Skip to main content
Top
Published in: Journal of Orthopaedic Surgery and Research 1/2024

Open Access 01-12-2024 | Research article

Design of a novel lateral mass screw–plate system for the treatment of unstable atlas fractures: a finite element analysis

Authors: He-Gang Niu, Jing-Jing Zhang, Yi-Zhu Yan, Cheng-Kun Zhao, Kun Yang, Yin-Shun Zhang

Published in: Journal of Orthopaedic Surgery and Research | Issue 1/2024

Login to get access

Abstract

Background

Osteosynthesis of unstable atlas fractures preserves joint motion and therefore has a distinct advantage over a range of treatment procedures. To prevent the potential disadvantages associated with osteosynthesis, a new atlas lateral mass screw–plate (LMSP) system has been designed. However, the biomechanical role of using the LMSP system in atlas internal fixation is not known. The aim of this study was to compare the biomechanical stability of a new LMSP with traditional posterior screw and rod (PSR) fixation techniques on the occipitocervical junction (C0–C2) through finite element analysis.

Methods

A nonlinear C0–C2 finite element model of the intact upper cervical spine was developed and validated. The unstable model using the PSR system was then compared with the model using the LMSP system for fixation. A vertical load of 40 N was applied to the C0 to simulate head weight, while a torque of 1.5 Nm was applied to the C0 to simulate flexion, extension, lateral bending, and axial rotation.

Results

The range of motion of both systems was close to the intact model. Compared with the LMSP system model, the PSR system model increased flexion, extension, lateral bending, and axial rotation by 4.9%, 3.0%, 5.0%, and 29.5% in the C0–C1 segments, and 4.9%, 2.7%, 2.4%, and 22.6% in the C1–C2, respectively. In flexion, extension, and lateral bending motion, the LMSP system model exhibited similar stress to the PSR system model, while in axial rotation, the PSR system model exhibited higher stress.

