Skip to main content
Top

27-02-2024 | Magnetic Resonance Imaging | Review Article

Bone tumors: state-of-the-art imaging

Authors: Patrick Debs, Shivani Ahlawat, Laura M. Fayad

Published in: Skeletal Radiology

Login to get access

Abstract

Imaging plays a central role in the management of patients with bone tumors. A number of imaging modalities are available, with different techniques having unique applications that render their use advantageous for various clinical purposes. Coupled with detailed clinical assessment, radiological imaging can assist clinicians in reaching a proper diagnosis, determining appropriate management, evaluating response to treatment, and monitoring for tumor recurrence. Although radiography is still the initial imaging test of choice for a patient presenting with a suspected bone tumor, technological innovations in the last decades have advanced the role of other imaging modalities for assessing bone tumors, including advances in computed tomography, magnetic resonance imaging, scintigraphy, and hybrid imaging techniques that combine two existing modalities, providing clinicians with diverse tools for bone tumor imaging applications. Determining the most suitable modality to use for a particular application requires familiarity with the modality in question, its advancements, and its limitations. This review highlights the various imaging techniques currently available and emphasizes the latest developments in imaging, offering a framework that can help guide the imaging of patients with bone tumors.
Literature
1.
go back to reference Choi JH, Ro JY. The 2020 WHO classification of tumors of bone: an updated review. Adv Anat Pathol. 2021;28(3):119.PubMedCrossRef Choi JH, Ro JY. The 2020 WHO classification of tumors of bone: an updated review. Adv Anat Pathol. 2021;28(3):119.PubMedCrossRef
2.
go back to reference Gaume M, Chevret S, Campagna R, Larousserie F, Biau D. The appropriate and sequential value of standard radiograph, computed tomography and magnetic resonance imaging to characterize a bone tumor. Sci Rep. 2022;12(1):6196.ADSPubMedPubMedCentralCrossRef Gaume M, Chevret S, Campagna R, Larousserie F, Biau D. The appropriate and sequential value of standard radiograph, computed tomography and magnetic resonance imaging to characterize a bone tumor. Sci Rep. 2022;12(1):6196.ADSPubMedPubMedCentralCrossRef
3.
go back to reference Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008;246(3):662–74.PubMedCrossRef Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008;246(3):662–74.PubMedCrossRef
4.
go back to reference Shafiei M, Chalian M, Luna R, Ahlawat S, Fayad LM. Imaging in musculoskeletal oncology: special considerations in the elderly. Radiol Clin North Am. 2022;60(4):657–68.PubMedCrossRef Shafiei M, Chalian M, Luna R, Ahlawat S, Fayad LM. Imaging in musculoskeletal oncology: special considerations in the elderly. Radiol Clin North Am. 2022;60(4):657–68.PubMedCrossRef
5.
go back to reference Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology. 2012;265(2):340–56.PubMedPubMedCentralCrossRef Fayad LM, Jacobs MA, Wang X, Carrino JA, Bluemke DA. Musculoskeletal tumors: how to use anatomic, functional, and metabolic MR techniques. Radiology. 2012;265(2):340–56.PubMedPubMedCentralCrossRef
6.
go back to reference Shojaie P, Afzali M, Nischal N, Iyengar KP, Yousef MMA, Botchu R. Bone tumor imaging: an update on modalities and radiological findings. J Arthrosc Joint Surg. 2023;10(3):131.CrossRef Shojaie P, Afzali M, Nischal N, Iyengar KP, Yousef MMA, Botchu R. Bone tumor imaging: an update on modalities and radiological findings. J Arthrosc Joint Surg. 2023;10(3):131.CrossRef
7.
go back to reference Mehta K, McBee MP, Mihal DC, England EB. Radiographic analysis of bone tumors: a systematic approach. Semin Roentgenol. 2017;52(4):194–208.PubMedCrossRef Mehta K, McBee MP, Mihal DC, England EB. Radiographic analysis of bone tumors: a systematic approach. Semin Roentgenol. 2017;52(4):194–208.PubMedCrossRef
8.
go back to reference Umer M, Hasan OHA, Khan D, Uddin N, Noordin S. Systematic approach to musculoskeletal benign tumors. Int J Surg Oncol (N Y). 2017;2(11): e46.PubMedCrossRef Umer M, Hasan OHA, Khan D, Uddin N, Noordin S. Systematic approach to musculoskeletal benign tumors. Int J Surg Oncol (N Y). 2017;2(11): e46.PubMedCrossRef
9.
