Skip to main content
Top
Published in: European Radiology 9/2019

01-09-2019 | Computed Tomography | Nuclear Medicine

Does whole-body Patlak 18F-FDG PET imaging improve lesion detectability in clinical oncology?

Authors: Guillaume Fahrni, Nicolas A. Karakatsanis, Giulia Di Domenicantonio, Valentina Garibotto, Habib Zaidi

Published in: European Radiology | Issue 9/2019

Login to get access

Abstract

Purpose

Single-pass whole-body (WB) 18F-FDG PET/CT imaging is routinely employed for the clinical assessment of malignant, infectious, and inflammatory diseases. Our aim in this study is the systematic clinical assessment of lesion detectability in multi-pass WB parametric imaging enabling direct imaging of the highly quantitative 18F-FDG influx rate constant Ki, as a complement to standard-of-care standardized uptake value (SUV) imaging for a range of oncologic studies.

Methods

We compared SUV and Ki images of 18 clinical studies of different oncologic indications (lesion characterization and staging) including standard-of-care SUV and dynamic WB PET protocols in a single session. The comparison involved both the visual assessment and the quantitative evaluation of SUVmean, SUVmax, Kimean, Kimax, tumor-to-background ratio (TBRSUV, TBRKi), and contrast-to-noise ratio (CNRSUV, CNRKi) quality metrics.

Results

Overall, both methods provided good-quality images suitable for visual interpretation. A total of 118 lesions were detected, including 40 malignant (proven) and 78 malignant (unproven) lesions. Of those, 111 were detected on SUV and 108 on Ki images. One proven malignant lesion was detected only on Ki images whereas none of the proven malignant lesions was visible only on SUV images. The proven malignant lesions had overall higher Ki TBR and CNR scores. One unproven lesion, which was later confirmed as benign, was detected only on the SUV images (false-positive). Overall, our results from 40 proven malignant lesions suggested improved sensitivity (from 92.5 to 95%) and accuracy (from 90.24 to 95.12%) and potentially enhanced specificity with Ki over SUV imaging.

Conclusion

Oncologic WB Patlak Ki imaging may achieve equivalent or superior lesion detectability with reduced false-positive rates when complementing standard-of-care SUV imaging.