Conclusions

The findings of our study indicate that the two tested system models provide comparable stability. However, better stability was achieved during axial rotation with the LMSP system, and in this system, the maximum von Mises stress was less than that of the PSR one. As the atlantoaxial joint functions primarily as a rotational joint, the use of the LMSP system may provide a more stable environment for the joint that has become unstable due to fracture.
Literature
1.
go back to reference Matthiessen C, Robinson Y. Epidemiology of atlas fractures–a national registry-based cohort study of 1,537 cases. Spine J. 2015;15(11):2332–7.PubMedCrossRef Matthiessen C, Robinson Y. Epidemiology of atlas fractures–a national registry-based cohort study of 1,537 cases. Spine J. 2015;15(11):2332–7.PubMedCrossRef
2.
go back to reference Smith RM, Bhandutia AK, Jauregui JJ, Shasti M, Ludwig SC. Atlas fractures: diagnosis, current treatment recommendations, and implications for elderly patients. Clin Spine Surg. 2018;31(7):278–84.PubMedCrossRef Smith RM, Bhandutia AK, Jauregui JJ, Shasti M, Ludwig SC. Atlas fractures: diagnosis, current treatment recommendations, and implications for elderly patients. Clin Spine Surg. 2018;31(7):278–84.PubMedCrossRef
3.
go back to reference Kim HS, Cloney MB, Koski TR, Smith ZA, Dahdaleh NS. Management of isolated atlas fractures: a retrospective study of 65 patients. World Neurosurg. 2018;111:e316–22.PubMedCrossRef Kim HS, Cloney MB, Koski TR, Smith ZA, Dahdaleh NS. Management of isolated atlas fractures: a retrospective study of 65 patients. World Neurosurg. 2018;111:e316–22.PubMedCrossRef
4.
go back to reference Ryken TC, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, et al. Management of isolated fractures of the atlas in adults. Neurosurgery. 2013;72(suppl_3):127–31.PubMedCrossRef Ryken TC, Aarabi B, Dhall SS, Gelb DE, Hurlbert RJ, Rozzelle CJ, et al. Management of isolated fractures of the atlas in adults. Neurosurgery. 2013;72(suppl_3):127–31.PubMedCrossRef
5.
go back to reference Huang D, Hao D, Liu T, Zheng Y, Qian L. Atlas fracture with an intact transverse atlantal ligament. Spine J Off J N Am Spine Soc. 2015;15(11):e41–2.CrossRef Huang D, Hao D, Liu T, Zheng Y, Qian L. Atlas fracture with an intact transverse atlantal ligament. Spine J Off J N Am Spine Soc. 2015;15(11):e41–2.CrossRef
6.
go back to reference Dvorak MF, Johnson MG, Boyd M, Johnson G, Kwon BK, Fisher CG. Long-term health-related quality of life outcomes following Jefferson-type burst fractures of the atlas. J Neurosurg Spine. 2005;2(4):411–7.PubMedCrossRef Dvorak MF, Johnson MG, Boyd M, Johnson G, Kwon BK, Fisher CG. Long-term health-related quality of life outcomes following Jefferson-type burst fractures of the atlas. J Neurosurg Spine. 2005;2(4):411–7.PubMedCrossRef
7.
go back to reference Zhang Y, Zhang J, Yang Q, Li W, Tao H, Shen C. Posterior osteosynthesis with monoaxial lateral mass screw-rod system for unstable C1 burst fractures. Spine J. 2018;18(1):107–14.PubMedCrossRef Zhang Y, Zhang J, Yang Q, Li W, Tao H, Shen C. Posterior osteosynthesis with monoaxial lateral mass screw-rod system for unstable C1 burst fractures. Spine J. 2018;18(1):107–14.PubMedCrossRef
8.
go back to reference Shin JJ, Kim KR, Shin J, Kang J, Lee HJ, Kim TW, et al. Surgical versus conservative management for treating unstable atlas fractures: a multicenter study. Neurospine. 2022;19(4):1013–25.PubMedPubMedCentralCrossRef Shin JJ, Kim KR, Shin J, Kang J, Lee HJ, Kim TW, et al. Surgical versus conservative management for treating unstable atlas fractures: a multicenter study. Neurospine. 2022;19(4):1013–25.PubMedPubMedCentralCrossRef
9.