go back to reference Costelloe CM, Madewell JE. Radiography in the initial diagnosis of primary bone tumors. Am J Roentgenol. 2013;200(1):3–7.CrossRef Costelloe CM, Madewell JE. Radiography in the initial diagnosis of primary bone tumors. Am J Roentgenol. 2013;200(1):3–7.CrossRef
10.
go back to reference Expert Panel on Musculoskeletal Imaging, Bestic JM, Wessell DE, et al. ACR Appropriateness Criteria® primary bone tumors. J Am Coll Radiol. 2020;17(5S):S226–38. Expert Panel on Musculoskeletal Imaging, Bestic JM, Wessell DE, et al. ACR Appropriateness Criteria® primary bone tumors. J Am Coll Radiol. 2020;17(5S):S226–38.
11.
go back to reference Ladd LM, Roth TD. Computed tomography and magnetic resonance imaging of bone tumors. Semin Roentgenol. 2017;52(4):209–26.PubMedCrossRef Ladd LM, Roth TD. Computed tomography and magnetic resonance imaging of bone tumors. Semin Roentgenol. 2017;52(4):209–26.PubMedCrossRef
12.
go back to reference Goyal N, Kalra M, Soni A, Baweja P, Ghonghe NP. Multi-modality imaging approach to bone tumors - state-of-the art. J Clin Orthop Trauma. 2019;10(4):687–701.PubMedPubMedCentralCrossRef Goyal N, Kalra M, Soni A, Baweja P, Ghonghe NP. Multi-modality imaging approach to bone tumors - state-of-the art. J Clin Orthop Trauma. 2019;10(4):687–701.PubMedPubMedCentralCrossRef
13.
go back to reference Choi J, Raghavan M. Diagnostic imaging and image-guided therapy of skeletal metastases. Cancer Control. 2012;19(2):102–12.PubMedCrossRef Choi J, Raghavan M. Diagnostic imaging and image-guided therapy of skeletal metastases. Cancer Control. 2012;19(2):102–12.PubMedCrossRef
15.
go back to reference Alam A, Chander B. Three dimensional spiral CT imaging of the musculoskeletal system: application and advantages. Med J Armed Forces India. 2005;61(2):133–8.PubMedPubMedCentralCrossRef Alam A, Chander B. Three dimensional spiral CT imaging of the musculoskeletal system: application and advantages. Med J Armed Forces India. 2005;61(2):133–8.PubMedPubMedCentralCrossRef
16.
go back to reference Tan MT, Lloyd TB. Utility of dual energy computed tomography in the evaluation of infiltrative skeletal lesions and metastasis: a literature review. Skeletal Radiol. 2022;51(9):1731–41.PubMedCrossRef Tan MT, Lloyd TB. Utility of dual energy computed tomography in the evaluation of infiltrative skeletal lesions and metastasis: a literature review. Skeletal Radiol. 2022;51(9):1731–41.PubMedCrossRef
17.
go back to reference Xu C, Kong L, Deng X. Dual-energy computed tomography for differentiation between osteoblastic metastases and bone islands. Front Oncol. 2022;12: 815955.PubMedPubMedCentralCrossRef Xu C, Kong L, Deng X. Dual-energy computed tomography for differentiation between osteoblastic metastases and bone islands. Front Oncol. 2022;12: 815955.PubMedPubMedCentralCrossRef
19.
go back to reference Parsons TW, Frink SJ, Campbell SE. Musculoskeletal neoplasia: helping the orthopaedic surgeon establish the diagnosis. Semin Musculoskelet Radiol. 2007;11(01):003–15.CrossRef Parsons TW, Frink SJ, Campbell SE. Musculoskeletal neoplasia: helping the orthopaedic surgeon establish the diagnosis. Semin Musculoskelet Radiol. 2007;11(01):003–15.CrossRef
20.
go back to reference Balach T, Stacy GS, Peabody TD. The clinical evaluation of bone tumors. Radiol Clin North Am. 2011;49(6):1079–93, v. Balach T, Stacy GS, Peabody TD. The clinical evaluation of bone tumors. Radiol Clin North Am. 2011;49(6):1079–93, v.
