Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Magnetic Resonance Imaging | Research article

Application of machine learning-based multi-sequence MRI radiomics in diagnosing anterior cruciate ligament tears

Authors: Qi Cheng, Haoran Lin, Jie Zhao, Xiao Lu, Qiang Wang

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Objective

To compare the diagnostic power among various machine learning algorithms utilizing multi-sequence magnetic resonance imaging (MRI) radiomics in detecting anterior cruciate ligament (ACL) tears. Additionally, this research aimed to create and validate the optimal diagnostic model.

Methods

In this retrospective analysis, 526 patients were included, comprising 178 individuals with ACL tears and 348 with a normal ACL. Radiomics features were derived from multi-sequence MRI scans, encompassing T1-weighted imaging and proton density (PD)-weighted imaging. The process of selecting the most reliable radiomics features involved using interclass correlation coefficient (ICC) testing, t tests, and the least absolute shrinkage and selection operator (LASSO) technique. After the feature selection process, five machine learning classifiers were created. These classifiers comprised logistic regression (LR), support vector machine (SVM), K-nearest neighbors (KNN), light gradient boosting machine (LightGBM), and multilayer perceptron (MLP). A thorough performance evaluation was carried out, utilizing diverse metrics like the area under the receiver operating characteristic curve (ROC), specificity, accuracy, sensitivity positive predictive value, and negative predictive value. The classifier exhibiting the best performance was chosen. Subsequently, three models were developed: the PD model, the T1 model, and the combined model, all based on the optimal classifier. The diagnostic performance of these models was assessed by employing AUC values, calibration curves, and decision curve analysis.

Results

Out of 2032 features, 48 features were selected. The SVM-based multi-sequence radiomics outperformed all others, achieving AUC values of 0.973 and 0.927, sensitivities of 0.933 and 0.857, and specificities of 0.930 and 0.829, in the training and validation cohorts, respectively.