go back to reference Tan J, Li L, Sun G, Qian L, Yang M, Zeng C, et al. C1 lateral mass-C2 pedicle screws and crosslink compression fixation for unstable atlas fracture. Spine (Phila Pa 1976). 2009;34(23):2505–9.PubMedCrossRef Tan J, Li L, Sun G, Qian L, Yang M, Zeng C, et al. C1 lateral mass-C2 pedicle screws and crosslink compression fixation for unstable atlas fracture. Spine (Phila Pa 1976). 2009;34(23):2505–9.PubMedCrossRef
10.
go back to reference Tessitore E, Momjian A, Payer M. Posterior reduction and fixation of an unstable Jefferson fracture with C1 lateral mass screws, C2 isthmus screws, and crosslink fixation: technical case report. Neurosurgery. 2008;63(1 Suppl 1):ONSE100–1 (discussion ONSE101).PubMed Tessitore E, Momjian A, Payer M. Posterior reduction and fixation of an unstable Jefferson fracture with C1 lateral mass screws, C2 isthmus screws, and crosslink fixation: technical case report. Neurosurgery. 2008;63(1 Suppl 1):ONSE100–1 (discussion ONSE101).PubMed
11.
go back to reference Dickman CA, Greene KA, Sonntag VK. Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurgery. 1996;38(1):44–50.PubMedCrossRef Dickman CA, Greene KA, Sonntag VK. Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries. Neurosurgery. 1996;38(1):44–50.PubMedCrossRef
12.
go back to reference Delcourt T, Begue T, Saintyves G, Mebtouche N, Cottin P. Management of upper cervical spine fractures in elderly patients: current trends and outcomes. Injury. 2015;46:S24–7.PubMedCrossRef Delcourt T, Begue T, Saintyves G, Mebtouche N, Cottin P. Management of upper cervical spine fractures in elderly patients: current trends and outcomes. Injury. 2015;46:S24–7.PubMedCrossRef
13.
go back to reference Koller H, Acosta F, Forstner R, Zenner J, Resch H, Tauber M, et al. C2-fractures: part II. A morphometrical analysis of computerized atlantoaxial motion, anatomical alignment and related clinical outcomes. Eur Spine J. 2009;18(8):1135–53.PubMedPubMedCentralCrossRef Koller H, Acosta F, Forstner R, Zenner J, Resch H, Tauber M, et al. C2-fractures: part II. A morphometrical analysis of computerized atlantoaxial motion, anatomical alignment and related clinical outcomes. Eur Spine J. 2009;18(8):1135–53.PubMedPubMedCentralCrossRef
14.
go back to reference Schleicher P, Scholz M, Kandziora F, Badke A, Dreimann M, Gebhard HW, et al. Recommendations for the diagnostic testing and therapy of atlas fractures. Z Orthop Unfall. 2019;157(5):566–73.PubMedCrossRef Schleicher P, Scholz M, Kandziora F, Badke A, Dreimann M, Gebhard HW, et al. Recommendations for the diagnostic testing and therapy of atlas fractures. Z Orthop Unfall. 2019;157(5):566–73.PubMedCrossRef
15.
go back to reference Ruf M, Melcher R, Harms J. Transoral reduction and osteosynthesis C1 as a function-preserving option in the treatment of unstable Jefferson fractures. Spine (Phila Pa 1976). 2004;29(7):823–7.PubMedCrossRef Ruf M, Melcher R, Harms J. Transoral reduction and osteosynthesis C1 as a function-preserving option in the treatment of unstable Jefferson fractures. Spine (Phila Pa 1976). 2004;29(7):823–7.PubMedCrossRef
16.
go back to reference Bransford R, Chapman JR, Bellabarba C. Primary internal fixation of unilateral C1 lateral mass sagittal split fractures: a series of 3 cases. J Spinal Disord Tech. 2011;24(3):157–63.PubMedCrossRef Bransford R, Chapman JR, Bellabarba C. Primary internal fixation of unilateral C1 lateral mass sagittal split fractures: a series of 3 cases. J Spinal Disord Tech. 2011;24(3):157–63.PubMedCrossRef
17.