21.
go back to reference Napora J, Wałejko S, Mazurek T. Osteoid osteoma, a diagnostic problem: a series of atypical and mimicking presentations and review of the recent literature. J Clin Med. 2023;12(7):2721.PubMedPubMedCentralCrossRef Napora J, Wałejko S, Mazurek T. Osteoid osteoma, a diagnostic problem: a series of atypical and mimicking presentations and review of the recent literature. J Clin Med. 2023;12(7):2721.PubMedPubMedCentralCrossRef
22.
go back to reference Sherman CE, O’Connor MI. Musculoskeletal tumor imaging: an orthopedic oncologist perspective. Semin Musculoskelet Radiol. 2013;17(2):221–6.PubMedCrossRef Sherman CE, O’Connor MI. Musculoskeletal tumor imaging: an orthopedic oncologist perspective. Semin Musculoskelet Radiol. 2013;17(2):221–6.PubMedCrossRef
23.
go back to reference Luna R, Fritz J, Del Grande F, Ahlawat S, Fayad LM. Determination of skeletal tumor extent: is an isotropic T1-weighted 3D sequence adequate? Eur Radiol. 2021;31(5):3138–46.PubMedCrossRef Luna R, Fritz J, Del Grande F, Ahlawat S, Fayad LM. Determination of skeletal tumor extent: is an isotropic T1-weighted 3D sequence adequate? Eur Radiol. 2021;31(5):3138–46.PubMedCrossRef
24.
go back to reference de Castro LR, Kumar NM, Fritz J, Ahlawat S, Fayad LM. MRI evaluation of soft tissue tumors: comparison of a fast, isotropic, 3D T2-weighted fat-saturated sequence with a conventional 2D T2-weighted fat-saturated sequence for tumor characteristics, resolution, and acquisition time. Eur Radiol. 2022;32(12):8670–80.CrossRef de Castro LR, Kumar NM, Fritz J, Ahlawat S, Fayad LM. MRI evaluation of soft tissue tumors: comparison of a fast, isotropic, 3D T2-weighted fat-saturated sequence with a conventional 2D T2-weighted fat-saturated sequence for tumor characteristics, resolution, and acquisition time. Eur Radiol. 2022;32(12):8670–80.CrossRef
26.
go back to reference Ahlawat S, Morris C, Fayad LM. Three-dimensional volumetric MRI with isotropic resolution: improved speed of acquisition, spatial resolution and assessment of lesion conspicuity in patients with recurrent soft tissue sarcoma. Skeletal Radiol. 2016;45(5):645–52.PubMedCrossRef Ahlawat S, Morris C, Fayad LM. Three-dimensional volumetric MRI with isotropic resolution: improved speed of acquisition, spatial resolution and assessment of lesion conspicuity in patients with recurrent soft tissue sarcoma. Skeletal Radiol. 2016;45(5):645–52.PubMedCrossRef
27.
go back to reference Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol. 1997;169(5):1439–47.PubMedCrossRef Disler DG, McCauley TR, Ratner LM, Kesack CD, Cooper JA. In-phase and out-of-phase MR imaging of bone marrow: prediction of neoplasia based on the detection of coexistent fat and water. AJR Am J Roentgenol. 1997;169(5):1439–47.PubMedCrossRef
28.
go back to reference Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol. 2006;27(6):1183–8.PubMedPubMedCentral Erly WK, Oh ES, Outwater EK. The utility of in-phase/opposed-phase imaging in differentiating malignancy from acute benign compression fractures of the spine. AJNR Am J Neuroradiol. 2006;27(6):1183–8.PubMedPubMedCentral
29.
go back to reference Bhojwani N, Szpakowski P, Partovi S, et al. Diffusion-weighted imaging in musculoskeletal radiology—clinical applications and future directions. Quant Imaging Med Surg. 2015;5(5):740–53.PubMedPubMedCentral Bhojwani N, Szpakowski P, Partovi S, et al. Diffusion-weighted imaging in musculoskeletal radiology—clinical applications and future directions. Quant Imaging Med Surg. 2015;5(5):740–53.PubMedPubMedCentral
31.