Conclusion

The multi-sequence MRI radiomics model, which is based on machine learning, exhibits exceptional performance in diagnosing ACL tears. It provides valuable insights crucial for the diagnosis and treatment of knee joint injuries, serving as an accurate and objective supplementary diagnostic tool for clinical practitioners.
Literature
1.
go back to reference Veltri DM, Deng XH, Torzilli PA, Warren RF, Maynard MJ. The role of the cruciate and posterolateral ligaments in stability of the knee. A biomechanical study. Am J Sports Med. 1995;23(4):436–43.CrossRefPubMed Veltri DM, Deng XH, Torzilli PA, Warren RF, Maynard MJ. The role of the cruciate and posterolateral ligaments in stability of the knee. A biomechanical study. Am J Sports Med. 1995;23(4):436–43.CrossRefPubMed
2.
go back to reference Lam MH, Fong DT, Yung P, Ho EP, Chan WY, Chan KM. Knee stability assessment on anterior cruciate ligament injury: Clinical and biomechanical approaches. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):20.PubMedPubMedCentral Lam MH, Fong DT, Yung P, Ho EP, Chan WY, Chan KM. Knee stability assessment on anterior cruciate ligament injury: Clinical and biomechanical approaches. Sports Med Arthrosc Rehabil Ther Technol. 2009;1(1):20.PubMedPubMedCentral
3.
go back to reference NegahiShirazi A, Chrzanowski W, Khademhosseini A, Dehghani F. Anterior cruciate ligament: structure, injuries and regenerative treatments. Adv Exp Med Biol. 2015;881:161–86.CrossRef NegahiShirazi A, Chrzanowski W, Khademhosseini A, Dehghani F. Anterior cruciate ligament: structure, injuries and regenerative treatments. Adv Exp Med Biol. 2015;881:161–86.CrossRef
4.
go back to reference Kwee RM, Hafezi-Nejad N, Roemer FW, Zikria BA, Hunter DJ, Guermazi A, Demehri S. Association of mucoid degeneration of the anterior cruciate ligament at MR imaging with medial tibiofemoral osteoarthritis progression at radiography: data from the osteoarthritis initiative. Radiology. 2018;287(3):912–21.CrossRefPubMed Kwee RM, Hafezi-Nejad N, Roemer FW, Zikria BA, Hunter DJ, Guermazi A, Demehri S. Association of mucoid degeneration of the anterior cruciate ligament at MR imaging with medial tibiofemoral osteoarthritis progression at radiography: data from the osteoarthritis initiative. Radiology. 2018;287(3):912–21.CrossRefPubMed
5.
go back to reference Nelson F, Billinghurst RC, Pidoux I, Reiner A, Langworthy M, McDermott M, Malogne T, Sitler DF, Kilambi NR, Lenczner E, et al. Early post-traumatic osteoarthritis-like changes in human articular cartilage following rupture of the anterior cruciate ligament. Osteoarthritis Cartilage. 2006;14(2):114–9.CrossRefPubMed Nelson F, Billinghurst RC, Pidoux I, Reiner A, Langworthy M, McDermott M, Malogne T, Sitler DF, Kilambi NR, Lenczner E, et al. Early post-traumatic osteoarthritis-like changes in human articular cartilage following rupture of the anterior cruciate ligament. Osteoarthritis Cartilage. 2006;14(2):114–9.CrossRefPubMed
6.
go back to reference Dold AP, Swensen S, Strauss E, Alaia M. The posteromedial corner of the knee: anatomy, pathology, and management strategies. J Am Acad Orthop Surg. 2017;25(11):752–61.CrossRefPubMed Dold AP, Swensen S, Strauss E, Alaia M. The posteromedial corner of the knee: anatomy, pathology, and management strategies. J Am Acad Orthop Surg. 2017;25(11):752–61.CrossRefPubMed
7.
go back to reference Shantanu K, Singh S, Srivastava S, Saroj AK. The validation of clinical examination and MRI as a diagnostic tool for cruciate ligaments and meniscus injuries of the knee against diagnostic arthroscopy. Cureus. 2021;13(6): e15727.PubMedPubMedCentral Shantanu K, Singh S, Srivastava S, Saroj AK. The validation of clinical examination and MRI as a diagnostic tool for cruciate ligaments and meniscus injuries of the knee against diagnostic arthroscopy. Cureus. 2021;13(6): e15727.PubMedPubMedCentral
8.
go back to reference Bari AA, Kashikar SV, Lakhkar BN, Ahsan MS. Evaluation of MRI versus arthroscopy in anterior cruciate ligament and meniscal injuries. JCDR. 2014;8(12):Rc14-18.PubMedPubMedCentral Bari AA, Kashikar SV, Lakhkar BN, Ahsan MS. Evaluation of MRI versus arthroscopy in anterior cruciate ligament and meniscal injuries. JCDR. 2014;8(12):Rc14-18.PubMedPubMedCentral
9.
go back to reference Li Z, Ren S, Zhou R, Jiang X, You T, Li C, Zhang W. Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury. J Healthc Eng. 2021;2021:4076175.PubMedPubMedCentral Li Z, Ren S, Zhou R, Jiang X, You T, Li C, Zhang W. Deep learning-based magnetic resonance imaging image features for diagnosis of anterior cruciate ligament injury. J Healthc Eng. 2021;2021:4076175.PubMedPubMedCentral