go back to reference Shatsky J, Bellabarba C, Nguyen Q, Bransford RJ. A retrospective review of fixation of C1 ring fractures—Does the transverse atlantal ligament (TAL) really matter? Spine J. 2016;16(3):372–9.PubMedCrossRef Shatsky J, Bellabarba C, Nguyen Q, Bransford RJ. A retrospective review of fixation of C1 ring fractures—Does the transverse atlantal ligament (TAL) really matter? Spine J. 2016;16(3):372–9.PubMedCrossRef
18.
go back to reference He B, Yan L, Zhao Q, Chang Z, Hao D. Self-designed posterior atlas polyaxial lateral mass screw-plate fixation for unstable atlas fracture. Spine J. 2014;14(12):2892–6.PubMedCrossRef He B, Yan L, Zhao Q, Chang Z, Hao D. Self-designed posterior atlas polyaxial lateral mass screw-plate fixation for unstable atlas fracture. Spine J. 2014;14(12):2892–6.PubMedCrossRef
19.
go back to reference Hu Y, Albert TJ, Kepler CK, Ma WH, Yuan ZS, Dong WX. Unstable Jefferson fractures: results of transoral osteosynthesis. Indian J Orthop. 2014;48(2):145–51.PubMedPubMedCentralCrossRef Hu Y, Albert TJ, Kepler CK, Ma WH, Yuan ZS, Dong WX. Unstable Jefferson fractures: results of transoral osteosynthesis. Indian J Orthop. 2014;48(2):145–51.PubMedPubMedCentralCrossRef
20.
go back to reference Li L, Teng H, Pan J, Qian L, Zeng C, Sun G, et al. Direct posterior C1 lateral mass screws compression reduction and osteosynthesis in the treatment of unstable Jefferson fractures. Spine (Phila Pa 1976). 2011;36(15):E1046–51.PubMedCrossRef Li L, Teng H, Pan J, Qian L, Zeng C, Sun G, et al. Direct posterior C1 lateral mass screws compression reduction and osteosynthesis in the treatment of unstable Jefferson fractures. Spine (Phila Pa 1976). 2011;36(15):E1046–51.PubMedCrossRef
21.
go back to reference Tu Q, Chen H, Li Z, Chen Y, Xu A, Zhu C, et al. Anterior reduction and C1-ring osteosynthesis with Jefferson-fracture reduction plate (JeRP) via transoral approach for unstable atlas fractures. BMC Musculoskelet Disord. 2021;22(1):745.PubMedPubMedCentralCrossRef Tu Q, Chen H, Li Z, Chen Y, Xu A, Zhu C, et al. Anterior reduction and C1-ring osteosynthesis with Jefferson-fracture reduction plate (JeRP) via transoral approach for unstable atlas fractures. BMC Musculoskelet Disord. 2021;22(1):745.PubMedPubMedCentralCrossRef
22.
go back to reference Zou X, Ouyang B, Wang B, Yang H, Ge S, Chen Y, et al. Motion-preserving treatment of unstable atlas fracture: transoral anterior. BMC Musculoskelet Disord. 2020;21(1):538.PubMedPubMedCentralCrossRef Zou X, Ouyang B, Wang B, Yang H, Ge S, Chen Y, et al. Motion-preserving treatment of unstable atlas fracture: transoral anterior. BMC Musculoskelet Disord. 2020;21(1):538.PubMedPubMedCentralCrossRef
23.
24.
go back to reference Li X, Zhao D, Li W, Yang Y. Treatment of atlas fracture with posterior pedicle screw single-segmental internal fixation. J Spinal Surg. 2019;17(06):379–82. Li X, Zhao D, Li W, Yang Y. Treatment of atlas fracture with posterior pedicle screw single-segmental internal fixation. J Spinal Surg. 2019;17(06):379–82.
25.
go back to reference Bohm H, Kayser R, El SH, Heyde CE. Direct osteosynthesis of instable Gehweiler Type III atlas fractures. Presentation of a dorsoventral osteosynthesis of instable atlas fractures while maintaining function. Unfallchirurg. 2006;109(9):754–60.PubMed Bohm H, Kayser R, El SH, Heyde CE. Direct osteosynthesis of instable Gehweiler Type III atlas fractures. Presentation of a dorsoventral osteosynthesis of instable atlas fractures while maintaining function. Unfallchirurg. 2006;109(9):754–60.PubMed
26.
go back to reference Ma W, Xu N, Hu Y, Li G, Zhao L, Sun S, et al. Unstable atlas fracture treatment by anterior plate C1-ring osteosynthesis using a transoral approach. Eur Spine J. 2013;22(10):2232–9.PubMedPubMedCentralCrossRef Ma W, Xu N, Hu Y, Li G, Zhao L, Sun S, et al. Unstable atlas fracture treatment by anterior plate C1-ring osteosynthesis using a transoral approach. Eur Spine J. 2013;22(10):2232–9.PubMedPubMedCentralCrossRef