go back to reference van Vucht N, Santiago R, Pressney I, Saifuddin A. Role of in-phase and out-of-phase chemical shift MRI in differentiation of non-neoplastic versus neoplastic benign and malignant marrow lesions. Br J Radiol. 2021;94(1119):20200710.PubMedPubMedCentralCrossRef van Vucht N, Santiago R, Pressney I, Saifuddin A. Role of in-phase and out-of-phase chemical shift MRI in differentiation of non-neoplastic versus neoplastic benign and malignant marrow lesions. Br J Radiol. 2021;94(1119):20200710.PubMedPubMedCentralCrossRef
32.
go back to reference Suh CH, Yun SJ, Jin W, Park SY, Ryu CW, Lee SH. Diagnostic performance of in-phase and opposed-phase chemical-shift imaging for differentiating benign and malignant vertebral marrow lesions: a meta-analysis. Am J Roentgenol. 2018;211(4):W188–97.CrossRef Suh CH, Yun SJ, Jin W, Park SY, Ryu CW, Lee SH. Diagnostic performance of in-phase and opposed-phase chemical-shift imaging for differentiating benign and malignant vertebral marrow lesions: a meta-analysis. Am J Roentgenol. 2018;211(4):W188–97.CrossRef
33.
go back to reference Del Grande F, Tatizawa-Shiga N, Jalali Farahani S, Chalian M, Fayad LM. Chemical shift imaging: preliminary experience as an alternative sequence for defining the extent of a bone tumor. Quant Imaging Med Surg. 2014;4(3):173–80.PubMedPubMedCentral Del Grande F, Tatizawa-Shiga N, Jalali Farahani S, Chalian M, Fayad LM. Chemical shift imaging: preliminary experience as an alternative sequence for defining the extent of a bone tumor. Quant Imaging Med Surg. 2014;4(3):173–80.PubMedPubMedCentral
34.
go back to reference Fukuda T, Wengler K, de Carvalho R, Boonsri P, Schweitzer ME. MRI biomarkers in osseous tumors. J Magn Reson Imaging. 2019;50(3):702–18.PubMedCrossRef Fukuda T, Wengler K, de Carvalho R, Boonsri P, Schweitzer ME. MRI biomarkers in osseous tumors. J Magn Reson Imaging. 2019;50(3):702–18.PubMedCrossRef
35.
go back to reference Khoo MMY, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol. 2011;40(6):665–81.PubMedCrossRef Khoo MMY, Tyler PA, Saifuddin A, Padhani AR. Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol. 2011;40(6):665–81.PubMedCrossRef
36.
go back to reference Ahlawat S, Khandheria P, Subhawong TK, Fayad LM. Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T. Eur J Radiol. 2015;84(6):1091–7.PubMedCrossRef Ahlawat S, Khandheria P, Subhawong TK, Fayad LM. Differentiation of benign and malignant skeletal lesions with quantitative diffusion weighted MRI at 3T. Eur J Radiol. 2015;84(6):1091–7.PubMedCrossRef
37.
go back to reference Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol. 2014;203(3):560–72.PubMedCrossRef Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol. 2014;203(3):560–72.PubMedCrossRef
38.
go back to reference Wang T, Wu X, Cui Y, Chu C, Ren G, Li W. Role of apparent diffusion coefficients with diffusion-weighted magnetic resonance imaging in differentiating between benign and malignant bone tumors. World J Surg Oncol. 2014;12:365.PubMedPubMedCentralCrossRef Wang T, Wu X, Cui Y, Chu C, Ren G, Li W. Role of apparent diffusion coefficients with diffusion-weighted magnetic resonance imaging in differentiating between benign and malignant bone tumors. World J Surg Oncol. 2014;12:365.PubMedPubMedCentralCrossRef
39.
go back to reference Messina C, Bignone R, Bruno A, et al. Diffusion-weighted imaging in oncology: an update. Cancers (Basel). 2020;12(6):1493.PubMedCrossRef Messina C, Bignone R, Bruno A, et al. Diffusion-weighted imaging in oncology: an update. Cancers (Basel). 2020;12(6):1493.PubMedCrossRef
40.
go back to reference Gondim Teixeira PA, Ledrich M, Kauffmann F, et al. Qualitative 3-T proton MR spectroscopy for the characterization of musculoskeletal neoplasms: update on diagnostic performance and indications. AJR Am J Roentgenol. 2017;208(6):1312–9.PubMedCrossRef Gondim Teixeira PA, Ledrich M, Kauffmann F, et al. Qualitative 3-T proton MR spectroscopy for the characterization of musculoskeletal neoplasms: update on diagnostic performance and indications. AJR Am J Roentgenol. 2017;208(6):1312–9.PubMedCrossRef
41.