10.
go back to reference Li K, Du J, Huang LX, Ni L, Liu T, Yang HL. The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis. Sci Rep. 2017;7(1):7583.CrossRefPubMedPubMedCentral Li K, Du J, Huang LX, Ni L, Liu T, Yang HL. The diagnostic accuracy of magnetic resonance imaging for anterior cruciate ligament injury in comparison to arthroscopy: a meta-analysis. Sci Rep. 2017;7(1):7583.CrossRefPubMedPubMedCentral
11.
go back to reference Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med. 2011;39(7):1557–68.CrossRefPubMedPubMedCentral Quatman CE, Hettrich CM, Schmitt LC, Spindler KP. The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: a systematic review. Am J Sports Med. 2011;39(7):1557–68.CrossRefPubMedPubMedCentral
12.
go back to reference Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.CrossRefPubMed Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.CrossRefPubMed
13.
go back to reference Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learning in mining biological data. Cogn Comput. 2021;13(1):1–33.CrossRef Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learning in mining biological data. Cogn Comput. 2021;13(1):1–33.CrossRef
14.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer (Oxford, England: 1990). 2012;48(4):441–6.CrossRef Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer (Oxford, England: 1990). 2012;48(4):441–6.CrossRef
15.
go back to reference Fritz B, Yi PH, Kijowski R, Fritz J. Radiomics and deep learning for disease detection in musculoskeletal radiology: an overview of novel MRI- and CT-based approaches. Invest Radiol. 2023;58(1):3–13.CrossRefPubMed Fritz B, Yi PH, Kijowski R, Fritz J. Radiomics and deep learning for disease detection in musculoskeletal radiology: an overview of novel MRI- and CT-based approaches. Invest Radiol. 2023;58(1):3–13.CrossRefPubMed
16.
go back to reference Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, Bereket M, Patel BN, Yeom KW, Shpanskaya K, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15(11): e1002699.CrossRefPubMedPubMedCentral Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E, Bereket M, Patel BN, Yeom KW, Shpanskaya K, et al. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: development and retrospective validation of MRNet. PLoS Med. 2018;15(11): e1002699.CrossRefPubMedPubMedCentral
17.
go back to reference Liu F, Guan B, Zhou Z, Samsonov A, Rosas H, Lian K, Sharma R, Kanarek A, Kim J, Guermazi A, et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell. 2019;1(3): 180091.CrossRefPubMedPubMedCentral Liu F, Guan B, Zhou Z, Samsonov A, Rosas H, Lian K, Sharma R, Kanarek A, Kim J, Guermazi A, et al. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol Artif Intell. 2019;1(3): 180091.CrossRefPubMedPubMedCentral
18.
go back to reference Germann C, Marbach G, Civardi F, Fucentese SF, Fritz J, Sutter R, Pfirrmann CWA, Fritz B. Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths. Invest Radiol. 2020;55(8):499–506.CrossRefPubMedPubMedCentral Germann C, Marbach G, Civardi F, Fucentese SF, Fritz J, Sutter R, Pfirrmann CWA, Fritz B. Deep convolutional neural network-based diagnosis of anterior cruciate ligament tears: performance comparison of homogenous versus heterogeneous knee MRI cohorts with different pulse sequence protocols and 1.5-T and 3-T magnetic field strengths. Invest Radiol. 2020;55(8):499–506.CrossRefPubMedPubMedCentral
19.
20.
go back to reference Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur J Radiol. 2018;98:100–6.CrossRefPubMed Wang G, He L, Yuan C, Huang Y, Liu Z, Liang C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur J Radiol. 2018;98:100–6.CrossRefPubMed
21.
go back to reference Wu M, Xu W, Fei Y, Li Y, Yuan J, Qiu L, Zhang Y, Chen G, Cheng Y, Cao Y, et al. MRI-based clinical radiomics nomogram may predict the early response after concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma. Front Oncol. 2023;13:1192953.CrossRefPubMedPubMedCentral Wu M, Xu W, Fei Y, Li Y, Yuan J, Qiu L, Zhang Y, Chen G, Cheng Y, Cao Y, et al. MRI-based clinical radiomics nomogram may predict the early response after concurrent chemoradiotherapy in locally advanced nasopharyngeal carcinoma. Front Oncol. 2023;13:1192953.CrossRefPubMedPubMedCentral
22.