27.
go back to reference Yang K, Niu HG, Tao H, Liu C, Cao Y, Li W, et al. Posterior osteosynthesis with a new self-designed lateral mass screw-plate system for unstable atlas burst fractures. BMC Musculoskelet Disord. 2023;24(1):108.PubMedPubMedCentralCrossRef Yang K, Niu HG, Tao H, Liu C, Cao Y, Li W, et al. Posterior osteosynthesis with a new self-designed lateral mass screw-plate system for unstable atlas burst fractures. BMC Musculoskelet Disord. 2023;24(1):108.PubMedPubMedCentralCrossRef
28.
go back to reference Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine (Phila Pa 1976). 2004;29(4):376–85.PubMedCrossRef Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine (Phila Pa 1976). 2004;29(4):376–85.PubMedCrossRef
29.
go back to reference Lee SH, Im YJ, Kim KT, Kim YH, Park WM, Kim K. Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis. Spine (Phila Pa 1976). 2011;36(9):700–8.PubMedCrossRef Lee SH, Im YJ, Kim KT, Kim YH, Park WM, Kim K. Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis. Spine (Phila Pa 1976). 2011;36(9):700–8.PubMedCrossRef
30.
go back to reference Zhang QH, Teo EC, Ng HW, Lee VS. Finite element analysis of moment-rotation relationships for human cervical spine. J Biomech. 2006;39(1):189–93.PubMedCrossRef Zhang QH, Teo EC, Ng HW, Lee VS. Finite element analysis of moment-rotation relationships for human cervical spine. J Biomech. 2006;39(1):189–93.PubMedCrossRef
31.
go back to reference Cai XH, Liu ZC, Yu Y, Zhang MC, Huang WB. Evaluation of biomechanical properties of anterior atlantoaxial transarticular locking plate system using three-dimensional finite element analysis. Eur Spine J. 2013;22(12):2686–94.PubMedPubMedCentralCrossRef Cai XH, Liu ZC, Yu Y, Zhang MC, Huang WB. Evaluation of biomechanical properties of anterior atlantoaxial transarticular locking plate system using three-dimensional finite element analysis. Eur Spine J. 2013;22(12):2686–94.PubMedPubMedCentralCrossRef
32.
go back to reference Zhang H, Bai J. Development and validation of a finite element model of the occipito-atlantoaxial complex under physiologic loads. Spine (Phila Pa 1976). 2007;32(9):968–74.PubMedCrossRef Zhang H, Bai J. Development and validation of a finite element model of the occipito-atlantoaxial complex under physiologic loads. Spine (Phila Pa 1976). 2007;32(9):968–74.PubMedCrossRef
33.
go back to reference Hussain M, Natarajan RN, An HS, Andersson GB. Patterns of height changes in anterior and posterior cervical disc regions affects the contact loading at posterior facets during moderate and severe disc degeneration: a poroelastic C5–C6 finite element model study. Spine (Phila Pa 1976). 2010;35(18):E873–81.PubMedCrossRef Hussain M, Natarajan RN, An HS, Andersson GB. Patterns of height changes in anterior and posterior cervical disc regions affects the contact loading at posterior facets during moderate and severe disc degeneration: a poroelastic C5–C6 finite element model study. Spine (Phila Pa 1976). 2010;35(18):E873–81.PubMedCrossRef
34.
go back to reference Cai X, Yu Y, Liu Z, Zhang M, Huang W. Three-dimensional finite element analysis of occipitocervical fixation using an anterior occiput-to-axis locking plate system: a pilot study. Spine J. 2014;14(8):1399–409.PubMedCrossRef Cai X, Yu Y, Liu Z, Zhang M, Huang W. Three-dimensional finite element analysis of occipitocervical fixation using an anterior occiput-to-axis locking plate system: a pilot study. Spine J. 2014;14(8):1399–409.PubMedCrossRef
35.