go back to reference Lee CW, Lee JH, Kim DH, et al. Proton magnetic resonance spectroscopy of musculoskeletal lesions at 3 T with metabolite quantification. Clin Imaging. 2010;34(1):47–52.PubMedCrossRef Lee CW, Lee JH, Kim DH, et al. Proton magnetic resonance spectroscopy of musculoskeletal lesions at 3 T with metabolite quantification. Clin Imaging. 2010;34(1):47–52.PubMedCrossRef
42.
go back to reference Fayad LM, Bluemke DA, McCarthy EF, Weber KL, Barker PB, Jacobs MA. Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization. J Magn Reson Imaging. 2006;23(1):23–8.PubMedCrossRef Fayad LM, Bluemke DA, McCarthy EF, Weber KL, Barker PB, Jacobs MA. Musculoskeletal tumors: use of proton MR spectroscopic imaging for characterization. J Magn Reson Imaging. 2006;23(1):23–8.PubMedCrossRef
43.
go back to reference Türkbey B, Thomasson D, Pang Y, Bernardo M, Choyke PL. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol. 2010;16(3):186–92.PubMed Türkbey B, Thomasson D, Pang Y, Bernardo M, Choyke PL. The role of dynamic contrast-enhanced MRI in cancer diagnosis and treatment. Diagn Interv Radiol. 2010;16(3):186–92.PubMed
44.
go back to reference Tokuda O, Hayashi N, Taguchi K, Matsunaga N. Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skeletal Radiol. 2005;34(10):632–8.PubMedCrossRef Tokuda O, Hayashi N, Taguchi K, Matsunaga N. Dynamic contrast-enhanced perfusion MR imaging of diseased vertebrae: analysis of three parameters and the distribution of the time-intensity curve patterns. Skeletal Radiol. 2005;34(10):632–8.PubMedCrossRef
45.
go back to reference van Rijswijk CSP, Geirnaerdt MJA, Hogendoorn PCW, et al. Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology. 2004;233(2):493–502.PubMedCrossRef van Rijswijk CSP, Geirnaerdt MJA, Hogendoorn PCW, et al. Soft-tissue tumors: value of static and dynamic gadopentetate dimeglumine-enhanced MR imaging in prediction of malignancy. Radiology. 2004;233(2):493–502.PubMedCrossRef
46.
go back to reference Kajihara M, Sugawara Y, Sakayama K, Kikuchi K, Mochizuki T, Murase K. Evaluation of tumor blood flow in musculoskeletal lesions: dynamic contrast-enhanced MR imaging and its possibility when monitoring the response to preoperative chemotherapy-work in progress. Radiat Med. 2007;25(3):94–105.PubMedCrossRef Kajihara M, Sugawara Y, Sakayama K, Kikuchi K, Mochizuki T, Murase K. Evaluation of tumor blood flow in musculoskeletal lesions: dynamic contrast-enhanced MR imaging and its possibility when monitoring the response to preoperative chemotherapy-work in progress. Radiat Med. 2007;25(3):94–105.PubMedCrossRef
47.
go back to reference Fritz J, Fishman EK, Corl F, Carrino JA, Weber KL, Fayad LM. Imaging of limb salvage surgery. AJR Am J Roentgenol. 2012;198(3):647–60.PubMedCrossRef Fritz J, Fishman EK, Corl F, Carrino JA, Weber KL, Fayad LM. Imaging of limb salvage surgery. AJR Am J Roentgenol. 2012;198(3):647–60.PubMedCrossRef
48.
go back to reference Kohyama S, Yoshii Y, Okamoto Y, Nakajima T. Advances in bone joint imaging-metal artifact reduction. Diagnostics (Basel). 2022;12(12):3079.PubMedCrossRef Kohyama S, Yoshii Y, Okamoto Y, Nakajima T. Advances in bone joint imaging-metal artifact reduction. Diagnostics (Basel). 2022;12(12):3079.PubMedCrossRef
49.
go back to reference Fayad LM, Levin A, Morris C, Fritz J. Surveillance imaging in patients with tumor prostheses using anatomic and functional metal reduction MRI sequences. In New York, NY; 2017. Fayad LM, Levin A, Morris C, Fritz J. Surveillance imaging in patients with tumor prostheses using anatomic and functional metal reduction MRI sequences. In New York, NY; 2017.