Key Points

• The whole-body spatio-temporal distribution of 18 F-FDG uptake may reveal clinically useful information on oncologic diseases to complement the standard-of-care SUV metric.
• Parametric imaging resulted in less false-positive indications of non-specific 18 F-FDG uptake relative to SUV.
• Parametric imaging may achieve equivalent or superior 18 F-FDG lesion detectability than standard-of-care SUV imaging in oncology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693CrossRefPubMed Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2:683–693CrossRefPubMed
2.
go back to reference Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48:78S–788S Czernin J, Allen-Auerbach M, Schelbert HR (2007) Improvements in cancer staging with PET/CT: literature-based evidence as of September 2006. J Nucl Med 48:78S–788S
3.
go back to reference Huang SC (2000) Anatomy of SUV. Standardized uptake value. Nucl Med Biol 27:643–646CrossRef Huang SC (2000) Anatomy of SUV. Standardized uptake value. Nucl Med Biol 27:643–646CrossRef
4.
go back to reference Boellaard R (2011) Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med 52(Suppl 2):93S–100SCrossRef Boellaard R (2011) Need for standardization of 18F-FDG PET/CT for treatment response assessments. J Nucl Med 52(Suppl 2):93S–100SCrossRef
5.
go back to reference Zaidi H, Karakatsanis N (2018) Towards enhanced PET quantification in clinical oncology. Br J Radiol 91:20170508CrossRefPubMed Zaidi H, Karakatsanis N (2018) Towards enhanced PET quantification in clinical oncology. Br J Radiol 91:20170508CrossRefPubMed
6.
go back to reference Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A (2007) Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Eur J Nucl Med Mol Imaging 34:868–877 Strauss LG, Klippel S, Pan L, Schonleben K, Haberkorn U, Dimitrakopoulou-Strauss A (2007) Assessment of quantitative FDG PET data in primary colorectal tumours: which parameters are important with respect to tumour detection? Eur J Nucl Med Mol Imaging 34:868–877
7.
go back to reference Freedman NM, Sundaram SK, Kurdziel K et al (2003) Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging 30:46–53CrossRefPubMed Freedman NM, Sundaram SK, Kurdziel K et al (2003) Comparison of SUV and Patlak slope for monitoring of cancer therapy using serial PET scans. Eur J Nucl Med Mol Imaging 30:46–53CrossRefPubMed
8.
go back to reference Gupta N, Gill H, Graeber G, Bishop H, Hurst J, Stephens T (1998) Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest 114:1105–1111CrossRefPubMed Gupta N, Gill H, Graeber G, Bishop H, Hurst J, Stephens T (1998) Dynamic positron emission tomography with F-18 fluorodeoxyglucose imaging in differentiation of benign from malignant lung/mediastinal lesions. Chest 114:1105–1111CrossRefPubMed
9.
go back to reference Tixier F, Vriens D, Cheze-Le Rest C et al (2016) Comparison of tumor uptake heterogeneity characterization between static and parametric 18F-FDG PET images in non-small cell lung cancer. J Nucl Med 57:1033–1039CrossRef Tixier F, Vriens D, Cheze-Le Rest C et al (2016) Comparison of tumor uptake heterogeneity characterization between static and parametric 18F-FDG PET images in non-small cell lung cancer. J Nucl Med 57:1033–1039CrossRef
11.
go back to reference Veronese M, Rizzo G, Bertoldo A, Turkheimer FE (2016) Spectral analysis of dynamic PET studies: a review of 20 years of method developments and applications. Comput Math Methods Med 2016:7187541 Veronese M, Rizzo G, Bertoldo A, Turkheimer FE (2016) Spectral analysis of dynamic PET studies: a review of 20 years of method developments and applications. Comput Math Methods Med 2016:7187541
12.
go back to reference Kotasidis F, Tsoumpas C, Rahmim A (2014) Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Transl Imaging 2:219–237 Kotasidis F, Tsoumpas C, Rahmim A (2014) Advanced kinetic modelling strategies: towards adoption in clinical PET imaging. Clin Transl Imaging 2:219–237
13.
go back to reference Zhang J, Wang R, Fan Y et al (2017) Application of quantitative dynamic whole-body 18FDG-PET/CT in the differential diagnosis of pulmonary nodules [abstract]. J Nucl Med 58:86 Zhang J, Wang R, Fan Y et al (2017) Application of quantitative dynamic whole-body 18FDG-PET/CT in the differential diagnosis of pulmonary nodules [abstract]. J Nucl Med 58:86
14.
go back to reference Epelbaum R, Frenkel A, Haddad R et al (2013) Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT. J Nucl Med 54:12–18CrossRefPubMed Epelbaum R, Frenkel A, Haddad R et al (2013) Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT. J Nucl Med 54:12–18CrossRefPubMed
15.
go back to reference Strauss LG, Koczan D, Klippel S et al (2013) Dynamic PET with (18)F-Deoxyglucose (FDG) and quantitative assessment with a two-tissue compartment model reflect the activity of glucose transporters and hexokinases in patients with colorectal tumors. Am J Nucl Med Mol Imaging 3:417–424PubMedPubMedCentral Strauss LG, Koczan D, Klippel S et al (2013) Dynamic PET with (18)F-Deoxyglucose (FDG) and quantitative assessment with a two-tissue compartment model reflect the activity of glucose transporters and hexokinases in patients with colorectal tumors. Am J Nucl Med Mol Imaging 3:417–424PubMedPubMedCentral
16.
go back to reference Wangerin KA, Muzi M, Peterson LM et al (2017) A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy. Phys Med Biol 62:3639–3655CrossRefPubMedPubMedCentral Wangerin KA, Muzi M, Peterson LM et al (2017) A virtual clinical trial comparing static versus dynamic PET imaging in measuring response to breast cancer therapy. Phys Med Biol 62:3639–3655CrossRefPubMedPubMedCentral
17.