go back to reference Fiedler N, Spiegl UJA, Jarvers J, Josten C, Heyde CE, Osterhoff G. Epidemiology and management of atlas fractures. Eur Spine J. 2020;29(10):2477–83.PubMedCrossRef Fiedler N, Spiegl UJA, Jarvers J, Josten C, Heyde CE, Osterhoff G. Epidemiology and management of atlas fractures. Eur Spine J. 2020;29(10):2477–83.PubMedCrossRef
36.
go back to reference Abeloos L, De Witte O, Walsdorff M, Delpierre I, Bruneau M. Posterior osteosynthesis of the atlas for nonconsolidated Jefferson fractures. Spine (Phila Pa 1976). 2011;36(20):E1360–3.PubMedCrossRef Abeloos L, De Witte O, Walsdorff M, Delpierre I, Bruneau M. Posterior osteosynthesis of the atlas for nonconsolidated Jefferson fractures. Spine (Phila Pa 1976). 2011;36(20):E1360–3.PubMedCrossRef
37.
go back to reference Panjabi M, Dvorak J, Duranceau J, Yamamoto I, Gerber M, Rauschning W, Bueff HU. Three-dimensional movements of the upper cervical spine. Spine (Phila Pa 1976). 1988;13(7):726–30.PubMedCrossRef Panjabi M, Dvorak J, Duranceau J, Yamamoto I, Gerber M, Rauschning W, Bueff HU. Three-dimensional movements of the upper cervical spine. Spine (Phila Pa 1976). 1988;13(7):726–30.PubMedCrossRef
38.
go back to reference Panjabi M, Dvorak J, Crisco JR, Oda T, Hilibrand A, Grob D. Flexion, extension, and lateral bending of the upper cervical spine in response to alar ligament transections. J Spinal Disord. 1991;4(2):157–67.PubMedCrossRef Panjabi M, Dvorak J, Crisco JR, Oda T, Hilibrand A, Grob D. Flexion, extension, and lateral bending of the upper cervical spine in response to alar ligament transections. J Spinal Disord. 1991;4(2):157–67.PubMedCrossRef
39.
go back to reference Panjabi M, Dvorak J, Crisco JR, Oda T, Wang P, Grob D. Effects of alar ligament transection on upper cervical spine rotation. J Orthop Res. 1991;9(4):584–93.PubMedCrossRef Panjabi M, Dvorak J, Crisco JR, Oda T, Wang P, Grob D. Effects of alar ligament transection on upper cervical spine rotation. J Orthop Res. 1991;9(4):584–93.PubMedCrossRef
40.
go back to reference Zheng Y, Wang J, Liao S, Zhang D, Zhang J, Ma L, Xia H. Biomechanical evaluation of a novel integrated artificial axis: a finite element study. Medicine (Baltimore). 2017;96(47): e8597.PubMedCrossRef Zheng Y, Wang J, Liao S, Zhang D, Zhang J, Ma L, Xia H. Biomechanical evaluation of a novel integrated artificial axis: a finite element study. Medicine (Baltimore). 2017;96(47): e8597.PubMedCrossRef
41.
go back to reference Hu Y, Xu RM, Albert TJ, Vaccoro AR, Zhao HY, Ma WH, et al. Function-preserving reduction and fixation of unstable Jefferson fractures using a C1 posterior limited construct. J Spinal Disord Tech. 2014;27(6):E219–25.PubMedCrossRef Hu Y, Xu RM, Albert TJ, Vaccoro AR, Zhao HY, Ma WH, et al. Function-preserving reduction and fixation of unstable Jefferson fractures using a C1 posterior limited construct. J Spinal Disord Tech. 2014;27(6):E219–25.PubMedCrossRef
42.
go back to reference Gumpert R, Poglitsch T, Krassnig R, Pranzl R, Puchwein P. Reduction and ring fixation of instable C1 fractures with monoaxial pedicle screws. Arch Orthop Trauma Surg. 2017;137(9):1253–9.PubMedPubMedCentralCrossRef Gumpert R, Poglitsch T, Krassnig R, Pranzl R, Puchwein P. Reduction and ring fixation of instable C1 fractures with monoaxial pedicle screws. Arch Orthop Trauma Surg. 2017;137(9):1253–9.PubMedPubMedCentralCrossRef
Metadata
Title
Design of a novel lateral mass screw–plate system for the treatment of unstable atlas fractures: a finite element analysis
Authors
He-Gang Niu
Jing-Jing Zhang
Yi-Zhu Yan
Cheng-Kun Zhao
Kun Yang
Yin-Shun Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Orthopaedic Surgery and Research / Issue 1/2024
Electronic ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-024-04582-6

Other articles of this Issue 1/2024

Journal of Orthopaedic Surgery and Research 1/2024 Go to the issue