. Scussolini M, Garbarino S, Sambuceti G, Caviglia G, Piana M. A Physiology-based parametric imaging method for FDG-PET data. Inverse Problems. 2017;33:125010.
Metadata
Title
Dynamic whole-body PET imaging: principles, potentials and applications
Authors
Arman Rahmim
Martin A. Lodge
Nicolas A. Karakatsanis
Vladimir Y. Panin
Yun Zhou
Alan McMillan
Steve Cho
Habib Zaidi
Michael E. Casey
Richard L. Wahl
Publication date
01-02-2019
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 2/2019
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-4153-6

Other articles of this Issue 2/2019

European Journal of Nuclear Medicine and Molecular Imaging 2/2019 Go to the issue