go back to reference Tsuchiya M, Masui T, Terauchi K, Yamada T, Katyayama M, Ichikawa S, Noda Y, Goshima S. MRI-based radiomics analysis for differentiating phyllodes tumors of the breast from fibroadenomas. Eur Radiol. 2022;32(6):4090–100.CrossRefPubMed Tsuchiya M, Masui T, Terauchi K, Yamada T, Katyayama M, Ichikawa S, Noda Y, Goshima S. MRI-based radiomics analysis for differentiating phyllodes tumors of the breast from fibroadenomas. Eur Radiol. 2022;32(6):4090–100.CrossRefPubMed
23.
go back to reference Nakagawa M, Nakaura T, Namimoto T, Iyama Y, Kidoh M, Hirata K, Nagayama Y, Yuki H, Oda S, Utsunomiya D, et al. Machine learning to differentiate T2-weighted hyperintense uterine leiomyomas from uterine sarcomas by utilizing multiparametric magnetic resonance quantitative imaging features. Acad Radiol. 2019;26(10):1390–9.CrossRefPubMed Nakagawa M, Nakaura T, Namimoto T, Iyama Y, Kidoh M, Hirata K, Nagayama Y, Yuki H, Oda S, Utsunomiya D, et al. Machine learning to differentiate T2-weighted hyperintense uterine leiomyomas from uterine sarcomas by utilizing multiparametric magnetic resonance quantitative imaging features. Acad Radiol. 2019;26(10):1390–9.CrossRefPubMed
24.
go back to reference Shu Z, Mao D, Song Q, Xu Y, Pang P, Zhang Y. Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer. Eur Radiol. 2022;32(2):1002–13.CrossRefPubMed Shu Z, Mao D, Song Q, Xu Y, Pang P, Zhang Y. Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer. Eur Radiol. 2022;32(2):1002–13.CrossRefPubMed
25.
go back to reference Rezaeijo SM, Chegeni N, Baghaei Naeini F, Makris D, Bakas S. Within-modality synthesis and novel radiomic evaluation of brain MRI scans. Cancers (Basel). 2023;15(14). Rezaeijo SM, Chegeni N, Baghaei Naeini F, Makris D, Bakas S. Within-modality synthesis and novel radiomic evaluation of brain MRI scans. Cancers (Basel). 2023;15(14).
26.
go back to reference Khanfari H, Mehranfar S, Cheki M, Mohammadi Sadr M, Moniri S, Heydarheydari S, Rezaeijo SM. Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI. BMC Med Imaging. 2023;23(1):195.CrossRefPubMedPubMedCentral Khanfari H, Mehranfar S, Cheki M, Mohammadi Sadr M, Moniri S, Heydarheydari S, Rezaeijo SM. Exploring the efficacy of multi-flavored feature extraction with radiomics and deep features for prostate cancer grading on mpMRI. BMC Med Imaging. 2023;23(1):195.CrossRefPubMedPubMedCentral
27.
go back to reference Yushkevich PA, Yang G, Gerig G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2016;2016:3342–5.PubMed Yushkevich PA, Yang G, Gerig G. ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference. 2016;2016:3342–5.PubMed
28.
go back to reference Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–95.CrossRefPubMed Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–95.CrossRefPubMed
29.
go back to reference Hosseinzadeh M, Gorji A, Fathi Jouzdani A, Rezaeijo SM, Rahmim A, Salmanpour MR. Prediction of cognitive decline in Parkinson's disease using clinical and DAT SPECT imaging features, and hybrid machine learning systems. Diagnostics (Basel). 2023;13(10). Hosseinzadeh M, Gorji A, Fathi Jouzdani A, Rezaeijo SM, Rahmim A, Salmanpour MR. Prediction of cognitive decline in Parkinson's disease using clinical and DAT SPECT imaging features, and hybrid machine learning systems. Diagnostics (Basel). 2023;13(10).
30.
go back to reference Heydarheydari S, Birgani MJT, Rezaeijo SM. Auto-segmentation of head and neck tumors in positron emission tomography images using non-local means and morphological frameworks. Pol J Radiol. 2023;88:e365–70.CrossRefPubMedPubMedCentral Heydarheydari S, Birgani MJT, Rezaeijo SM. Auto-segmentation of head and neck tumors in positron emission tomography images using non-local means and morphological frameworks. Pol J Radiol. 2023;88:e365–70.CrossRefPubMedPubMedCentral
31.
go back to reference Bridge CP, Gorman C, Pieper S, Doyle SW, Lennerz JK, Kalpathy-Cramer J, Clunie DA, Fedorov AY, Herrmann MD. Highdicom: a python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology. J Digit Imaging. 2022;35(6):1719–37.CrossRefPubMedPubMedCentral Bridge CP, Gorman C, Pieper S, Doyle SW, Lennerz JK, Kalpathy-Cramer J, Clunie DA, Fedorov AY, Herrmann MD. Highdicom: a python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology. J Digit Imaging. 2022;35(6):1719–37.CrossRefPubMedPubMedCentral
32.
go back to reference Jones HP, Appleyard RC, Mahajan S, Murrell GA. Meniscal and chondral loss in the anterior cruciate ligament injured knee. Sports Med. 2003;33(14):1075–89.CrossRefPubMed Jones HP, Appleyard RC, Mahajan S, Murrell GA. Meniscal and chondral loss in the anterior cruciate ligament injured knee. Sports Med. 2003;33(14):1075–89.CrossRefPubMed
33.