50.
go back to reference Ahlawat S, Debs P, Amini B, Lecouvet FE, Omoumi P, Wessell DE. Clinical applications and controversies of whole-body MRI: AJR expert panel narrative review. Am J Roentgenol. 2023;220(4):463–75.CrossRef Ahlawat S, Debs P, Amini B, Lecouvet FE, Omoumi P, Wessell DE. Clinical applications and controversies of whole-body MRI: AJR expert panel narrative review. Am J Roentgenol. 2023;220(4):463–75.CrossRef
51.
go back to reference Cruz IAN, Fayad LM, Ahlawat S, et al. Whole-body MRI in musculoskeletal oncology: a comprehensive review with recommendations. Radiol Imaging Cancer. 2023;5(3): e220107.PubMedPubMedCentralCrossRef Cruz IAN, Fayad LM, Ahlawat S, et al. Whole-body MRI in musculoskeletal oncology: a comprehensive review with recommendations. Radiol Imaging Cancer. 2023;5(3): e220107.PubMedPubMedCentralCrossRef
52.
go back to reference Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS. Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging. 2014;39(5):1049–78.PubMedCrossRef Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS. Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging. 2014;39(5):1049–78.PubMedCrossRef
53.
go back to reference Wu F, Bernard S, Fayad LM, et al. Updates and ongoing challenges in imaging of multiple myeloma: AJR expert panel narrative review. AJR Am J Roentgenol. 2021;217(4):775–85.PubMedCrossRef Wu F, Bernard S, Fayad LM, et al. Updates and ongoing challenges in imaging of multiple myeloma: AJR expert panel narrative review. AJR Am J Roentgenol. 2021;217(4):775–85.PubMedCrossRef
54.
go back to reference Hsu W, Hearty TM. Radionuclide imaging in the diagnosis and management of orthopaedic disease. JAAOS - J Am Acad Orthop Surg. 2012;20(3):151.PubMedCrossRef Hsu W, Hearty TM. Radionuclide imaging in the diagnosis and management of orthopaedic disease. JAAOS - J Am Acad Orthop Surg. 2012;20(3):151.PubMedCrossRef
55.
go back to reference Agrawal K, Marafi F, Gnanasegaran G, Van der Wall H, Fogelman I. Pitfalls and limitations of radionuclide planar and hybrid bone imaging. Semin Nucl Med. 2015;45(5):347–72.PubMedCrossRef Agrawal K, Marafi F, Gnanasegaran G, Van der Wall H, Fogelman I. Pitfalls and limitations of radionuclide planar and hybrid bone imaging. Semin Nucl Med. 2015;45(5):347–72.PubMedCrossRef
56.
57.
go back to reference Manohar PR, Rather TA, Khan SH, Malik D. Skeletal metastases presenting as superscan on technetium 99m methylene diphosphonate whole body bone scintigraphy in different type of cancers: A 5-Year Retro-prospective Study. World J Nucl Med. 2017;16(1):39–44.PubMedPubMedCentralCrossRef Manohar PR, Rather TA, Khan SH, Malik D. Skeletal metastases presenting as superscan on technetium 99m methylene diphosphonate whole body bone scintigraphy in different type of cancers: A 5-Year Retro-prospective Study. World J Nucl Med. 2017;16(1):39–44.PubMedPubMedCentralCrossRef
58.
go back to reference Byun BH, Kong CB, Lim I, et al. Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol. 2013;42(12):1673–81.PubMedCrossRef Byun BH, Kong CB, Lim I, et al. Comparison of (18)F-FDG PET/CT and (99 m)Tc-MDP bone scintigraphy for detection of bone metastasis in osteosarcoma. Skeletal Radiol. 2013;42(12):1673–81.PubMedCrossRef
59.
go back to reference Ghosh P. The role of SPECT/CT in skeletal malignancies. Semin Musculoskelet Radiol. 2014;18(2):175–93.PubMedCrossRef Ghosh P. The role of SPECT/CT in skeletal malignancies. Semin Musculoskelet Radiol. 2014;18(2):175–93.PubMedCrossRef
61.
go back to reference Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT imaging: a literature review over the last decade. Int J Mol Sci. 2022;23(9):5023.PubMedPubMedCentralCrossRef Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT imaging: a literature review over the last decade. Int J Mol Sci. 2022;23(9):5023.PubMedPubMedCentralCrossRef
62.
go back to reference Rama S, Suh CH, Kim KW, Durieux JC, Ramaiya NH, Tirumani SH. Comparative performance of whole-body MRI and FDG PET/CT in evaluation of multiple myeloma treatment response: systematic review and meta-analysis. AJR Am J Roentgenol. 2022;218(4):602–13.PubMedCrossRef Rama S, Suh CH, Kim KW, Durieux JC, Ramaiya NH, Tirumani SH. Comparative performance of whole-body MRI and FDG PET/CT in evaluation of multiple myeloma treatment response: systematic review and meta-analysis. AJR Am J Roentgenol. 2022;218(4):602–13.PubMedCrossRef
63.
go back to reference Shortt CP, Gleeson TG, Breen KA, et al. Whole-body MRI versus PET in assessment of multiple myeloma disease activity. Am J Roentgenol. 2009;192(4):980–6.CrossRef Shortt CP, Gleeson TG, Breen KA, et al. Whole-body MRI versus PET in assessment of multiple myeloma disease activity. Am J Roentgenol. 2009;192(4):980–6.CrossRef
64.
go back to reference Zhan Y, Zhang G, Li M, Zhou X. Whole-body MRI vs. PET/CT for the detection of bone metastases in patients with prostate cancer: a systematic review and meta-analysis. Front Oncol. 2021;11:633833.PubMedPubMedCentralCrossRef Zhan Y, Zhang G, Li M, Zhou X. Whole-body MRI vs. PET/CT for the detection of bone metastases in patients with prostate cancer: a systematic review and meta-analysis. Front Oncol. 2021;11:633833.PubMedPubMedCentralCrossRef
65.
66.
go back to reference Janu A, Patra A, Kumar M, et al. Imaging recommendations for diagnosis, staging, and management of bone tumors. Indian J Med Paediatr Oncol. 2023;44(02):257–60.CrossRef Janu A, Patra A, Kumar M, et al. Imaging recommendations for diagnosis, staging, and management of bone tumors. Indian J Med Paediatr Oncol. 2023;44(02):257–60.CrossRef
67.
go back to reference Costelloe CM, Chuang HH, Madewell JE. FDG PET/CT of primary bone tumors. AJR Am J Roentgenol. 2014;202(6):W521-531.PubMedCrossRef Costelloe CM, Chuang HH, Madewell JE. FDG PET/CT of primary bone tumors. AJR Am J Roentgenol. 2014;202(6):W521-531.PubMedCrossRef
68.
go back to reference Hayashida Y, Yakushiji T, Awai K, et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol. 2006;16(12):2637–43.PubMedCrossRef Hayashida Y, Yakushiji T, Awai K, et al. Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol. 2006;16(12):2637–43.PubMedCrossRef
70.
go back to reference von Schacky CE, Wilhelm NJ, Schäfer VS, et al. Multitask deep learning for segmentation and classification of primary bone tumors on radiographs. Radiology. 2021;301(2):398–406.CrossRef von Schacky CE, Wilhelm NJ, Schäfer VS, et al. Multitask deep learning for segmentation and classification of primary bone tumors on radiographs. Radiology. 2021;301(2):398–406.CrossRef
71.
go back to reference Park CW, Oh SJ, Kim KS, et al. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: system development and validation. PLoS ONE. 2022;17(2): e0264140.PubMedPubMedCentralCrossRef Park CW, Oh SJ, Kim KS, et al. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: system development and validation. PLoS ONE. 2022;17(2): e0264140.PubMedPubMedCentralCrossRef
72.
go back to reference Ong W, Zhu L, Tan YL, et al. Application of machine learning for differentiating bone malignancy on imaging: a systematic review. Cancers (Basel). 2023;15(6):1837.PubMedCrossRef Ong W, Zhu L, Tan YL, et al. Application of machine learning for differentiating bone malignancy on imaging: a systematic review. Cancers (Basel). 2023;15(6):1837.PubMedCrossRef
73.
Metadata
Title
Bone tumors: state-of-the-art imaging
Authors
Patrick Debs
Shivani Ahlawat
Laura M. Fayad
Publication date
27-02-2024
Publisher
Springer Berlin Heidelberg
Published in
Skeletal Radiology
Print ISSN: 0364-2348
Electronic ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-024-04621-7