go back to reference Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590CrossRefPubMed Patlak CS, Blasberg RG (1985) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 5:584–590CrossRefPubMed
18.
go back to reference Slifstein M, Laruelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28:595–608CrossRefPubMed Slifstein M, Laruelle M (2001) Models and methods for derivation of in vivo neuroreceptor parameters with PET and SPECT reversible radiotracers. Nucl Med Biol 28:595–608CrossRefPubMed
21.
go back to reference Jakoby BW, Bercier Y, Watson CA, Bendriem B, Townsend DW (2009) Performance characteristics of a new LSO PET/CT scanner with extended axial field-of-view and PSF reconstruction. IEEE Trans Nucl Sci 56:633–639CrossRef Jakoby BW, Bercier Y, Watson CA, Bendriem B, Townsend DW (2009) Performance characteristics of a new LSO PET/CT scanner with extended axial field-of-view and PSF reconstruction. IEEE Trans Nucl Sci 56:633–639CrossRef
22.
go back to reference Surti S (2015) Update on time-of-flight PET imaging. J Nucl Med 56:98–105CrossRef Surti S (2015) Update on time-of-flight PET imaging. J Nucl Med 56:98–105CrossRef
24.
go back to reference Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol 58:7391–7418CrossRefPubMedPubMedCentral Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole-body PET parametric imaging: I. Concept, acquisition protocol optimization and clinical application. Phys Med Biol 58:7391–7418CrossRefPubMedPubMedCentral
25.
go back to reference Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys Med Biol 58:7419–7445CrossRefPubMedPubMedCentral Karakatsanis NA, Lodge MA, Zhou Y, Wahl RL, Rahmim A (2013) Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation. Phys Med Biol 58:7419–7445CrossRefPubMedPubMedCentral
26.
go back to reference Karakatsanis NA, Zhou Y, Lodge MA et al (2015) Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol 60:8643–8673CrossRefPubMedPubMedCentral Karakatsanis NA, Zhou Y, Lodge MA et al (2015) Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol 60:8643–8673CrossRefPubMedPubMedCentral
27.
go back to reference Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H (2016) Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol 61:5456–5485CrossRefPubMedPubMedCentral Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H (2016) Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol 61:5456–5485CrossRefPubMedPubMedCentral
28.
29.
go back to reference Karakatsanis N, Lodge M, Zhou Y et al (2015) Novel multi-parametric SUV/Patlak FDG-PET whole-body imaging framework for routine application to clinical oncology [abstract]. J Nucl Med 56:625 Karakatsanis N, Lodge M, Zhou Y et al (2015) Novel multi-parametric SUV/Patlak FDG-PET whole-body imaging framework for routine application to clinical oncology [abstract]. J Nucl Med 56:625
30.
go back to reference Karakatsanis NA, Lodge MA, Rahmim A, Zaidi H (2014) Introducing time-of-flight and resolution recovery image reconstruction to whole-body PET parametric imaging. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, 8–15 November 2014 Karakatsanis NA, Lodge MA, Rahmim A, Zaidi H (2014) Introducing time-of-flight and resolution recovery image reconstruction to whole-body PET parametric imaging. IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, 8–15 November 2014
31.
go back to reference Tomasi G, Kimberley S, Rosso L, Aboagye E, Turkheimer F (2012) Double-input compartmental modeling and spectral analysis for the quantification of positron emission tomography data in oncology. Phys Med Biol 57:1889–1906CrossRefPubMed Tomasi G, Kimberley S, Rosso L, Aboagye E, Turkheimer F (2012) Double-input compartmental modeling and spectral analysis for the quantification of positron emission tomography data in oncology. Phys Med Biol 57:1889–1906CrossRefPubMed
32.
go back to reference van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA (2001) Image-derived input functions for determination of MRGlu in cardiac (18)F-FDG PET scans. J Nucl Med 42:1622–1629PubMed van der Weerdt AP, Klein LJ, Boellaard R, Visser CA, Visser FC, Lammertsma AA (2001) Image-derived input functions for determination of MRGlu in cardiac (18)F-FDG PET scans. J Nucl Med 42:1622–1629PubMed
33.
go back to reference Zhuang M, Karakatsanis NA, Dierckx RAJO, Zaidi H (2018) Quantitative analysis of heterogeneous 18F-FDG static (SUV) vs. Patlak (Ki) whole-body PET imaging using different segmentation methods: a simulation study. Mol Imaging Biol (in press). https://doi.org/10.1007/s11307-018-1241-8 Zhuang M, Karakatsanis NA, Dierckx RAJO, Zaidi H (2018) Quantitative analysis of heterogeneous 18F-FDG static (SUV) vs. Patlak (Ki) whole-body PET imaging using different segmentation methods: a simulation study. Mol Imaging Biol (in press). https://​doi.​org/​10.​1007/​s11307-018-1241-8
34.
go back to reference Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M et al (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using (68)Ga-DOTATOC PET and comparison with (18)F-FDG PET. Eur J Nucl Med Mol Imaging 33:823–830CrossRefPubMed Dimitrakopoulou-Strauss A, Georgoulias V, Eisenhut M et al (2006) Quantitative assessment of SSTR2 expression in patients with non-small cell lung cancer using (68)Ga-DOTATOC PET and comparison with (18)F-FDG PET. Eur J Nucl Med Mol Imaging 33:823–830CrossRefPubMed
Metadata
Title
Does whole-body Patlak 18F-FDG PET imaging improve lesion detectability in clinical oncology?
Authors
Guillaume Fahrni
Nicolas A. Karakatsanis
Giulia Di Domenicantonio
Valentina Garibotto
Habib Zaidi
Publication date
01-09-2019
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 9/2019
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-018-5966-1

Other articles of this Issue 9/2019

European Radiology 9/2019 Go to the issue