go back to reference Gregory T, Landreau P. Meniscus and cartilaginous lesions. Influence of the delay between ACL injury and ligament reconstruction in 40-year-old patients. Rev Chir Orthop Reparatrice Appar Mot. 2008;94(6):566–72.CrossRefPubMed Gregory T, Landreau P. Meniscus and cartilaginous lesions. Influence of the delay between ACL injury and ligament reconstruction in 40-year-old patients. Rev Chir Orthop Reparatrice Appar Mot. 2008;94(6):566–72.CrossRefPubMed
34.
go back to reference Tayton E, Verma R, Higgins B, Gosal H. A correlation of time with meniscal tears in anterior cruciate ligament deficiency: stratifying the risk of surgical delay. Knee Surg Sports Traumatol Arthrosc. 2009;17(1):30–4.CrossRefPubMed Tayton E, Verma R, Higgins B, Gosal H. A correlation of time with meniscal tears in anterior cruciate ligament deficiency: stratifying the risk of surgical delay. Knee Surg Sports Traumatol Arthrosc. 2009;17(1):30–4.CrossRefPubMed
35.
go back to reference AbbasianArdakani A, Bureau NJ, Ciaccio EJ, Acharya UR. Interpretation of radiomics features-A pictorial review. Comput Methods Programs Biomed. 2022;215: 106609.CrossRef AbbasianArdakani A, Bureau NJ, Ciaccio EJ, Acharya UR. Interpretation of radiomics features-A pictorial review. Comput Methods Programs Biomed. 2022;215: 106609.CrossRef
36.
go back to reference Tran A, Lassalle L, Zille P, Guillin R, Pluot E, Adam C, Charachon M, Brat H, Wallaert M, d’Assignies G, et al. Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation. Eur Radiol. 2022;32(12):8394–403.CrossRefPubMed Tran A, Lassalle L, Zille P, Guillin R, Pluot E, Adam C, Charachon M, Brat H, Wallaert M, d’Assignies G, et al. Deep learning to detect anterior cruciate ligament tear on knee MRI: multi-continental external validation. Eur Radiol. 2022;32(12):8394–403.CrossRefPubMed
37.
go back to reference Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14.PubMedPubMedCentral Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol. 2020;9(2):14.PubMedPubMedCentral
38.
go back to reference Zhou S. Sparse SVM for sufficient data reduction. IEEE Trans Pattern Anal Mach Intell. 2022;44(9):5560–71.PubMed Zhou S. Sparse SVM for sufficient data reduction. IEEE Trans Pattern Anal Mach Intell. 2022;44(9):5560–71.PubMed
39.
go back to reference Tsai CA, Chang YJ. Efficient selection of Gaussian Kernel SVM parameters for imbalanced data. Genes. 2023, 14(3). Tsai CA, Chang YJ. Efficient selection of Gaussian Kernel SVM parameters for imbalanced data. Genes. 2023, 14(3).
40.
go back to reference Chen DS, Wang TF, Zhu JW, Zhu B, Wang ZL, Cao JG, Feng CH, Zhao JW. A novel application of unsupervised machine learning and supervised machine learning-derived radiomics in anterior cruciate ligament rupture. Risk Manag Healthc Policy. 2021;14:2657–64.CrossRefPubMedPubMedCentral Chen DS, Wang TF, Zhu JW, Zhu B, Wang ZL, Cao JG, Feng CH, Zhao JW. A novel application of unsupervised machine learning and supervised machine learning-derived radiomics in anterior cruciate ligament rupture. Risk Manag Healthc Policy. 2021;14:2657–64.CrossRefPubMedPubMedCentral
41.
go back to reference Zhang L, Li M, Zhou Y, Lu G, Zhou Q. Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. JMRI. 2020;52(6):1745–52.CrossRefPubMed Zhang L, Li M, Zhou Y, Lu G, Zhou Q. Deep learning approach for anterior cruciate ligament lesion detection: evaluation of diagnostic performance using arthroscopy as the reference standard. JMRI. 2020;52(6):1745–52.CrossRefPubMed
42.
go back to reference Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva F, Link TM, Pedoia V, Majumdar S. Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI. Radiol Artif Intellig. 2020;2(4): e190207.CrossRef Namiri NK, Flament I, Astuto B, Shah R, Tibrewala R, Caliva F, Link TM, Pedoia V, Majumdar S. Deep learning for hierarchical severity staging of anterior cruciate ligament injuries from MRI. Radiol Artif Intellig. 2020;2(4): e190207.CrossRef
43.
go back to reference Wei L, Osman S, Hatt M, El Naqa I. Machine learning for radiomics-based multimodality and multiparametric modeling. Q J Nuclear Med Mol Imaging. 2019;63(4):323–38.CrossRef Wei L, Osman S, Hatt M, El Naqa I. Machine learning for radiomics-based multimodality and multiparametric modeling. Q J Nuclear Med Mol Imaging. 2019;63(4):323–38.CrossRef
Metadata
Title
Application of machine learning-based multi-sequence MRI radiomics in diagnosing anterior cruciate ligament tears
Authors
Qi Cheng
Haoran Lin
Jie Zhao
Xiao Lu
Qiang Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04602-5

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue